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This paper addresses some of the recent developments in efficiency measurement using stochastic
frontier (SF) models in some selected areas. The following three issues are discussed in details.
First, estimation of SF models with input-oriented technical efficiency. Second, estimation of latent
class models to address technological heterogeneity as well as heterogeneity in economic behavior.
Finally, estimation of SF models using local maximum likelihood method. Estimation of some of
these models in the past was considered to be too difficult. We focus on the advances that have
been made in recent years to estimate some of these so-called difficult models. We complement
these with some developments in other areas as well.

1. Introduction

In this paper we focus on three issues. First, we discuss issues (mostly econometric) related
to input-oriented (IO) and output-oriented (OO) measures of technical inefficiency and
talk about the estimation of production functions with IO technical inefficiency. We discuss
implications of the IO and OOmeasures from both the primal and dual perspectives. Second,
the latent class (finite mixing) modeling approach is extended to accommodate behavioral
heterogeneity. Specifically, we consider profit- (revenue-) maximizing and cost-minimizing
behaviors with technical inefficiency. In our mixing/latent class model, first we consider a
system approach in which some producers maximize profit while others simply minimize
cost, and then we use a distance function approach, and mix the input and output distance
functions (in which it is assumed, at least implicitly, that some producers maximize revenue
while others minimize cost). In the distance function approach the behavioral assumptions
are not explicitly taken into account. The prior probability in favor of profit (revenue)
maximizing behavior is assumed to depend on some exogenous variables. Third, we consider
stochastic frontier (SF) models that are estimated using local maximum likelihood (LML)
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method to address the flexibility issue (functional form, heteroskedasticity, and determinants
of technical inefficiency).

2. The IO and OO Debate

The technology (with or without inefficiency) can be looked at from either a primal or a
dual perspective. In a primal setup two measures of technical efficiency are mostly used
in the efficiency literature. These are (i) input-oriented (IO) technical inefficiency and (ii)
output oriented (OO) technical inefficiency.1 There are some basic differences between the IO
and OO models so far as features of the technology are concerned. Although some of these
differences and their implications are well-known except for Kumbhakar and Tsionas [1], no
one has estimated a stochastic production frontier model econometrically with IO technical
inefficiency using cross-sectional data.2 Here we consider estimation of a translog production
model with IO technical inefficiency.

2.1. The IO and OO Models

Consider a single output production technology where Y is a scalar output and X is a vector
of inputs. Then the production technology with the IO measure of technical inefficiency can
be expressed as

Yi = f(Xi ·Θi), i = 1, . . . , n, (2.1)

where Yi is a scalar output, Θi ≤ 1 is IO efficiency (a scalar), Xi is the J × 1 vector of inputs,
and i indexes firms. The IO technical inefficiency for firm i is defined as lnΘi ≤ 0 and is
interpreted as the rate at which all the inputs can be reduced without reducing output. On
the other hand, the technology with the OO measure of technical inefficiency is specified as

Yi = f(Xi) ·Λi, (2.2)

where Λi ≤ 1 represents OO efficiency (a scalar), and lnΛi ≤ 0 is defined as OO
technical inefficiency. It shows the percent by which actual output could be increased without
increasing inputs (for more details, see Figure 1).

It is clear from (2.1) and (2.2) that if f(·) is homogeneous of degree r thenΘr
i = Λi, that

is, independent of X and Y . If homogeneity is not present their relationship will depend on
the input quantities and the parametric form of f(·).

We now show the IO and OO measures of technical efficiency graphically. The
observed production plan (Y,X) is indicated by the point A. The vertical length AB
measures OO technical inefficiency, while the horizontal distance AC measures IO technical
inefficiency. Since the former measures percentage loss of output while the latter measures
percentage increase in input usage in moving to the production frontier starting from the
inefficient production plan indicated by point A, these two measures are, in general, not
directly comparable. If the production function is homogeneous, then one measure is a
constant multiple of the other, and they are the same if the degree of homogeneity is one.
In the more general case, they are related in the following manner: f(X) ·Λ = f(XΘ).

Although we consider technologies with a single output, the IO and OO inefficiency
can be discussed in the context of multiple output technologies as well.
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Figure 1: IO and OO technical inefficiency.

2.2. Economic Implications of the IO and OO Models

Here we ask two questions. First, does it matter whether one uses the IO or the OO
representation so far as estimation of the technology is concerned? That means, whether
features of the estimated technology such as elasticities, returns to scale, and so forth, are
invariant to the choice of efficiency orientation. Second, are efficiency rankings of firms
invariant to the choice of efficiency orientation? That is, does one get the same efficiency
measures (converted in terms of either output loss or increase in costs) in both cases? It is not
possible to provide general theoretical answers to these questions. These are clearly empirical
issues so it is necessary to engage in applied research to get a feel for the similarities and
differences of the two approaches.

Answers to these questions depend on the form of the production technology. If it is
homogeneous, then there is no difference between these two models econometrically. This is
because for a homogeneous function r lnΘi = lnΛi, where r is the degree of homogeneity.
Thus, rankings of firms with respect to lnΛi and lnΘi will be exactly the same (one being a
constant multiple of the other). Moreover, since f(X) · Λ = f(X)Θr , the input elasticities as
well as returns to scale measures based on these two specifications of the technology will be
the same.3

This is, however, not the case if the technology is nonhomogenous. In the OO model
the elasticities and returns to scale will be independent of the technical inefficiency because
technical efficiency (i.e., assumed to be independent of inputs) enters multiplicatively into
the production function. This is not true for the IO model, where technical inefficiency enters
multiplicatively with the inputs. This will be shown explicitly later for a nonhomogeneous
translog production function.

2.3. Econometric Modeling and Efficiency Measurement

Using the lower case letters to indicate the log of a variable, and assuming that f(·) has a
translog form the IO model can be expressed as

yi = β0 +
(
xi − θi1J

)′
β +

1
2
(
xi − θi1J

)′Γ
(
xi − θi1J

)
+ βTTi +

1
2
βTTT

2
i

+ Ti
(
xi − θi1J

)′
ϕ + vi, i = 1, . . . , n,

(2.3)
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where yi is the log of output, 1J denotes the J ×1 vector of ones, xi is the J ×1 vector of inputs
in log terms, Ti is the trend/shift variable, β0, βT and βTT are scalar parameters, β, ϕ are J × 1
parameter vectors, Γ is a J × J symmetric matrix containing parameters, and vi is the noise
term. To make θ nonnegative we defined it as − lnΘ = θ.

We rewrite the IO model above as

yi =
(
β0 + x′

iβ +
1
2
x′
iΓxi + βTTi +

1
2
βTTT

2
i + x

′
iϕTi

)
− g(θi, xi) + vi, i = 1, . . . , n, (2.4)

where g(θi, xi) = −[(1/2)θ2iΨ − θΞi], Ψ = 1′jΓ1J , and Ξi = 1′j(β + Γxi + ϕTi), i = 1, . . . , n. Note
that if the production function is homogeneous of degree r, then Γ1J = 0, 1′Jβ = r, and 1′Jϕ =
0. In such a case the g(θi, xi) function becomes a constant multiple of θ, (namely, [(1/2)θ2iΨ−
θΞi] = −rθi), and consequently, the IO model cannot be distinguished from the OO model.
The g(θi, xi) function shows the percent by which output is lost due to technical inefficiency.
For a well-behaved production function g(θi, xi) ≥ 0 for each i.

