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Let for each n ∈ N Xn be an R
d-valued locally square integrable martingale w.r.t. a filtration

(Fn(t), t ∈ R+) (probability spaces may be different for different n). It is assumed that the disconti-
nuities ofXn are in a sense asymptotically small as n → ∞ and the relation E(f(〈zXn〉(t))|Fn(s))−
f(〈zXn〉(t)) P→ 0 holds for all t > s > 0, row vectors z, and bounded uniformly continuous fun-
ctions f . Under these two principal assumptions and a number of technical ones, it is proved
that the Xn’s are asymptotically conditionally Gaussian processes with conditionally independent
increments. If, moreover, the compound processes (Xn(0), 〈Xn〉) converge in distribution to some

(
◦
X,H), then a sequence (Xn) converges in distribution to a continuous local martingaleX with ini-

tial value
◦
X and quadratic characteristic H, whose finite-dimensional distributions are explicitly

expressed via those of (
◦
X,H).

1. Introduction

The theory of functional limit theorems for martingales may appear finalized in the mono-
graphs [1, 2]. This paper focuses at two points, where the classical results can be refined.

(1) The convergence in distribution to a local martingale with G-conditional in-
crements has been studied hitherto in the model, where the σ-algebra G enters the setting
along with the prelimit processes. This assumption is worse than restrictive—it is simply
unnatural when one studies the convergence in distribution, not in probability. In the pre-
sent paper, conditions ensuring asymptotic conditional independence of increments for a
sequence of locally square integrable martingales are formulated in terms of quadratic chara-
cteristics of the prelimit processes (Theorem 4.5). Our approach to the proving of this pro-
perty is based on the idea to combine the Stone-Weierstrass theorem (actually its slight
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modification—Lemma 2.2)with an elementary probabilistic result—Lemma 2.4, which issues
in Corollaries 2.7 and 2.8. These corollaries, as well as Lemma 2.4 itself and the cognate
Lemma 2.5, will be our tools.

(2) The main object of study in [1, 2] is semimartingale. So, some specific for local mar-
tingales facts are passed by. Thus, TheoremVI.6.1 and Corollary VI.6.7 in [2] assert that under
appropriate assumptions about semimartingales Zn, the relation

Zn
law−→ Z, (∗)

where Z also is a semimartingale, entails the stronger one (Zn, [Zn])
law→ (Z, [Z]) (below, the

notation of convergence in law will be changed). For locally square integrable martingales,
one can modify the problem as follows. Let relation (∗) be fulfilled. What extra assumptions
ensure that Z is a continuous local martingale and

(Zn, 〈Zn〉) law−→ (Z, 〈Z〉)? (∗∗)

There is neither an answer nor even the question in [1, 2]. A simple set of sufficient conditions
is provided by Corollary 5.2 (weaker but not so simple conditions are given by Corollary 5.5).
Recalling that the quadratic variation of a continuous local martingale coincides with
its quadratic characteristic, we see that the last two relations imply together asymptotic
proximity of [Zn] and 〈Zn〉. Actually, this conclusion requires even less conditions than in
Corollary 5.2. They are listed in Corollary 5.3.

The main results of the paper are, in a sense, converse to Corollaries 5.2 and 5.5. They

deal with the problem: what conditions should be adjoined to 〈Zn〉 law→ H in order to
ensure (∗∗), where Z is a continuous local martingale with quadratic characteristic H? If
the assumptions about the prelimit processes do not guarantee that H performing as 〈Z〉
determines the distribution of Z, then results of this kind assert existence of convergent
subsequences but not convergence of the whole sequence (Theorems 5.1 and 5.4). Combining
Theorems 5.4 with 4.5, we obtain Theorem 5.6 asserting that the whole sequence converges to
a continuous local martingale whose finite-dimensional distributions are explicitly expressed
via those of its initial value and quadratic characteristic. The expression shows that the
limiting process has conditionally independent increments—but this conclusion is nothing
more than a comment to the theorem.

The proving of the main results needs a lot of preparation. Those technical results
which do not deal with the notion of martingale are gathered in Section 2 (excluding
Section 2.1), and the more specialized ones are placed in Section 3. The rationale in Sections 3
and 4 would be essentially simpler if we confined ourselves to quasicontinuous processes
(for a locally square integrable martingale, this property is tantamount to continuity of
its quadratic characteristic). To dispense with this restriction, we use a special technique
sketched in Section 2.1.

All vectors are thought of, unless otherwise stated, as columns. The tensor square xx	

of x ∈ R
d will be otherwise written as x⊗2. We use the Euclidean norm | · | of vectors and

the operator norm ‖ · ‖ of matrices. The symbols R
d∗, S, and S+ signify: the space of d-di-

mensional row vectors, the class of all symmetric square matrices of a fixed size (in our
case—d) with real entries, and its subclass of nonnegative (in the spectral sense) matrices,
respectively.
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By Cb(X), we denote the space of complex-valued bounded continuous functions on a
topological space X. If X = R

k and the dimension k is determined by the context or does not
matter, then we write simply Cb.

Our notation of classes of random processes follows [3]. In particular,M(F) andM(F)
signify the class of all martingales with respect to a filtration (= flow of σ-algebras) F ≡
(F(t), t ∈ R+) and its subclass of uniformly integrablemartingales. An F-martingaleUwill be
called: square integrable if E|U(t)|2 < ∞ for all t and uniformly square integrable if suptE|U(t)|2 <
∞. The classes of such processes will be denotedM2(F) andM2(F), respectively. The symbol
F will be suppressed if the filtration either is determined by the context or does not matter.
If U is a class of F-adapted process, then by �U we denote the respective local class (see [2,
Definition I.1.33], where the notation Uloc is used). Members of �M, and �M2 are called local
martingales and locally (better local) square integrable martingales, respectively. All processes,
except quadratic variations and quadratic characteristics, are implied R

d-valued, where d is
chosen arbitrarily and fixed.

The integral
∫ t
0 ϕ(s)dX(s) will be written shortly (following [1, 2]) as ϕ ◦ X(t) if this

integral is pathwise (i.e., X is a process of locally bounded variation) or ϕ · X(t) if it
is stochastic. We use properties of stochastic integral and other basic facts of stochastic
analysis without explanations, relegating the reader to [1–4]. The quadratic variation (see
the definition in Section 2.3 [3] or Definition I.4.45 together with Theorem I.4.47 in [2]) of
a random process ξ and the quadratic characteristic of Z ∈ �M2 will be (and already were)
denoted [ξ] and 〈Z〉, respectively. They take values inS+, which, of course, does not preclude
to regard them as R

d2
-valued random processes.

2. Some Technical Results

The Stone-Weierstrass theorem (see, e.g., [5]) concerns compact spaces only. In the following
two, its minor generalizations (for real-valued and complex-valued functions, resp.) both the
compactness assumption and the conclusion (that the approximation is uniform on the whole
space) are weakened. They are proved likewise their celebrated prototype if one argues for
the restrictions of continuous functions to some compact subset fixed beforehand.

Lemma 2.1. LetA be an algebra of real-valued bounded continuous functions on a topological space T .
Suppose that A separates points of T and contains the module of each its member and the unity func-
tion. Then, for any real-valued bounded continuous function F, compact set B ⊂ T , and positive num-
ber ε, there exists a function G ∈ A such that ‖G‖∞ ≤ ‖F‖∞ and maxx∈B|F(x) −G(x)| < ε.

Lemma 2.2. Let A be an algebra of complex-valued bounded continuous functions on a topological
space T . Suppose that A separates points of T , and contains the conjugate of each its member and the
unity function. Then for any complex-valued bounded continuous function F, compact set B ⊂ T , and
positive number ε there exists a functionG ∈ A such that ‖G‖∞ ≤ ‖F‖∞ andmaxx∈B|F(x)−G(x)| <
ε.

We consider henceforth sequences of random processes or random variables given,
maybe, on different probability spaces. So, for the nth member of a sequence, P and E should
be understood as Pn and En. In what follows, “u.i.” means “uniformly integrable”.

Lemma 2.3. In order that a sequence of random variables be u.i., it is necessary and sufficient that each
its subsequence contain a u.i. subsequence.
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Proof. Necessity is obvious; let us prove sufficiency.
Suppose that a sequence (αn) is not u.i. Then, there exists a > 0 such that for all N > 0

lim
n→∞

E|αn|I{|αn| > N} ≥ 2a. (2.1)

Consequently, there exists an increasing sequence (nk) of natural numbers such that
EβkI{βk > k} ≥ a, where βk = |αnk |. Then, for any infinite set J ⊂ N and N > 0, we have

lim
k→∞,k∈J

E βkI
{
βk > N

} ≥ a, (2.2)

which means that the subsequence (αnk) does not contain u.i. subsequences.

Lemma 2.4. Let for each n ξn1, . . . , ξnp be random variables given on a probability space (Ωn,Fn,Pn),
and Hn a sub-σ-algebra of Fn. Suppose that for each j ∈ {1, . . . , p},

E
(
ξnj | Hn

) − ξnj
P−→ 0 as n −→ ∞, (2.3)

and for any J ⊂ {1, . . . , p} the sequence (∏j∈Jξnj , n ∈ N) is u.i. Then,

E

⎛

⎝
p∏

j=1

ξnj | Hn

⎞

⎠ −
p∏

j=1

ξnj
P−→ 0. (2.4)

Proof. Denote ηnj = E(ξnj | Hn). By the second assumption, the sequences (ξnj , n ∈ N),(ηnj , n ∈
N), j = 1, . . . , p, are stochastically bounded, which together with the first assumption yields

∏

j∈J
ηnj −

∏

j∈J
ξnj

P−→ 0, (2.5)

for any J ⊂ {1, . . . , p}. Hence, writing the identity

E(ξn1ξn2 | Hn) = E
((
ξn1 − ηn1

)(
ξn2 − ηn2

) | Hn

)
+ ηn1ηn2, (2.6)

and using both assumptions, we get (2.4) for p = 2. For arbitrary p, this relation is proved by
induction whose step coincides, up to notation, with the above argument.

The proof of the next statement is similar.

Lemma 2.5. Let αn and βn be random variables given on a probability space (Ωn,Fn,Pn) and Hn a
sub-σ-algebra of Fn. Suppose that

αn − E(αn | Hn)
P−→ 0, (2.7)
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and the sequences (αn), (βn) and (αnβn) are u.i. Then,

E
(
αnβn | Hn

) − αnE
(
βn | Hn

) P−→ 0. (2.8)

Lemma 2.6. Let n ∈ N Ξn be an R
k-valued random variable given on a probability space (Ωn,Fn,

Pn), and Hn a sub-σ-algebra of Fn. Suppose that

lim
N→∞

lim
n→∞

P{|Ξn| > N} = 0, (2.9)

and the relation

E(F(Ξn) | Hn) − F(Ξn)
P−→ 0 (2.10)

holds for all F from some class of complex-valued bounded continuous functions on R
k which separates

points of the latter. Then, it holds for all F ∈ Cb.

Proof. Let A denote the class of all complex-valued bounded continuous functions on R
k

satisfying (2.10). Obviously, it is linear. By Lemma 2.4, it contains the product of any two
its members. So, A is an algebra. By assumption, it separates points of R

k. The other two
conditions of Lemma 2.2 are satisfied trivially. Thus, that lemma asserts that for any F ∈ Cb,
N > 0 and ε > 0, there exists a function G ∈ A such that ‖G‖∞ ≤ ‖F‖∞ and max|x|≤N |F(x) −
G(x)| < ε. Then,

|F(Ξn) −G(Ξn)|I{|Ξn| ≤ N} < ε,

|F(Ξn) −G(Ξn)| I{|Ξn| > N} ≤ 2‖F‖∞ I{|Ξn| > N}.
(2.11)

By the choice of G

E(G(Ξn) | Hn) −G(Ξn)
P−→ 0, (2.12)

whence by the dominated convergence theorem

E|E(G(Ξn) | Hn) −G(Ξn)| −→ 0. (2.13)

Writing the identity

E(F(Ξn) | Hn) − F(Ξn) = E((F(Ξn) −G(Ξn))I{|Ξn| ≤ N} | Hn)

+ E((F(Ξn) −G(Ξn))I{|Ξn| > N} | Hn) + E(G(Ξn) | Hn) −G(Ξn)

+ (G(Ξn) − F(Ξn))I{|Ξn| ≤ N} + (G(Ξn) − F(Ξn))I{|Ξn| > N},
(2.14)
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we get from (2.11)–(2.13)

lim
n→∞

E|E(F(Ξn) | Hn) − F(Ξn)| ≤ 2ε + 4‖F‖∞ lim
n→∞

P{|Ξn| > N}, (2.15)

which together with (2.9) and due to arbitrariness of ε proves (2.10).