The OO model, on the other hand, takes a much simpler form, namely,

yi =
(
β0 + x′

iβ +
1
2
x′
iΓxi + βTTi +

1
2
βTTT

2
i + x

′
iϕTi

)
− λi + vi, i = 1, . . . , n, (2.5)

where we defined − lnΛ = λ to make it nonnegative.4 The OO model in this form is the
one introduced by Aigner et al. [2] and Meeusen and van den Broeck [3], and since then it
has been used extensively in the efficiency literature. Here we follow the framework used in
Kumbhakar and Tsionas [1]when θ is random.5

We write (2.4)more compactly as

yi = z′iα +
1
2
θ2iΨ − θΞi + vi, i = 1, . . . , n. (2.6)

Both Ψ and Ξi are functions of the original parameters, and Ξi also depends on the data (xi
and Ti).

Under the assumption that vi ∼ N(0, σ2) and θi is distributed independently of vi with
the density function f(θi;ω), where ω is a parameter, the probability density function of yi
can be expressed as

f
(
yi;μ

)
=

(
2πσ2

)−1/2 ∫∞

0
exp

⎡

⎣−
(
yi − z′iα − (1/2)θ2iΨ + θiΞi

)2

2σ2

⎤

⎦f(θi;ω)dθi, i = 1, . . . , n,

(2.7)

where μ denotes the entire parameter vector.
We consider a half-normal and an exponential specification for the density f(θi;ω),

namely,

f(θi;ω) =

(
πω2

2

)−1/2
exp

(

− θ2i
2ω2

)

, θi ≥ 0,

f(θi;ω) = ω exp(−ωθi), θi ≥ 0.

(2.8)
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The likelihood function of the model is then

l
(
μ;y,X

)
=

n∏

i=1

f
(
yi;μ

)
, (2.9)

where f(yi;μ) has been defined above. Since the integral defining f(yi;μ) is not available in
closed form we cannot find an analytical expression for the likelihood function. However, we
can approximate the integrals using a simulation as follows. Suppose θi,(s), s = 1, . . . , S is a
random sample from f(θi;ω). Then it is clear that

f
(
yi;μ

) ≈ f̃(yi;μ
) ≡ S−1

S∑

s=1

exp

⎡

⎢
⎣−

(
yi − z′iα − (1/2)θ2i,(s)Ψ + θi,(s)Ξi

)2

2σ2

⎤

⎥
⎦, (2.10)

and an approximation of the log-likelihood function is given by

log l ≈
n∑

i=1

log f̃
(
yi;μ

)
, (2.11)

which can be maximized by numerical optimization procedures to obtain the ML estimator.
For the distributions we adopted, random number generation is trivial, so implementing the
SML estimator is straightforward.6

Inefficiency estimation is accomplished by considering the distribution of θi condi-
tional on the data and estimated parameters

f
(
θi | μ̃, Di

) ∝ exp

⎡

⎢
⎣−

(
yi − z′iα̃ − (1/2)θ2i Ψ̃ + Ξ̃iθi

)2

2σ̃2

⎤

⎥
⎦f(θi; ω̃), i = 1, . . . , n, (2.12)

where a tilde denotes the ML estimate, andDi = [xi, Ti] denotes the data. For example, when
f(θi; ω̃) is half-normal we get

f
(
θi | μ̃, y, X

) ∝ exp

⎡

⎢
⎣−

(
yi − z′iα̃ − (1/2)θ2i Ψ̃ + θiΞi

)2

2σ̃2
− θ2i
2ω̃2

⎤

⎥
⎦, θi ≥ 0, i = 1, . . . , n.

(2.13)

This is not a known density, and even the normalizing constant cannot be obtained in closed
form. However, the first two moments and the normalizing constant can be obtained by
numerical integration, for example, using Simpson’s rule.

To make inferences on efficiency, define efficiency as ri = exp(−θi) and obtain the
distribution of ri and its moments by changing the variable from θi to ri. This yields

fr
(
ri | μ̃, Di

)
= r−1i f

(− ln ri | μ̃, y, X
)
, 0 < ri ≤ 1, i = 1, . . . , n. (2.14)
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The likelihood function for the OOmodel is given in Aigner et al. [2] (hereafter ALS).7

TheMaximum likelihoodmethod for estimating the parameters of the production function in
the OO models are straightforward and have been used extensively in the literature starting
from ALS.8 Once the parameters are estimated, technical inefficiency (λ) is estimated from
E(λ | (v − λ))—the Jondrow et al. [4] formula. Alternatively, one can estimate technical
efficiency from E(e−λ | (v − λ)) using the Battese and Coelli [5] formula. For an application of
this approach see Kumbhakar and Tsionas [1].

2.4. Looking Through the Dual Cost Functions

2.4.1. The IO Approach

We now examine the IO and OO models when behavioral assumptions are explicitly
introduced. First, we examine themodels when producersminimize cost to produce the given
level of output(s). The objective of a producer is to

Min. w′X

subject to Y = f(X ·Θ)
(2.15)

from which conditional input demand functions can be derived. The corresponding cost
function can then be expressed as

w′X = Ca =
C(w,Y )

Θ
, (2.16)

where C(w,Y ) is the minimum cost function (cost frontier) and Ca is the actual cost. Finally,
one can use Shephard’s lemma to obtain Xa

j = X∗
j (w,Y )/Θ ≥ X∗

j (w,Y ) for all j, where the
superscripts a and ∗ indicate actual and cost-minimizing levels of input Xj .

Thus, the IO model implies (i) a neutral shift in the cost function which in turn
implies that RTS and input elasticities are unchanged due to technical inefficiency, (ii) an
equiproportional increase (at the rate given by θ) in the use of all inputs due to technical
inefficiency, irrespective of the output level and input prices.

To summarize, result (i) is just the opposite of what we obtained in the primal case
(see [6]). Result (ii) states that when inefficiency is reduced firms will move horizontally to
the frontier (as expected by the IO model).

2.4.2. The OO Model

Here the objective function is written as

Min. w′X

subject to Y = f(X) ·Λ
(2.17)
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from which conditional input demand functions can be derived. The corresponding cost
function can then be expressed as

w′X = Ca = C
(
w,

Y

Λ

)
≡ C(w,Y ) · q(w,Y,Λ), (2.18)

where as, before, C(w,Y ) is the minimum cost function (cost frontier) and Ca is the actual
cost. Finally, q(·) = C(w,Y/Λ)/C(w,Y ) ≥ 1. One can then use Shephard’s lemma to obtain

Xa
j = X∗

j (w,Y )

[

q(·) +
{
C(w,Y )
X∗
j

}{
∂q(·)
∂wj

}]

≥ X∗
j (w,Y ) ∀j, (2.19)

where the last inequality will hold if the cost function is well behaved. Note that
Xa
j /=X

∗
j (w,Y ) for all j unless q(·) is a constant.
Thus, the results from the OO model are just the opposite from those of the IO model.