Corollary 2.7. Let for each n ζn1, . . . , ζnp be R
d-valued random variables given on a probability space

(Ωn,Fn,Pn) and Hn a sub-σ-algebra of Fn. Suppose that the relations

lim
N→∞

lim
n→∞

P
{∣∣ζnj

∣
∣ > N

}
= 0, (2.16)

E
(
g
(
ζnj
) | Hn

) − g
(
ζnj
) P−→ 0 as n −→ ∞ (2.17)

hold for all j ∈ {1, . . . , p} and g from some class F of complex-valued bounded continuous functions on
R

d which separates points of the latter. Then,

E
(
F
(
ζn1, . . . , ζnp

) | Hn

) − F
(
ζn1, . . . , ζnp

) P−→ 0, (2.18)

for all F ∈ Cb(Rpd).

Proof. Denote Ξn = (ζn1, . . . , ζnp). Condition (2.17) implies by Lemma 2.4 that relation (2.10) is
valid for all F of the kind F(x1, . . . , xp) =

∏p

i=1gi(xi), where gi ∈ F. Obviously, such func-
tions separate points ofR

pd. Furthermore, condition (2.16)where j runs over {1, . . . , p} is tant-
amount to (2.9). It remains to refer to Lemma 2.6.

Corollary 2.8. Let for each n Kn be an S-valued random process given on a probability space (Ωn,
Fn,Pn), Hn a sub-σ-algebra of Fn, and ζn0 an Hn-measurable R

m-valued random variable. Suppose
that the relations

lim
N→∞

lim
n→∞

P{‖Kn(t)‖ > N} = 0,

E
(
f
(
zKn(t)z	

)
| Hn

)
− f
(
zKn(t)z	

)
P−→ 0,

(2.19)

and (2.16) hold for j = 0, all t > 0 and any bounded uniformly continuous function f on R. Then, for
any l ∈ N, sl > · · · > s1 > 0 and F ∈ Cb(Rm × Sl) the relation

E(F(ζn0, Kn(s1), . . . , Kn(sl)) | Hn) − F(ζn0, Kn(s1), . . . , Kn(sl))
P−→ 0 (2.20)

is valid.

Recall that for any B ∈ S

‖B‖ = max
x∈Sd−1

∣∣∣x	Bx
∣∣∣, (2.21)

where Sd−1 is the unit sphere in R
d.
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Lemma 2.9. For any symmetric matrices B1 and B2,

max
x∈Sd−1

∣
∣
∣x	B1xx

	B2x
∣
∣
∣ ≤ ‖B1‖‖B2‖. (2.22)

Proof. It suffices to note that the left-hand side of the equality does not exceed maxx,y∈Sd−1

|x	B1xy
	B2y|.

Let X,X1, X2 . . . be R
d-valued random processes with trajectories in the Skorokhod

space D (= càdlàg processes on R+). We write Xn
D→ X if the induced by the processes Xn

measures on the Borel σ-algebra in Dweakly converge to the measure induced byX. If herein

X is continuous, then we write Xn
C→ X. We say that a sequence (Xn) is relatively compact

(r.c.) in D (in C) if each its subsequence contains, in turn, a subsequence converging in
the respective sense. The weak convergence of finite-dimensional distributions of random
processes, in particular the convergence in distribution of random variables, will be denoted
d→ . Likewise d=means equality of distributions.

Denote Π(t, r) = {(u, v) ∈ R
2 : (v − r)+ ≤ u ≤ v ≤ t},

ΔU
(
f ; t, r

)
= sup

(u,v)∈Π(t,r)

∣∣f(v) − f(u)
∣∣ (

f ∈ D, t > 0, r > 0
)
. (2.23)

Proposition VI.3.26 (items (i), (ii)) [2] together with VI.3.9 [2] asserts that a sequence (ξn) of
càdlàg random processes is r.c. in C if and only if for all positive t and ε

lim
N→∞

lim
n→∞

P

{

sup
s≤t

|ξn(s)| > N

}

= 0, lim
r→ 0

lim
n→∞

P{ΔU(ξn; t, r) > ε} = 0. (2.24)

Hence, two consequences are immediate.

Corollary 2.10. Let (ξn) and (Ξn) be sequences of Rd-valued and R
m-valued, respectively, càdlàg pro-

cesses such that (Ξn) is r.c. in C, |ξn(0)| ≤ |Ξn(0)| and for any v > u ≥ 0

|ξn(v) − ξn(u)| ≤ |Ξn(v) − Ξn(u)|. (2.25)

Then, the sequence (ξn) is also r.c. in C.

Corollary 2.11. Let (ξn) and (ζn) be r.c. in C sequences of càdlàg processes taking values in R
d and

R
p, respectively. Suppose also that for each n ξn and ζn are given on a common probability space. Then

the sequence of R
d+p-valued processes (ξn, ζn) is also r.c. in C.

Lemma 2.12. Let (ηl
n, l, n ∈ N), (ηl), and (ηn) be sequences of càdlàg random processes such that for

any positive t and ε

lim
l→∞

lim
n→∞

P

{

sup
s≤t

∣∣∣ηl
n(s) − ηn(s)

∣∣∣ > ε

}

= 0, (2.26)
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for each l

ηl
n

D−→ ηl as n −→ ∞, (2.27)

the sequence (ηl) is r.c. in D. Then, there exists a random process η such that ηl D→ η.

Proof. Let ρ be a bounded metric in D metrizing Skorokhod’s J-convergence (see, e.g., [2,
VI.1.26]). Then, condition (2.26)with arbitrary t and ε implies that

lim
l→∞

lim
n→∞

Eρ
(
ηl
n, ηn

)
= 0. (2.28)

Hence, by the triangle inequality, we have

lim
m→∞
k→∞

lim
n→∞

Eρ
(
ηm
n , η

k
n

)
= 0. (2.29)

Let F be a uniformly continuous with respect to ρ bounded functional on D. Denote
A = supx∈D|F(x)|, ϑ(r) = supx,y∈D: ρ(x,y)<r |F(x) − F(y)|. Then, ϑ(0+) = 0 and for any r > 0

E
∣∣∣F
(
ηm
n

) − F
(
ηk
n

)∣∣∣ ≤ AP
{
ρ
(
ηm
n , η

k
n

)
> r
}
+ ϑ(r), (2.30)

which together with (2.29) yields

lim
m→∞
k→∞

lim
n→∞

∣∣∣EF
(
ηm
n

) − EF
(
ηk
n

)∣∣∣ = 0. (2.31)

By condition (2.27),

lim
n→∞

∣∣∣EF
(
ηm
n

) − EF
(
ηk
n

)∣∣∣ =
∣∣∣EF
(
ηm) − EF

(
ηk
)∣∣∣, (2.32)

which jointly with (2.31) proves fundamentality and, therefore, convergence of the sequence
(EF(ηl), l ∈ N). Now, the desired conclusion emerges from relative compactness of (ηl) in
D.

Corollary 2.13. Let the conditions of Lemma 2.12 be fulfilled. Then, ηn
D→ η, where η is the existing

by Lemma 2.12 random process such that ηl D→ η.

Proof. Repeating the derivation of (2.31) from (2.29), we derive from (2.28) the relation

lim
l→∞

lim
n→∞

∣∣∣EF
(
ηl
n

)
− EF

(
ηn
)∣∣∣ = 0. (2.33)

It remains to write |EF(ηn)−EF(η)| ≤ |EF(ηn)−EF(ηl
n)|+ |EF(ηl

n)−EF(ηl)|+ |EF(ηl)−EF(η)|.
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Corollary 2.14. Let (ηl
n), (η

l), and (ηn) be sequences of càdlàg random processes such that for any
t ∈ R+ and ε > 0 (2.26) holds; for each l ∈ N relation (2.27) is valid; the sequence (ηl) is r.c. in C.

Then, there exists a random process η such that ηl C→ η and ηn
C→ η.

Below, U is the symbol of the locally uniform (i.e., uniform in every interval) conver-
gence.

Lemma 2.15. Let X,X1, X2 . . . be càdlàg random processes such that Xn
C→ X. Then, F(Xn)

d→
F(X) for any U-continuous functional F on D.

Proof. Lemma VI.1.33 and Corollary VI.1.43 in [2] assert completeness and separability of the
metric space (D, ρ), where ρ is the metric used in the proof of Lemma 2.12. Then, it follows
from the assumptions of the lemma by Skorokhod’s theorem [6] that there exist given on a

common probability space càdlàg random processes X′, X′
1, X

′
2 . . . such that X′ d= X (so that

X′ is continuous), X′
n

d= Xn and ρ(X′
n, X

′) → 0 a.s. By the choice of ρ, the last relation is tan-

tamount to X′
n

J→ X′ a.s. Hence, and from continuity of X′, we get by Proposition VI.1.17 [2]

X′
n

U→ X′ a.s. and, therefore, by the choice of F, F(X′
n) → F(X′) a.s. It remains to note that

F(X′
n)

d= F(Xn), F(X′) d= F(X).

2.1. Forestopping of Random Processes

Let F be a filtration on some probability space, S an F-adapted random process, and τ a stop-
ping time with respect to F. We put S(0−) = S(0) and denote Sτ(t) = S(t ∧ τ),

τS(t) = S(t)I[0,τ[(t) + S(τ−)I[τ,∞[(t), (2.34)

τF(t) = F(t) ∩ F(τ−), τ
F = ( τF(t), t ∈ R+). Obviously,

τ(Sτ) = τS, (2.35)

[τS] = τ[S], (2.36)

provided [S] exists. In case τ is F-predictable, the operation S �→ τSwas called in [7] the fore-
stopping. The following three statements were proved in [7].

Lemma 2.16. Let a random processU and a stopping time τ be F-predictable. Then, the process τU is
τ
F-predictable.

Theorem 2.17. LetX be an F-martingale and τ an F-predictable stopping time. Then, τX is a τ
F-mar-

tingale. If X is uniformly integrable, then so is τ
X.

Lemma 2.18. Let V be an R
d-valued right-continuous F-predictable random process and A a closed

set in R
d. Then, the stopping time inf{t : V (t) ∈ A} is F-predictable.

The operation of forestopping was used prior to [7] by Barlow [8]who took the asser-
tion of Theorem 2.17 (which he did not even formulate) for granted.

We will need some subtler properties of this operation.
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Lemma 2.19. LetU be a starting from zero locally square integrable martingale with respect to F,N
a positive number, and σ an F-predictable stopping time such that

σ ≤ inf{t : tr〈U〉(t) ≥ N}. (2.37)

Then, E sups∈R+
| σU(s)|2 ≤ 4N.

Proof. Predictability of σ implies by Theorem 2.1.13 [3] that there exists a sequence (σn) of
stopping times such that

{σ > 0} ⊂ {σn < σ}, (2.38)

σn ↗ σ a.s. (2.39)

By the choice of U there exists a sequence (τk) of stopping times such that

τk ↗ ∞ a.s, (2.40)

Uk ≡ Uτk ∈ M2(F). (2.41)

Then,

sup
s≤σn

|U(s)| = lim
k→∞

sup
s≤σn∧τk

|U(s)|. (2.42)

Herein, obviously,

sup
s≤σn∧τk

|U(s)| = sup
s≤σn

|Uk(s)|. (2.43)

From (2.41)we have by Doob’s inequality

E sup
s≤σn

|Uk(s)|2 ≤ 4E|Uk(σn)|2. (2.44)

Noting that: (1) for any x ∈ R
d |x|2 = tr xx	, (2) EUk(σn)Uk(σn)

	 = E〈Uk〉(σn), we may re-
write the last inequality in the form

E sup
s≤σn

|Uk(s)|2 ≤ 4E tr〈Uk〉(σn). (2.45)

Writing

〈Uk〉(σn) = 〈Uτk〉(σn) = 〈U〉τk(σn) = 〈U〉(τk ∧ σn), (2.46)
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we get from (2.37) and (2.38) tr〈Uk〉(σn) < N, which together with (2.45) results in Esups≤σn

|Uk(s)|2 < 4N. Then, from (2.42) and (2.43), we have by Fatou’s theorem

E sup
s≤σn

|U(s)|2 ≤ 4N. (2.47)

The assumption U(0) = 0 yields

E sup
s<σ

|U(s)|2 = E sup
s<σ

|U(s)|2I{σ > 0}. (2.48)

Relations (2.38) and (2.39) imply that

sup
s<σ

|U(s)|2I{σ > 0} = lim
n→∞

sup
s≤σn

|U(s)|2I{σ > 0}, (2.49)

which together with (2.47) yields by Fatou’s theorem E sups<σ |U(s)|2I{σ > 0} ≤ 4N. It re-
mains to note that sups∈R+

| σU(s)| = sups<σ |U(s)|I{σ > 0} in view of (2.34).