Here (i) inefficiency shifts the cost function nonneutrally (meaning that q(·) depends on
output and input prices as well as Λ; (ii) increases in input use are not equiproportional
(depends on output and input prices); (iii) the cost shares are not independent of technical
inefficiency, (iv) the model is harder to estimate (similar to the IO model in the primal case).9

More importantly, the result in (i) is just the opposite of what we reported in the primal
case. Result (ii) is not what the OO model predicts (increase in output) when inefficiency is
eliminated. Since output is exogenously given in a cost-minimizing framework, input use has
to be reduced when inefficiency is eliminated.

The results from the dual cost function models are just the opposite of what the
primal models predict. Since the estimated technologies using cost functions are different
in the IO and OO models, as in the primal case, we do not repeat the results based on the
production/distance functions results here.

2.5. Looking Through the Dual Profit Functions

2.5.1. The IO Model

Here we assume that the objective of a producer is to

Max. π = p · Y −w′X ≡ p · Y −
(
w

Θ

)′
X ·Θ,

subject to Y = f(X ·Θ),
(2.20)

from which unconditional input demand and supply functions can be derived. Since the
above problem reduces to a standard neoclassical profit-maximizing problem when X is
replaced by X · Θ, and w is replaced by w/Θ, the corresponding profit function can be
expressed as

πa = p · Y −
(
w

Θ

)′
X ·Θ = π

(
w

Θ
, p

)
≡ π(

w, p
) · h(w, p,Θ) ≤ π(

w, p
)
, (2.21)

where πa is actual profit, π(w, p) is the profit frontier (homogeneous of degree one in w and
p) and h(w, p,Θ) = π(w/Θ, p)/π(w, p) ≤ 1 is profit inefficiency. Note that the h(w, p,Θ)
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function depends on w, p, and Θ in general. Application of Hotelling’s lemma yields the
following expressions for the output supply and input demand functions:

Ya = Y ∗(w, p
)
[

h(·) +
(
π
(
w, p

)

Y ∗

)(
∂h(·)
∂p

)]

≤ Y ∗(w, p
)
,

Xa
j = X∗

j

(
w, p

)
[

h(·) −
(
π
(
w, p

)

X∗
j

)(
∂h(·)
∂wj

)]

≤ X∗
j

(
w, p

) ∀j,
(2.22)

where the superscripts a and ∗ indicate actual and optimum levels of output Y and inputsXj .
The last inequality in the above equations will hold if the underlying production technology
is well behaved.

2.5.2. The OO Model

Here the objective function can be written as

Max. π = p · Y −w′X ≡ p ·Λ · Y
Λ

−w′X ·Θ,

subject to Y = f(X) ·Λ,
(2.23)

which can be viewed as a standard neoclassical profit-maximizing problem when Y is
replaced by Y/Λ and p is replaced by p ·Λ, the corresponding profit function can be expressed
as

πa =
p ·Λ · Y

Λ
−w′X = π

(
w, p ·Λ) ≡ π(

w, p
) · g(w, p,Λ) ≤ π(

w, p
)
, (2.24)

where g(w, p,Λ) = π(w, p ·Λ)/π(w, p) ≤ 1. Similar to the IOmodel using Hotelling’s lemma,
we get

Ya = Y ∗(w, p
)
[

g(·) +
(
π
(
w, p

)

Y ∗

)(
∂g(·)
∂p

)]

≤ Y ∗(w, p
)
,

Xa
j = X∗

j

(
w, p

)
[

g(·) −
(
π
(
w, p

)

X∗
j

)(
∂g(·)
∂wj

)]

≤ X∗
j

(
w, p

) ∀j.
(2.25)

The last inequality in the above equations will hold if the underlying production technology
is well behaved.

To summarize (i) a shift in the profit functions for both the IO and OO models is
non-neutral. Therefore, estimated elasticities, RTS, and so on, are affected by the presence
of technical inefficiency, no matter what form is used. (ii) Technical inefficiency leads to a
decrease in the production of output and decreases in input use in both models, however,
prediction of the reduction in input use and production of output are not the same under
both models.

Even under profit maximization that recognizes endogeneity of both inputs and
outputs, it matters which model is used to represent the technology!! These results are
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different from those obtained under the primal models and from the cost minimization
framework. Thus, it matters (both theoretically and empirically) whether one uses an input-
or output-oriented measure of technical inefficiency.

3. Latent Class Models

3.1. Modeling Technological Heterogeneity

In modeling production technology we almost always assume that all the producers use the
same technology. In other words, we do not allow the possibility that there might be more
than one technology being used by the producers in the sample. Furthermore, the analyst may
not knowwho is using what technology. Recently, a few studies have combined the stochastic
frontier approach with the latent class structure in order to estimate a mixture of several
technologies (frontier functions). Greene [7, 8] proposes a maximum likelihood for a latent
class stochastic frontier with more than two classes. Caudill [9] introduces an expectation-
maximization (EM) algorithm to estimate a mixture of two stochastic cost frontiers with two
classes.10 Orea and Kumbhakar [10] estimated a four-class stochastic frontier cost function
(translog) with time-varying technical inefficiency.

Following the notations of Greene [7, 8] we specify the technology for class j as

lnyi = ln f
(
xi, zi, βj

)|j + vi|j − ui|j , (3.1)

where ui|j is a nonnegative random term added to the production function to accommodate
technical inefficiency.

We assume that the noise term for class j follows a normal distribution with mean zero
and constant variance, σ2

vj . The inefficiency term ut|j is modeled as a half-normal random
variable following standard practice in the frontier literature, namely,

ui|j ∼N+

(
0, ω2

j

)
ui|j ≥ 0. (3.2)

That is, a half-normal distribution with scale parameter ωj for each class.
With these distributional assumptions, the likelihood for firm i, if it belongs to class j,

can be written as [11]

l
(
i | j) =

2
σj
φ

{
ε
(
i | j)

σj

}

Φ

{

−λjε
(
i | j)

σj

}

, (3.3)

where σ2
j = ω2

j +σ
2
j , λj = ωj/σvj and ε(i | j) = lnyi − ln f(xi, zi, βj)|j . Finally, φ(·) andΦ(·) are

the pdf and cdf of a standard normal variable.
The unconditional likelihood for firm i is obtained as the weighted sum of their j-class

likelihood functions, where the weights are the prior probabilities of class membership. That
is,

l(i) =
J∑

j=1

l
(
i | j) · πij , 0 ≤ πij ≤ 1,

∑

j

πijt = 1, (3.4)



10 Journal of Probability and Statistics

where the class probabilities can be parameterized by, for example, a logistic function. Finally,
the log likelihood function is

lnL =
n∑

i=1

ln l(i) =
n∑

i=1

ln

⎧
⎨

⎩

J∑

j=1

l
(
i | j) · πij

⎫
⎬

⎭
. (3.5)

The estimated parameters can be used to compute the conditional posterior class
probabilities. Using Bayes’ theorem (see Greene [7, 8] and Orea and Kumbhakar [10]) the
posterior class probabilities can be obtained from

P
(
ji
)
=

l
(
ij
) · πij

∑J
j=1 l

(
ij
) · πij

. (3.6)

This expression shows that the posterior class probabilities depend not only on the
estimated parameters in πij , but also on parameters of the production frontier and the data.
This means that a latent class model classifies the sample into several groups even when the
πij are fixed parameters (independent of i).