Lemma 2.20. LetU be a locally square integrable martingale with respect to F such that

E|U(0)|2 < ∞, (2.50)

and for any t

Emax
s≤t

|ΔU(s)|2 < ∞. (2.51)

Let, further,N be a positive number and σ a predictable time satisfying condition (2.37). Then,Uσ ∈
M2(F).

Proof. In view of (2.50) it suffices to show that (U −U(0))σ ∈ M2(F). In other words, we may
consider that U(0) = 0. Then condition (2.51) and the evident inequality

sup
s≤t

|Uσ(s)| ≤ sup
s≤t

| σU(s)| +max
s≤t

|ΔU(s)| (2.52)

imply by Lemma 2.19 that for any t

E sup
s≤t

|Uσ(s)|2 < ∞. (2.53)

It remains to prove that for all t2 > t1 ≥ 0,

E(Uσ(t2) | F(t1)) = Uσ(t1). (2.54)
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Taking a sequence (τn) with properties (2.40) and (2.41), we write

E(U(t2 ∧ σ ∧ τk) | F(t1)) = Uσ(t1 ∧ σ ∧ τk). (2.55)

To deduce (2.54) from this inequality and (2.40), it suffices to note that

|U(t ∧ σ ∧ τk)| ≤ sup
s≤t

|Uσ(s)|, (2.56)

so that (2.53) provides uniform integrability of the sequence (U(t2 ∧ σ ∧ τk), k ∈ N).

Corollary 2.21. Under the conditions of Lemma 2.20 σU ∈ M2(σF).

Theorem 2.22. LetU be a locally square integrable martingale with respect to F satisfying conditions
(2.50) and (2.51), N a positive number, and σ a predictable time satisfying condition (2.37). Then,
〈σU〉 = σ〈U〉.

Proof. DenoteX = (U⊗2 − 〈U〉)σ ≡ (Uσ)⊗2−〈Uσ〉, Y =
σ
U⊗2 − σ〈U〉 ≡ σ

(U⊗2 − 〈U〉). It suffices
to show that Y is a σ

F-martingale. To deduce this fact from Theorem 2.17, we note that, firstly,
X ∈ M(F) by construction and Lemma 2.20, and, secondly, Y = σ

X by construction of both
processes and because of (2.35).

3. Martingale Preliminaries

The next statement is obvious.

Lemma 3.1. Let (Ml) be a sequence of martingales such that

Ml d−→ M, (3.1)

and for any t the sequence (|Ml(t)|) is uniformly integrable. Then, M is a martingale.

Lemma 3.2. Let (Ml) be a sequence of martingales such that (3.1) holds and

sup
l∈N, t∈R+

E tr
〈
Ml
〉
(t) < ∞. (3.2)

Then, supt E|M(t)|2 < ∞.

Proof. By condition (3.2) and the definition of quadratic characteristic, there exists a constant
C such that E|Ml(t)|2 ≤ C for all t and l. Hence, and from (3.1), we have by Fatou’s theorem
(applicable due to the above-mentioned Skorokhod’s principle of common probability space)
E|M(t)|2 ≤ C.

Corollary 3.3. Let a sequence (Ml) of square integrable martingales satisfy conditions (3.1) and
(3.2). Then, M is a uniformly integrable martingale.
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Lemma 3.4. Let Y be a local martingale andK be an S-valued random process. Suppose that they are

given on a common probability space and (Y,K) d= (Y, [Y ]). Then for any t K(t) = [Y ](t) a.s.

Proof. By assumption,

n∑

i=1

(Y (ti) − Y (ti−1))⊗2 −K(t) d=
n∑

i=1

(Y (ti) − Y (ti−1))⊗2 − [Y ](t), (3.3)

for all n, t and t0 < t1 < · · · tn. Hence, recalling the definition of quadratic variation, we get

[Y ](t) −K(t) d= 0.

We shall identify indistinguishable processes, writing simply ξ = η if P{∀t ∈ R+, ξ(t) =
η(t)} = 1. Theorem 2.3.5 [3] asserts that

[Y ] = 〈Y〉, (3.4)

for a continuous local martingale Y . Hence, and from Lemma 3.4, we have

Corollary 3.5. Let Y be a continuous local martingale and K an S-valued random process. Suppose

that they are given on a common probability space and (Y,K) d= (Y, 〈Y〉). Then, K = 〈Y〉.

Proof. Lemma 3.4 and formula (3.4) yield P{∀t ∈ Q+, K(t) = 〈Y〉(t)} = 1. Continuity of both
processes enables us to substitute Q+ by R+.

Lemma 3.6. LetU be a locally square integrable martingale. Then, ‖〈U〉‖ is an increasing process.

Proof. For any x ∈ R
d, the process x	U is a numeral locally square integrable martingale and,

therefore, the process 〈x	U〉 increases. It remains to note that 〈x	U〉 = x	〈U〉x and to recall
formula (2.21).