In the standard stochastic frontier approach where the frontier function is the same
for every firm, we estimate inefficiency relative to the frontier for all observations, namely,
inefficiency from E(ui | εi) and efficiency from E[exp(−ui) | εi]. In the present case, we
estimate as many frontiers as the number of classes. So the question is how to measure
the efficiency level of an individual firm when there is no unique technology against which
inefficiency is to be computed. This is solved by using the following method,

lnEFi =
J∑

j=1

P
(
j | i) · lnEFi

(
j
)
, (3.7)

where P(j | i) is the posterior probability to be in the jth class for a given firm i (defined in
(3.9)), and EFi(j) is its efficiency using the technology of class j as the reference technology.
Note that here we do not have a single reference technology. It takes into account technologies
from every class. The efficiency results obtained by using (3.10)would be different from those
based on the most likely frontier and using it as the reference technology. The magnitude of
the difference depends on the relative importance of the posterior probability of the most
likely cost frontier, the higher the posterior probability the smaller the differences. For an
application see Orea and Kumbhakar [10].

3.2. Modeling Directional Heterogeneity

In Section 2.3 we talked about estimating IO technical inefficiency. In practice most
researchers use the OO model because it is easy to estimate. Now we address the question
of choosing one over the other. Orea et al. [12] used a model selection test procedure to
determine whether the data support the IO, OO, or the hyperbolic model. Based on such
a test result, one may decide to use the direction that fits the data best. This implictly assumes
that all producers in the sample behave in the same way. In reality, firms in a particular
industry, although using the same technology, may choose different direction to move to
the frontier. For example, some producers might find it costly to adjust input levels to attain
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the production frontier, while for others it might be easier to do so. This means that some
producers will choose to shrink their inputs while others will augment the output level. In
such a case imposing one direction for all sample observations is not efficient. The other
practical problem is that no one knows in advance, which producers are following what
direction. Thus, we cannot estimate the IO model for one group and the OO model for
another.

The advantage of the LCM is that it is not necessary to impose a priori criterion to
identify which producers are in what class. Moreover, we can formally examine whether
some exogenous factors are responsible for choosing the input or the output direction by
making the probabilities function of exogenous variables. Furthermore, when panel data is
available, we do not need to assume that producers follow one direction for all the time, so
we can accommodate switching behaviour and determine when they go in the input (output)
direction.

3.2.1. The Input-Oriented Model

Under the assumption that vi ∼ N(0, σ2), and θi is distributed independently of vi, according
to a distribution with density fθ(θi;ω), where ω is a parameter, the distribution of yi has
density

fIO
(
yi | zi,Δ

)
=

(
2πσ2

)−1/2 ∫∞

0
exp

⎡

⎣−
(
yi − z′iα − (1/2)θ2iΨ + θiΞi

)2

2σ2

⎤

⎦fθ(θi;ω)dθi,

i = 1, . . . , n,

(3.8)

whereΔ denotes the entire parameter vector.We use a half-normal specification for θ, namely,

fθ(θi;ω) =

(
πω2

2

)−1/2
exp

(

− θ2i
2ω2

)

, θi ≥ 0. (3.9)

The likelihood function of the IO model is

LIO
(
Δ;y,X

)
=

n∏

i=1

fIO
(
yi | zi,Δ

)
, (3.10)

where fIO(yi | zi,Δ) has been defined in (3.8). Since the integral defining fIO(yi | zi, μ)
in (3.11) is not available in closed form, we cannot find an analytical expression for
the likelihood function. However, we can approximate the integrals using Monte Carlo
simulation as follows. Suppose θi,(s), s = 1, . . . , S is a random sample from fθ(θi;ω). Then
it is clear that

fIO
(
yi | zi, μ

) ≈ f̃IO
(
yi | zi, μ

)

≡
(
2πσ2

)−1/2
(
πω2

2

)−1/2

× S−1
S∑

s=1

exp

⎡

⎢
⎣−

(
yi − z′iα − (1/2)θ2i,(s)Ψ + θi,(s)Ξi

)2

2σ2
−
θ2
i,(s)

2ω2

⎤

⎥
⎦,

(3.11)
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and an approximation of the log-likelihood function is given by

log lIO ≈
n∑

i=1

log f̃IO
(
yi | zi, μ

)
, (3.12)

which can be maximized by numerical optimization procedures to obtain the ML estimator.
To perform SML estimation, we consider the integral in (3.11). We can transform the range
of integration to [0, 1] by using the transformation ri = exp(−θi) which has a natural
interpretation as IO technical efficiency. Then, (3.11) becomes

fIO
(
yi | zi, μ

)
=

(
2πσ2

)−1/2 ∫1

0
exp

⎡

⎢
⎣−

(
yi − z′iα − (1/2)(ln ri)

2Ψ − ln riΞi
)2

2σ2

⎤

⎥
⎦

× fθ(− ln ri;ω)r−1i dri.

(3.13)

Suppose ri,(s) is a set of standard uniform random numbers, for s = 1, . . . , S. Then the integral
can be approximated using the Monte Carlo estimator

f̃IO
(
yi | zi, μ

)
=

(
2πσ2

)−1/2
(
πω2

2

)−1/2
Gi

(
μ
)
, (3.14)

where Gi(μ) = S−1 ∑S
s=1 exp[−(yi − z′iα − (1/2)(ln ri,(s))

2Ψ − ln ri,(s)Ξi)
2/2σ2 − (ln ri,(s))

2/2ω2 −
ln ri,(s)].

The standard uniform random numbers and their log transformation can be saved
in an n × S matrix before maximum likelihood estimation and reused to ensure that the
likelihood function is a differentiable function of the parameters. An alternative is to maintain
the same random number seed and redraw these numbers for each call to the likelihood
function. This option increases computing time but implies considerable savings in terms of
memory. An alternative to the use of pseudorandom numbers is to use the Halton sequence
to produce quasi-random numbers that fill the interval [0, 1]. The Halton sequence has been
used in econometrics by Train [13] for the multinomial probit model, and Greene [14] to
implement SML estimation of the normal-gamma stochastic frontier model.

3.2.2. The Output-Oriented Model

Estimation of the OO is easy since the likelihood function is available analytically. The model
is

yi = z′iα + vi − λi, i = 1, . . . , n. (3.15)

We make the standard assumptions that vi ∼ N(0, σ2
v), λi ∼ N+(0, σ2

λ
), and both are mutually

independent as well as independent of zi. The density of yi is [11, page 75]

fOO
(
yi | zi, μ

)
=

2
ρ
ϕN

(
ei
ρ

)
ΦN

(
−eiτ
ρ

)
, (3.16)
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where ei = yi − z′iα, ρ2 = σ2
v + σ

2
λ, τ = σλ/σv, and φN and ΦN denote the standard normal pdf

and cdf, respectively. The log likelihood function of the model is

ln lOO
(
μ;y,Z

)
= n ln

(
2
ρ

)
− n

2
ln

(
2πρ2

)
− 1
2ρ2

n∑

i=1

e2i +
n∑

i=1

lnΦN

(
−eiτ
ρ

)
. (3.17)

3.3. The Finite Mixture (Latent Class) Model

The IO and OO models can be embedded in a general model that allows model choice for
each observation in the absence of sample separation information. Specifically, we assume
that each observation yi is associated with the OO class with probability p, and with the IO
class with probability 1 − p. To be more precise, we have the model

yi = z′iα − λi + vi, i = 1, . . . , n, (3.18)

with probability p, and the model

yi = z′iα +
1
2
θ2iΨ − θiΞi + vi, i = 1, . . . , n, (3.19)

with probability 1 − p, where the stochastic elements obey the assumptions that we stated
previously in connection with the OO and IO models. Notice that the technical parameters,
α, are the same in the two classes. Denote the parameter vector by ψ = [α′, σ2, ω2, σ2

v, σ
2
λ, p]

′.
The density of yi will be

fLCM
(
yi | zi, ψ

)
= p · fOO

(
yi | zi,O

)
+
(
1 − p)fIO

(
yi | zi,Δ

)
, i = 1, . . . , n, (3.20)

where O = [α′, σ2, ω2]′, andΔ = [α′, σ2
v, σ

2
λ
] are subsets of ψ. The log likelihood function of the

model is

log lLCM
(
ψ;y,Z

)
=

n∑

i=1

ln fLCM
(
yi | zi, ψ

)
=

n∑

i=1

ln
[
p · fOO

(
yi | zi,O

)
+
(
1 − p)fIO

(
yi | zi,Δ

)]
.

(3.21)

The log likelihood function depends on the IO density fIO(yi | zi,Δ), which is not available
in closed form but can be obtained with the aid of simulation using the principles presented
previously to obtain

log lLCM
(
ψ;y,Z

)
=

n∑

i=1

ln fLCM
(
yi | zi, ψ

)
=

n∑

i=1

ln
[
pfOO

(
yi | zi,O

)
+
(
1 − p)f̃IO

(
yi | zi,Δ

)]
,

(3.22)

where f̃IO(yi | zi,Δ) has been defined in (3.14) and fOO(yi | zi,O) in (3.16). This log likelihood
function can be maximized using standard techniques to obtain the SML estimates of the
LCM.
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3.3.1. Technical Efficiency Estimation in the Latent Class Model

A natural output-based efficiency measure derived from the LCM is

TELCM
i = PiTEOO

i + (1 − Pi)TEIO
i , (3.23)

where

Pi =
pfOO

(
yi | zi, Õ

)

pfOO

(
yi | zi, Õ

)
+
(
1 − p)fIO

(
yi | zi, Δ̃

) , i = 1, . . . , ·n, (3.24)

is the posterior probability that the ith observation came from the OO class. These posterior
probabilities are of independent interest since they can be used to provide inferences on
whether a firm came from the OO or IO universe, depending on whether, for example,
Pi ≥ 1/2 or Pi < 1/2. This information can be important in deciding which type of adjustment
cost (input- or output-related) is more important for a particular firm.

From the IO component of the LCM we have the IO-related efficiency measure, say
IOTELCM

i , and its standard deviation, say STELCM
i , that can be compared with IOTEi and STEi

from the IOmodel. Similarly we can compare TEOO
i with the output efficiency of the IOmodel

(TEIO
i ) and/or the output efficiency of the OO component of the LCM.

3.4. Returns to Scale and Technical Change

Note that returns to scale (defined as RTS =
∑

j ∂y/∂xj) is not affected by the presence of
technical inefficiency in the OOmodel. The same is true for input elasticities and elasticities of
substitution (that are not explored here). This is because inefficiency in the OO model shifts
the production function in a neutral fashion. On the contrary, the magnitude of technical
inefficiency affects RTS in the IO models. Using the translog specification in (2.4), we get

RTSIOi = 1′J
(
β + Γxi + ϕTi

) − θi1′JΓ, (3.25)

whereas the formula for RTS in the OO model is

RTSOO
i = 1′J

(
β + Γxi + ϕTi

)
. (3.26)

We now focus on estimates of technical change from the IO and OOmodels. Again TC
in the IO model can be measured conditional on θ (TCIO(I)) and TC defined at the frontier
(TCIO(II)), namely,

TCIO(I) = βT + βTTTi + x′
iϕ + 1′Jϕ θi,

TCIO(II) = βT + βTTTi + x′
iϕ.

(3.27)

These two formulas will give different results if technical change is neutral and/or the
production function is homogeneous (i.e., 1′Jϕ /= 0). The formula for TCOO is the same as
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TCIO(II) except for the fact that the estimated parameters in (3.3) are from the IO model,
whereas the parameters to compute TCOO are from the OO model.

It should be noted that in the LCM we enforce the restriction that the technical
parameters, α, are the same in the IO and OO components of the mixture. This implies
that RTS and TC will be the same in both components if we follow the first approach, but
they will be different if we follow the second approach. In the second approach, a single
measure of RTS and TC can be defined as the weighted average of both measures using
the posterior probabilities, Pi, as weights. To be more precise, suppose RTSIO,LCM

i (II) is the
type II RTS measure derived from the IO component of the LCM, and RTSOO,LCM

i is the RTS
measure derived from the OO component of the LCM. The overall LCMmeasure of RTS will
be RTSLCMi = PiRTS

OO,LCM
i + (1 − Pi)RTSIO,LCM

i . Similar methodology is followed for the TC
measure.

4. Relaxing Functional form Assumptions (SF Model with LML)

In this section we introduce the LML methodology [15] in estimating SF models in such a
way that many of the limitations of the SF models originally proposed by Aigner et al. [2],
Meeusen and van den Broeck [3], and their extensions in the last two and a half decades
are relaxed. Removal of all these deficiencies generalizes the SF models and makes them
comparable to the DEA models. Moreover, we can apply standard econometric tools to
perform estimation and draw inferences.

To fix ideas, suppose we have a parametric model that specifies the density of an
observed dependent variable yi conditional on a vector of observable covariates xi ∈ X ⊆ Rk,
a vector of unknown parameters θ ∈ Θ ⊆ Rm, and let the density be l(yi;xi, θ). The parametric
ML estimator is given by

θ̃ = arg max
θ∈Θ

:
n∑

i=1

ln l
(
yi;xi, θ

)
. (4.1)

The problem with the parametric ML estimator is that it relies heavily on the
parametric model that can be incorrect if there is uncertainty regarding the functional form
of the model, the density, and so forth. A natural way to convert the parametric model to
a nonparametric one is to make the parameter θ a function of the covariates xi. Within LML
this is accomplished as follows. For an arbitrary x ∈ X, the LML estimator solves the problem

θ̃(x) = arg max
θ∈Θ

:
n∑

i=1

ln l
(
yi;xi, θ

)
KH(xi − x), (4.2)

where KH is a kernel that depends on a matrix bandwidth H. The idea behind LML is to
choose an anchoring parametric model and maximize a weighted log-likelihood function
that places more weight to observations near x rather than weight each observation equally,
as the parametric ML estimator would do.11 By solving the LML problem for several points
x ∈ X, we can construct the function θ̃(x) that is an estimator for θ(x), and effectively we
have a fully general way to convert the parametric model to a nonparametric approximation
to the unknown model.