Lemma 3.7. Let Z1 and Z2 be locally square integrable martingales with respect to a common filtra-
tion. Then,

‖〈Z1, Z2〉 + 〈Z2, Z1〉‖ ≤ 2
√
‖〈Z1〉‖‖〈Z2〉‖. (3.5)

Proof. For d = 1 (then 〈Z2, Z1〉 = 〈Z1, Z2〉), this is the Kunita-Watanabe inequality [3, page
118]. In the general case, we take an arbitrary vector x ∈ Sd−1 and write

x	(〈Z1, Z2〉 + 〈Z2, Z1〉)x = 2
〈
x	Z1, x

	Z2

〉
≤ 2
√〈

x	Z1
〉〈
x	Z2

〉
= 2
√
x	〈Z1〉xx	〈Z2〉x,

(3.6)

hereupon the required conclusion ensues from (2.21) and Lemma 2.9.
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Lemma 3.8. Let U1 and U2 be locally square integrable martingales with respect to some common
filtration. Then, for any t > 0

sup
s≤t

‖〈U1〉(s) − 〈U2〉(s)‖ ≤ ‖〈U1 −U2〉(t)‖ + 2
√
‖〈U1 −U2〉(t)‖

√
‖〈U2〉(t)‖. (3.7)

Proof. Writing the identities

〈U1〉 = 〈U1 −U2 +U2〉 = 〈U1 −U2〉 + 〈U1 −U2, U2〉 + 〈U2, U1 −U2〉 + 〈U2〉, (3.8)

we deduce from Lemma 3.7 that

‖〈U1〉(s) − 〈U2〉(s)‖ ≤ ‖〈U1 −U2〉(s)‖ + 2
√
‖〈U2 −U1〉(s)‖

√
‖〈U2〉(s)‖. (3.9)

It remains to note that the right-hand side increases in s by Lemma 3.6.

For a function f ∈ D we denote Δf(t) = f(t) − f(t−).
Let us introduce the conditions:

(RC) The sequence (tr〈Yn〉) is r.c. in C.

(UI1) The sequence (|Yn(t) − Yn(0)|2) is u.i.
(UI2) For any z ∈ R

d∗ the sequence (tr〈zYn〉(t)) is u.i.
(UI3) The sequence (sups≤t|Yn(s) − Yn(0)|2) is u.i.

Lemma 3.9. Let (Yn) be a sequence of local square integrable martingales satisfying the conditions:
(RC),

lim
L→∞

lim
n→∞

P{|Yn(0)| > L} = 0, (3.10)

and, for each t > 0, the condition

max
s≤t

|ΔYn(s)| P−→ 0. (3.11)

Then, (Yn) is r.c. in C.

Proof. It follows from (RC) and (3.10) by Rebolledo’s theorem [2, VI.4.13] that (Yn) is r.c. in D.
Hereon, the desired conclusion follows from Proposition VI.3.26 (items (i) and (iii)) [2] with
account of VI.3.9 [2].

Combining Lemma 3.9 with Corollary 2.11, we get

Corollary 3.10. Under the assumptions of Lemma 3.9, the sequence of compound processes
(Yn, 〈Yn〉) is r.c. in C.

Some statements below deal with random processes on [0, t], not on R+. In this case,
the time variable is denoted by s and C means C[0, t] instead of C(R+).
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Lemma 3.11. Let (Yn) be a r.c. in C and satisfying condition (UI1) sequence of martingales on [0, t].
Then, for any z ∈ R

d∗, the sequence ([zYn](t)) is u.i.

Proof. The obvious equality [V − V (0)] = [V ] allows us to consider that Yn(0) = 0. Then, con-
dition (UI1) together with Doob’s inequality yields

sup
n

E sup
s≤t

|Yn(s)|2 < ∞, (3.12)

whence

sup
n

Emax
s≤t

|ΔYn(s)| < ∞. (3.13)

By assumption, for any infinite set J0 ⊂ N, there exist an infinite subset J ⊂ J0 and a ran-
dom process Y such that

Yn
C−→ Y as n −→ ∞, n ∈ J. (3.14)

Condition (UI1) implies that Y is a square integrable martingale and for any z ∈ R
d∗,

E(zYn(t))2 −→ E(zY (t))2 as n −→ ∞, n ∈ J. (3.15)

From (3.14) and (3.13), we have by Corollary VI.6.7 [2]

[zYn]
C−→ [zY ] as n −→ ∞, n ∈ J. (3.16)

Hence, and from (3.15), recalling that for any R-valued M ∈ M2 one has E(M − M(0))2 =
E[M] [3, Theorem 2.2.4], we get

E[zYn](t) −→ E[zY ](t) as n −→ ∞, n ∈ J. (3.17)

Comparing this relation with (3.16), we conclude that the sequence ([zYn](t), n ∈ J) is uni-
formly integrable. Hence, in view of arbitrariness of J0, we deduce by Lemma 2.3 uniform
integrability of ([zYn](t), n ∈ N).

Lemma 3.12. Let (Yn) be a sequence of martingales on [0, t] satisfying condition (UI1) and (UI2).
Suppose that there exists an R

d × S+-valued random process (Y,K) such that

(Yn, 〈Yn〉) C−→ (Y,K). (3.18)

Then, firstly,

[Yn] − 〈Yn〉 C−→ O, (3.19)
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where O is the null matrix, Y is a continuous martingale, and, secondly,

(Y,K) d= (Y, 〈Y〉). (3.20)

Proof. For the same reason as in the proof of Lemma 3.11, we may consider that Yn(0) = 0.
Then, as was shown above, condition (UI1) implies (3.13). Combining the latter with

Yn
C−→ Y, (3.21)

(a part of (3.18)), we get by Corollary VI.6.7 [2] that

(Yn, [Yn])
C−→ (Y, [Y ]). (3.22)

From (3.18) and (3.22), we get by Corollary 2.11 that for any infinite set J0 ⊂ N, there exist an
infinite subset J ⊂ J0 and an S+ × S+-valued random process (QJ,RJ) such that

([Yn], 〈Yn〉) −→
(
QJ,RJ

)
as n −→ ∞, n ∈ J. (3.23)

(Of course QJ d= K, RJ d= [Y ].)
Denote Zn = [Yn]−〈Yn〉. This is a martingale by Lemma 10.4 in [4]. Relation (3.23) im-

plies that

Zn
C−→ QJ − RJ as n −→ ∞, n ∈ J. (3.24)

For any z ∈ R
d∗, the sequence (zZn(t)z	) is, by Lemma 3.11 and condition (UI2), u.i. So, rela-

tion (3.24) implies by Lemma 3.1 that z(QJ − RJ)z	 is a martingale. Also, it implies its conti-
nuity. Relation (3.23) shows that the processes zQJz	 and zRJz	 increase and start from zero.
So, z(QJ − RJ)z	 starts from zero and has finite variation in [0, t]. These four properties of
QJ − RJ imply together that QJ(s) − RJ(s) = O for all s ∈ [0, t]. Thus, any subsequence (Zn,
n ∈ J0) contains, in turn, a subsequence (Zn, n ∈ J) such that Zn → O as n → ∞, n ∈ J . This
proves (3.19).