Suppose we have the following stochastic frontier cost model:

yi = x′
iβ + vi + ui, vi ∼ N

(
0, σ2

)
, ui ∼ N

(
μ,ω2

)
, ui ≥ 0, for i = 1, . . . , n, β ∈ Rk, (4.3)
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where y is log cost and xi is a vector of input prices and outputs12; vi and ui are the noise and
inefficiency components, respectively. Furthermore, vi and ui are assumed to be mutually
independent as well as independent of xi.

To make the frontier model more flexible (nonparametric), we adopt the following
strategy. Consider the usual parametric ML estimator for the normal (v) and truncated
normal (u) stochastic cost frontier model that solves the following problem [16]:

θ̃ = arg max
θ∈Θ

:
n∑

i=1

ln l
(
yi;xi, θ

)
, (4.4)

where

l
(
yi;xi, θ

)
=

[
Φ
(
ψ
)]−1Φ

[
σ2ψ +ω

(
yi − x′

iβ
)

σ(ω2 + σ2)1/2

][
2π(ω2 + σ2)

]−1/2
exp

[

−
(
yi − x′

iβ − μ
)2

2(ω2 + σ2)

]

,

(4.5)

ψ = μ/ω, and Φ denotes the standard normal cumulative distribution function. The
parameter vector is θ = [β, σ,ω, ψ] and the parameter space isΘ = Rk ×R+ ×R+ ×R. Local ML
estimation of the corresponding nonparametric model involves the following steps. First, we
choose a kernel function. A reasonable choice is

KH(d) = (2π)−m/2|H|−1/2 exp
(
−1
2
d′H−1d

)
, d ∈ Rm, (4.6)

wherem is the dimensionality of θ,H = h ·S, h > 0 is a scalar bandwidth, and S is the sample
covariance matrix of xi. Second, we choose a particular point x ∈ X, and solve the following
problem:

θ̃(x) = arg max
θ∈Θ

:
n∑

i=1

{

− lnΦ
(
ψ
)
+ lnΦ

[
σ2ψ +ω

(
yi − x′

iβ
)

σ(ω2 + σ2)1/2

]

−1
2
ln

(
ω2 + σ2

)
− 1
2

(
yi − x′

iβ − μ
)2

(ω2 + σ2)

}

KH(xi − x).
(4.7)

A solution to this problem provides the LML parameter estimates β̃(x), σ̃(x), ω̃(x), and
ψ̃(x). Also notice that the weights KH(xi − x) do not involve unknown parameters (if h is
known) so they can be computed in advance and, therefore, the estimator can be programmed
in any standard econometric software.13 For an application of this methodology to US
commercial banks see Kumbhakar and Tsionas [17, 18] and Kumbhakar et al. [15].

5. Some Advances in Stochastic Frontier Analysis

5.1. General

There are many innovative empirical applications of stochastic frontier analysis in recent
years. One of them is in the field of auctions, a particular field of game theory. Advances
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and empirical applications in this field are likely to accumulate rapidly and contribute
positively to the advancement of empirical Game theory and empirical IO. Kumbhakar et
al. [19] propose Bayesian analysis of an auction model where systematic over-bidding and
under-bidding is allowed. Extensive simulations are used to show that the new techniques
performwell and ignoringmeasurement error or systematic over-bidding and under-bidding
is important in the final results.

Kumbhakar and Parmeter [20] derive the closed-form likelihood and associated
efficiency measures for a two-sided stochastic frontier model under the assumption of
normal-exponential components. The model receives an important application in the labor
market where employees and employers have asymmetric information, and each one tries
to manipulate the situation to his own advantage, Employers would like to hire for less
and employees to obtain more in the bargaining process. The precise measurement of these
components is, apparently, important.

Kumbhakar et al. [21] acknowledge explicitly the fact that certain decision making
units can be fully (i.e., 100%) efficient, and propose a new model which is a mixture of (i)
a half-normal component for inefficient firms and (ii) a mass at zero for efficient firms. Of
course, it is not known in advance which firms are fully efficient or not. The authors propose
classical methods of inference organized around maximum likelihood and provide extensive
simulations to explore the validity and relevance of the new techniques under various data
generating processes.

Tsionas [22] explores the implications of the convolution ε = v + u in stochastic
frontier models. The fundamental point is that even when the distributions of the error
components are nonstandard (e.g., Student-t and half-Student or normal and half-Student,
gamma, symmetric stable, etc.) it is possible to estimate the model by ML estimation via the
fast Fourier transform (FFT) when the characteristic functions are available in closed form.
These methods can also be used in mixture models, input-oriented efficiency models, two-
tiered stochastic frontiers, and so forth. The properties of ML and some GLS techniques are
explored with an emphasis on the normal-truncated normal model for which the likelihood
is available analytically and simulations are used to determine various quantities that must
be set in order to apply ML by FFT.

Starting with Annaert et al. [23], stochastic frontier models have been applied very
successfully in finance, especially the important issue of mutual funds performance. Schaefer
and Maurer [24] apply these techniques to German funds to find that they “may be able to
reduce its costs by 46 to 74% when compared with the best-practice complex in the sample.”
Of course, much remains to be done in this area and connect more closely stochastic frontier
models with practical finance and better mutual fund performance evaluation.

5.2. Panel Data

Panel data have always been a source of inspiration and new models in stochastic frontier
analysis. Roughly speaking, panel data are concerned with models of the form yit = αi+x′

itβ+
vit, where the αi’s are individual effects, random or fixed, xit is a k × 1 vector of covariates, β
is a k × 1 parameter vector and, typically, the error term vit ∼ iidN(0, σ2

v).
An important contribution in panel data models of efficiency is the incorporation

of factors, as in Kneip et al. [25]. Factors arise from the necessity of incorporating more
structure into frontier models, a point that is clear after Lee and Schmidt [26]. The authors
use smoothing techniques to perform the econometric analysis of the model.
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In recent years, the focus of the profession has shifted from the fixed effects model
(e.g., Cornwell et al. [27]) to a so-called “true fixed effects model” (TFEM) first proposed
by Greene [28]. Greene’s model is yit = αi + x′

itβ + vit ± uit, where uit ∼ iidN+(0, σ2
v). In

this model, the individual effects are separated from technical inefficiency. Similar models
have been proposed previously by Kumbhakar [29] and Kumbhakar and Hjalmarsson [30],
although in these models firm-effects were treated as persistent inefficiency. Greene shows
that the TFEM can be estimated easily using special Gauss-Newton iterations without the
need to explicitly introduce individual dummy variables, which is prohibitive if the number
of firms (N) is large. As Greene [28] notes: “the fixed and random effects estimators force any time
invariant cross unit heterogeneity into the same term that is being used to capture the inefficiency.
Inefficiency measures in these models may be picking up heterogeneity in addition to or even instead of
inefficiency.” For important points and applications see Greene [8, 31].

Greene’s [8] findings are somewhat at odds with the perceived incidental parameters
problem in thismodel, as he himself acknowledges. His findingsmotivated a body of research
that tries to deal with the incidental parameters problem in stochastic frontier models and,
of course, efficiency estimation. The incidental parameters problem in statistics began with
the well-known contribution of Neyman and Scott [32] (see also [33]). In stochastic frontier
models of the form: yit = αi + x′

itβ + vit, for i = 1, . . . ,N and t = 1, . . . , T . The essence of the
problem is that asN gets large, the number of unknown parameters (the individual effects αi,
i = 1, . . . ,N) increase at the same rate so consistency cannot be achieved. Another route to the
incidental parameters problem is well-known in the efficiency estimation with cross-sectional
data (T = 1), where JLMS estimates are not consistent.