From (3.22) and (3.19), we have (Yn, 〈Yn〉) C→ (Y, [Y ]). And this is, in view of (3.4),
tantamount to

(Yn, 〈Yn〉) C−→ (Y, 〈Y〉). (3.25)

Comparing this relation with (3.18), we arrive at (3.20).

Remark 3.13. The second conclusion of Lemma 3.12 implies by Corollary 3.5 that K = 〈Y〉.

Corollary 3.14. Let a sequence (Yn) of martingales on [0, t] satisfy conditions (RC), (3.11), (UI1),
and (UI2). Then, relation (3.19) holds.
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Proof. By Corollary 3.10 for any infinite set J0 ⊂ N, there exist an infinite set J ⊂ J0 and an
R

d×S+-valued random process (Y,K) such that relation (3.18) holds as n → ∞, n ∈ J . Then,
by Lemma 3.12, so does (as n → ∞, n ∈ J) (3.19). Due to arbitrariness of J0 this relation
holds when n ranges over N, too.

Corollary 3.15. Let (Yn) be a sequence of martingales on R+ satisfying conditions (RC) and for all
t > 0, conditions (3.11), (UI1), (UI2). Then, relation (3.19) holds.

Lemma 3.16. Let a sequence (Yn) of martingales on R+ satisfy conditions (RC) and, for any t > 0,
(3.11) and (UI3). Then, relation (3.19) holds.

Proof. Denote σN
n = inf{s : tr〈Yn〉(s) ≥ N}, YN

n = σN
n Yn. Obviously,

{
σN
n < t

}
⊂ {tr〈Yn〉(t) ≥ N}. (3.26)

By Corollary 2.21 YN
n is a square integrable martingale with respect to σN

n Fn. By
Theorem 2.22,

〈
YN
n

〉
= σN

n 〈Yn〉 . (3.27)

Condition (RC) implies relative compactness of the sequence (〈YN
n 〉, n ∈ N). By construction

|YN
n (t) − YN

n (0)| ≤ sups≤t|Yn(t) − Yn(0)|. So, condition (UI3) implies that for any t and N the

sequence (|YN
n (t) − YN

n (0)|2, n ∈ N) is u.i. Thus, Corollary 3.15 asserts that for any N

[
YN
n

]
−
〈
YN
n

〉
C−→ O as n −→ ∞. (3.28)

Equalities (3.27) and (2.36) yield the relation

{

sup
s≤t

(∥∥∥
[
YN
n

]
(s) − [Yn](s)

∥∥∥ +
∥∥∥
〈
YN
n

〉
(s) − 〈Yn〉(s)

∥∥∥
)
> 0

}

⊂
{
σN
n < t

}
, (3.29)

which together with (3.26), (3.28) and (RC) entails (3.19).

Corollary 3.15 and Lemma 3.16 are only the steps towards the final result about asym-
ptotic proximity of quadratic variations and quadratic characteristics—Corollary 5.3.

Corollary 3.17. Let a sequence (Yn) of martingales on R+ satisfy conditions (RC) and for any t > 0,
(3.11) and (UI3). Suppose also that there exists an R

d × S+-valued random process (Y,K) such that
relation (3.18) is valid. Then, Y is a continuous martingale, and (3.20) holds.

Proof. Lemma 3.16 asserts (3.19). The implications ((3.21) and (UI1) ⇒ (3.22)); ((3.22) and
(3.19)⇒ (3.25)), were established in the proof of Lemma 3.12.
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4. Sequences of Martingales with Asymptotically Conditionally
Independent Increments

Lemma 4.1. Let for each n Mn be an R-valued square integrable martingale on [0, t] with respect to
a flow (Gn(s), s ∈ [0, t]) and Hn a sub-σ-algebra of Gn(0). Suppose that conditions (UI1) and (RC)
are fulfilled for Yn = Mn,

Mn(0) = 0, (4.1)

max
s≤t

|ΔMn(s)| P−→ 0 (4.2)

and there exists a nonrandom numberN such that for all n

〈Mn〉(t) ≤ N. (4.3)

Then,

E
(
eiMn(t)+〈Mn〉(t)/2 | Hn

)
P−→ 1. (4.4)

Proof. Conditions (RC) (Yn = Mn), (4.1), and (4.2) entail, by Lemma 3.9, relative compactness
of (Mn) in C.

Denote Tn = 〈Mn〉/2, ξn = eiMn+Tn , Xn = ([Mn] − 〈Mn〉)/2, γn = ξ−n ◦Xn,

ηn =
∑

s≤t
ξn(s−)

(
eΔTn(s)+iΔMn(s) − 1 −ΔTn(s) − iΔMn(s) +

1
2
(ΔMn(s))2

)
. (4.5)

Condition (RC) (Yn = Mn) implies that

max
s≤t

ΔTn(s)
P−→ 0. (4.6)

In view of (4.1) ξn(0) = 1. Then, by Itô’s formula

ξn(t) = 1 + iξ−n ·Mn(t) + ξ−n ◦ Tn(t) − 1
2
ξ−n ◦ 〈Mc

n〉(t)

+
∑

s≤t
ξn(s−)

(
eiΔMn(s)+ΔTn(s) − 1 − iΔMn(s) −ΔTn(s)

)
.

(4.7)

Hence, recalling that 〈Mc
n〉(t) = [Mn](t) −

∑
s≤t(ΔMn(s))

2, we get

ξn(t) = 1 + iξ−n ·Mn(t) − ξ−n ◦Xn(t) + ηn. (4.8)



Journal of Probability and Statistics 19

By the definition of ξn and by condition (4.3),

sup
s≤t

|ξn(s)| ≤ eN/2. (4.9)

Consequently,

E
(
ξ−n ·Mn(t) | Hn

)
= 0, (4.10)

and E|ξ−n ·Mn(t)|2 = E(|ξ−n |2 ◦〈Mn〉(t)). The right-hand side of the last equality being less than
eN N, the sequence (ξ−n ·Mn(t)) is u.i., and so is ([Mn](t)) by Lemma 3.11 whose conditions
(those not postulated) we have verified. This together with (4.9) and (4.3) implies uniform
integrability of (ξ−n ◦ Xn(t)). Now, (4.8) and inequality (4.9) show that (ηn) has this property,
too.