To appreciate better the incidental parameters problem, the TFEM implies a density
for the ith unit, say

pi(αi, δ;Yi) ≡ pi
(
αi, β, σ,ω;Yi

)
, where Yi =

[
y′
i, x

′
i

]′ is the data. (5.1)

The problem is that the ML estimator

max
α1,...,αn,δ

:
n∑

i=1

pi(αi, δ;Yi) = max
δ

:
n∑

i=1

pi(α̂i, δ;Yi) (5.2)

is not consistent. The source of the problem is that the concentrated likelihood using α̂i (the
ML estimator) will not deliver consistent estimators for all elements of δ.

In frontier models we know that ML estimators for β and σ2 + ω2 seem to be alright
but the estimator for ω or the ratio λ = ω/σ can be wrong. This is also validated in a recent
paper by Chen et al. [34].

There are some approaches to correct such biases in the literature on nonlinear panel
data models.

(i) Correct the bias to first order using a modified score (first derivatives of log
likelihood).

(ii) Use a penalty function for the log likelihood. This can of course be related to [2]
above.

(iii) Apply panel jackknife. Satchachai and Schmidt [35] has done that recently in
a model with fixed effects but without one-sided component. He derives some
interesting results regarding convergence depending on whether we have ties or
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not. First differencing produces O(T−1) but with ties we have O(T−1/2) (for the
estimator applied when you have a tie).

(iv) In line with (ii) one could use a modified likelihood of the form p∗i (δ;Yi) =∫
pi(αi, δ;Yi)w(αi)dαi, where w(αi) is some weighting function for which it is clear

that there is a Bayesian interpretation.
Since Greene [8] derived a computationally efficient algorithm for the true fixed effects

model, one would think that application of panel jackknife would reduce the first order bias
of the estimator and for empirical purposes this might be enough. For further reductions in
the bias there remains only the possibility of asymptotic expansions along the lines of related
work in nonlinear panel data models. This point has not been explored in the literature but it
seems that it can be used profitably.

Wang and Ho [36] show that “first-difference and within-transformation can be
analytically performed on this model to remove the fixed individual effects, and thus the
estimator is immune to the incidental parameters problem.” The model is, naturally, less
general than a standard stochastic frontier model in that the authors assume uit = f(z′itδ)u

+
i ,

where u+i is a positive half-normal random variable and f() is a positive function. In this
model, the dynamics of inefficiency are determined entirely by the function f() and the
covariates that enter into this function.

Recently, Chen et al. [34] proposed a new estimator for the model. If the model is
yit = αi + x′

itβ + vit − uit, deviation from the mean gives

ỹit = x̃′
itβ + ṽit − ũit. (5.3)

Given β = β̂OLS, we have ẽit ≡ ỹit − x̃′
itβ = ṽit − ũit, when ẽit = “data.” The distribution of ẽit =

ṽit − ũit, belongs to the family of the multivariate closed skew-normal (CSN), so estimating λ
and σ is easy. Of course, the multivariate CSN depends on evaluating a multivariate normal
integral in RT+1. With T > 5, this is not a trivial problem (see [37]).

There is reason to believe that “average likelihood” or a fully Bayesian approach
can perform much better relative to sampling-theory treatments. Indeed, the true fixed
effects model is nothing but another instance of the incidental parameters problem. Recent
advances suggest that the best treatment can be found in “average” or “integrated” likelihood
functions. For work in this direction, see Lancaster [33] and Arellano and Bonhomme
[38], Arellano and Hahn [39, 40], Berger et al. [41], and Bester and Hansen [42, 43]. The
performance of such methods in the context of TFE remains to be seen.

Tsionas and Kumbhakar [44] propose a full Bayesian solution to the problem. The
approach is obvious in a sense, since the TFEM can be cast as a hierarchical model. The
authors show that the obvious parameterization of the model does not perform well in
simulated experiments and, therefore, they propose a new parameterization that is shown
to effectively eliminate the incidental parameters problem. They also extend the TFEM to
models with both individual and time effects. Of course, the TFEM is cast in terms of a
random effects model so it is at first sight not directly related to [35].

6. Thoughts on Current State of Efficiency Estimation and Panel Data

6.1. Nature of Individual Effects

If we think about the model: yit = αi + x′
itβ + vit + uit, uit ≥ 0, asN → ∞ one natural question

is: Do we really expect ourselves to be so agnostic about the fixed effects as to allow αn+1 to
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be completely different from what we already know about α1, . . . , αn? This is rarely the case.
But we do not adopt the true fixed effects model for that reason. There are other reasons. If
we ignore this choice we can adopt a finite mixture of normal distribution for the effects.

In principle this can approximate well any distribution of the effects, so with enough
latent classes we should be able to approximate the weight function w(αi) quite well. That
would pose some structure in the model, it would avoid the incidental parameters problem
(if the number of classes grows slowly and at a lower rate thanN) so for fixed T there should
be no significant bias. For really small T a further bias correction device like asymptotic
expansions or the jackknife could be used.

Since we do not adopt the true fixed effects model for that reason, why do we adopt it?
Because the effects and the regressors are potentially correlated in a random effect framework
so it is preferable to think of them as parameters. It could be that αi = h(xi1, . . . , xiT ), or
perhaps αi = H(xi), when xi = T−1 ∑T

t=1 xit. Mundlak [45] first wrote about this model. In
some cases it makes sense. Consider the alternative model:

yit = αit + x′
itβ + vit + uit,

αit = α
(
1 − ρ) + ραit−1 + x′

itγ + εit.
(6.1)

Under stationarity we have the same implications with Mundlak’s original model but
in many cases it makes much more sense: mutual fund rating and evaluation is one of them.
But even if we stay with Mundlak’s original specification, many other possibilities are open.
For small T , the most interesting case, approximation of αi = h(xi1, . . . , xiT ) by some flexible
functional form should be enough for practical purposes. By “practical purposes” we mean
bias reduction to order O(T−1) or better. If the model becomes

yit = αi + x′
itβ + vit + uit = h(xi1, . . . , xiT ) + x

′
itβ + vit + uit, t = 1, . . . , T, (6.2)

adaptation of known nonparametric techniques should provide that rate of convergence.
Reduction to

yit = αi + x′
itβ + vit + uit = H(xi) + x′

itβ + vit + uit, t = 1, . . . , T, (6.3)

would facilitate the analysis considerably without sacrificing the rate. It is quite probable that
h or H should be low order polynomials or basis functions with some nice properties (e.g.,
Bernstein polynomials are nice) that can overcome the incidental parameters problem.

6.2. Random Coefficient Models

Consider yit = αi+x′
itβi+vit+uit ≡ z′itγi+vit+uit [46]. Typically we assume that γi ∼ iidNK(γ,Ω).

For small to moderate panels (say T = 5 to 10) adaptation of the techniques in the paper by
Chen et al. [34] would be quite difficult to implement in the context of fixed effects. The
concern is again with evaluation of (T + 1)-dimensional normal integrals, when T is large.
Here, again we are subject to the incidental parameters problem—we never really escape the
“small sample” situation.
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One way to proceed is the so-called CAR (conditionally autoregressive) prior (model)
of the form:

γi | γj ∼N
(
γj , ϕ

2
ij

)
∀i /= j, logϕ2

ij = δ0 + δ1
∥
∥wi −wj

∥
∥, if γi is scalar (the TFEM).

(6.4)

In themultivariate case wewould need something like the BEKK factorization of a covariance
matrix as in multivariate GARCH processes. The point is that the coefficients cannot be too
dissimilar and their degree of dissimilarity depends on a parameter ϕ2 that can be made a
function of covariates, if any. Under different DGPs, it would be interesting to know how the
Bayesian estimator of this model behaves in practice.

6.3. More on Individual Effects

Related to the above discussion, it is productive to think about sources, that is, where these
αis or γis come from. Of course we haveMundlak’s [45] interpretation in place. In practice we
have different technologies (represented by cost functions, say). The standard cost function
yit = α0 +x′

itβ+vit with input-oriented technical inefficiency results in yit = α0 +x′
itβ+vit +uit,

uit ≥ 0. Presence of allocative inefficiency results in a much more complicated model: yit =
α0 + x′

itβ + vit + uit + Git(xit, β, ξit) where ξit is the vector of price distortions (see [47, 48]). So
under some reasonable economic assumptions and common technology we end up with a
nonlinear effects model through the G(·) function. Of course one can apply the TFEM here
but that would not correspond to the true DGP. So the issues of consistency are at stake.

It is hard to imagine a situation where in a TFEM, yit = αi +x′
itβ+vit +uit the αis can be

anything and they are subjected to no “similarity” constraints. We can, of course, accept that
αi ≈ α0+Git(xit, β, ξit), so at least for the translog we should have a rough guide on what these
effects represent under allocative inefficiency first-order approximations to the complicated
G term are available when the ξits are small. Of course then one has to think about the nature
of the allocative distortions but at least that’s an economic problem.

6.4. Why a Bayesian Approach?

Chen et al.’s transformation that used the multivariate CSN is one class of transformations,
but there are many transformations that are possible because the TFEM does not have
the property of information orthogonality [33]. The “best” transformation, the one that
is “maximally bias reducing,” cannot be taking deviations from the means because the
information matrix is not block diagonal with respect to (αi, λ = ω/σ = signal/noise). Other
transformations would be more effective and it is not difficult to find them, in principle.

Recently Tsionas and Kumbhakar [44] considered a different model, namely, yit =
αi + δ+i + x′

itβ + vit + uit, where δ+i ≥ 0 is persistent inefficiency. They have used a Bayesian
approach. Colombi et al. [49] used the same model but used classical (ML) approach to
estimate the parameters as well as the inefficiency components. The finite sample properties
of the Bayes estimators (posterior means and medians) in Tsionas and Kumbhakar [44]were
found to be very good for small samples with λ values typically encountered in practice
(of course one needs to keep λ away from zero in the DGP). The moral of the story is that
in the random effects model, an integrated likelihood approach based on reasonable priors,
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a nonparametric approach based on low-order polynomials or a finite mixture model might
provide an acceptable approximation to parameters like λ.

Coupled with a panel jack knife device these approaches can be really effective in
mitigating the incidental parameters problem. For one, in the context of TFE, we do not
know how the Chen et al. [34] estimator would behave under strange DGPs-under strange
processes for the incidental parameters that is. We have some evidence from Monte Carlo
but we need to think about more general “mitigating strategies.” The integrated likelihood
approach is one, and is close to a Bayesian approach. Finite mixtures also hold great promise
since they have good approximating properties. The panel jack knife device is certainly
something to think about. Also analytical devices for bias reduction to order O(T−1) or
O(T−2) are available from the likelihood function of the TFEM (score and information). Their
implementation in software should be quite easy.

7. Conclusions

In this paper we presented some new techniques to estimate technical inefficiency using
stochastic frontier technique. First, we presented a technique to estimate a nonhomogeneous
technology using the IO technical inefficiency. We then discussed the IO and OO controversy
in the light of distance functions, and the dual cost and profit functions. The second part of the
paper addressed the latent class-modeling approach incorporating behavioral heterogeneity.
The last part of the paper addressed LML method that can solve the functional form issue in
parametric stochastic frontier. Finally, we added a section that deals with some very recent
advances.

Endnotes

1. Another measure is hyperbolic technical inefficiency that combines both the IO and OO
measures in a special way (see, e.g., [50], Cuesta and Zofio (1999), [12]). This measure is
not as popular as the other two.

2. On the contrary, the OO model has been estimated by many authors using DEA (see,
e.g., [51] and references cited in there).

3. Alvarez et al. [52] addressed these issues in a panel data framework with time invariant
technical inefficiency (using a fixed effects models).

4. The above equation gives the IO model (when the production function is homogeneous)
by labeling λi = rθi.

5. Alvarez et al. [52] estimated an IO primal model in a panel data model where technical
inefficiency is assumed to be fixed and parametric.

6. Greene [14] used SML for the OO normal-gamma model.

7. See also Kumbhakar and Lovell [11, pages 74–82] for the log-likelihood functions under
both half-normal and exponential distributions for the OO technical inefficiency term.

8. It is not necessary to use the simulated ML method to estimate the parameters of the
frontier models if the technical inefficiency component is distributed as half-normal,
truncated normal, or exponential along with the normality assumption on the noise
component. For other distributions, for example, gamma for technical inefficiency and
normal for the noise component the standard ML method may not be ideal (see Greene
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[14] who used the simulated ML method to estimate OO technical efficiency in the
gamma-normal model).

9. Atkinson and Cornwell [53] estimated translog cost functions with both input-
and output-oriented technical inefficiency using panel data. They assumed technical
inefficiency to be fixed and time invariant. See also Orea et al. [12].

10. See, in addition, Beard et al. [54, 55] for applications using a non-frontier approach. For
applications in social sciences, see, Hagenaars and McCutcheon [56]. Statistical aspects
of the mixing models are dicussed in details in Mclachlan and Peel [57].

11. LML estimation has been proposed by Tibshirani [58] and has been applied by Gozalo
and Linton [59] in the context of nonparametric estimation of discrete response models.

12. The cost function specification is discussed in details in Section 5.2.

13. An alternative, that could be relevant in some applications, is to localize based on a vector
of exogenous variables zi instead of the xi’s. In that case, the LML problem becomes

θ̃(z) = arg max
θ∈Θ

:
n∑

i=1

{

− lnΦ
(
ψ
)
+ lnΦ

[

σ2ψ +
ω
(
yi − x′

iβ
)

σ(ω2 + σ2)1/2

]

−(1/2) ln
(
ω2 + σ2

)
− (1/2)

((
yi − x′

iβ − μ
)2

(ω2 + σ2)

)}

KH(zi − z),

where z are the given values for the vector of exogenous variables. The main feature of
this formulation is that the β parameters as well as σ, ω, and ψ will now be functions of
z instead of x.
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