By construction and Lemma 10.4 in [4], Xn is a martingale. Then, it follows from (4.9)
that E(ξ−n ◦Xn(t) | Hn) = 0, which together with (4.10) and (4.8) yields

E(ξn(t) | Hn) = 1 + E
(
ηn | Hn

)
. (4.11)

So, it suffices to show that

ηn
P−→ 0. (4.12)

Obviously, for any real a and b

ea+bi − a = (ea − 1 − a)ebi + a
(
ebi − 1

)
+ ebi,

|ea − 1 − a| ≤ |a|2e|a|,
∣∣∣ebi − 1

∣∣∣ ≤ |b|,
∣∣∣∣∣
ebi − 1 − bi +

b2

2

∣∣∣∣∣
≤ |b|3.

(4.13)

Hence, from (4.5), (4.9), we get

∣∣ηn
∣∣ ≤ eN

(

ee
N∑

s≤t
(ΔTn(s))2 +max

s≤t
|ΔMn(s)|

(
∑

s≤t
ΔTn(s) +

∑

s≤t
(ΔMn(s))2

))

. (4.14)

Now, (4.12) ensues from (4.6), (4.3), (4.2), and stochastic boundedness of the sequence
([Mn](t)).

Lemma 4.2. Let for each n, Mn be an R-valued starting from zero locally square integrable martin-
gale with respect to some flow (Gn(t), t ∈ R+) and Hn a sub-σ-algebra of Gn(0). Suppose that con-
dition (RC) is fulfilled for Yn = Mn;

Emax
s≤t

(ΔMn(s))2 −→ 0, (4.15)
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for any t > 0; there exists a nonrandom function q : R+ → R+ such that

〈Mn〉(t) ≤ q(t), (4.16)

for all n and t. Then, for any t, relation (4.4) holds.

Proof. Let us denote, only in this proof, τNn = inf{t : |Mn(t)| ≥ N}, MNn(t) = Mn(t ∧ τNn),
TNn(t) = Tn(t ∧ τNn) (so that MNn ∈ �M2 and 〈MNn〉 = 2TNn), ξNn = eiMNn+TNn . The evident
inequality

sup
s≤t

|MNn(s)| ≤ N +max
s≤t

|ΔMn(s)|, (4.17)

and condition (4.15) show us that for any positive t andN, the sequence (MNn(t)
2, n ∈ N) is

u.i.
By assumption, there exists a sequence (σk) of stopping times such that σk ↗ ∞ a.s.

and for each k, Mσk ∈ M2. Then, for any t > s ≥ 0, N > 0 and n, k ∈ N,

E(MNn(t ∧ σk) | Gn(s)) = E(Mσk(t ∧ τNn) | Gn(s)) = Mσk(s ∧ τNn) = MNn(s ∧ σk). (4.18)

Writing |MNn(t ∧ σk)| ≤ sups≤t|MNn(s)|, we deduce from (4.17) and (4.15) uniform integra-
bility of the sequence (MNn(t ∧ σk), k ∈ N). So, letting k → ∞ in (4.18), we get

E(MNn(t) | Gn(s)) = MNn(s), (4.19)

that is,MNn is a martingale. It is square integrable because of (4.17) and (4.15). Thus, for any
N and t the sequence (MNn, n ∈ N) satisfies all the conditions of Lemma 4.1 which, therefore,
asserts that

E(ξNn(t) | Hn)
P−→ 1 as n −→ ∞. (4.20)

Here, in |ξn(t)| ∨ |ξNn(t)| ≤ eq(t) because of (4.16), so

|ξn(t) − ξNn(t)| ≤ 2eq(t)I{τNn ≤ t}. (4.21)

Obviously, {τNn ≤ t} ⊂ {sups≤t|Mn(s)| ≥ N}. From (4.16), we have by the Lenglart-Rebolledo
inequality

lim
N→∞

lim
n→∞

P

{

sup
s≤t

|Mn(s)| ≥ N

}

= 0. (4.22)

The last three relations imply that

lim
N→∞

lim
n→∞

E|ξn(t) − ξNn(t)| = 0, (4.23)

which together with (4.20) yields (4.4).
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Lemma 4.3. Let for each n, Mn,M
1
n,M

2
n . . . be R-valued starting from zero locally square integrable

martingales with respect to a flow (Gn(t), t ∈ R+) andHn a sub-σ-algebra of Gn(0). Suppose that for
allm ∈ N, t > 0, ε > 0,

lim
n→∞

Emax
u≤t

(ΔMm
n (u))

2 = 0, (4.24)

lim
l→∞

lim
n→∞

P
{〈

Ml
n −Mn

〉
(t) > ε

}
= 0, (4.25)

there exists a nonrandom function q : R+ → R+ such that

〈Mn〉(t) ∨ 〈Mm
n 〉(t) ≤ q(t), (4.26)

for allm,n, and t; for eachm, the sequence (〈Mm
n 〉, n ∈ N) is r.c. in C. Then, for any t relation (4.4)

holds.

Proof. Denote Tm
n = 〈Mm

n 〉/2. By Lemma 4.2 E(eiM
m
n (t)+T

m
n (t) | Hn)

P→ 1 as n → ∞. So, in view
of (4.26), it suffices to prove that for any ε > 0,

lim
l→∞

lim
n→∞

E
∣∣∣eiM

l
n(t)+T

l
n(t) − eiMn(t)+Tn(t)

∣∣∣ = 0. (4.27)

Conditions (4.25) and (4.26) imply by Lemma 3.8 that for all positive t and ε

lim
l→∞

lim
n→∞

P
{∣∣∣Tl

n(t) − Tn(t)
∣∣∣ > ε

}
= 0. (4.28)

Furthermore, (4.25) together with the Lenglart-Rebolledo inequality and the assumed equal-
ities Mn(0) = 0 = Ml

n(0) yields

lim
l→∞

lim
n→∞

P
{∣∣∣Ml

n(t) −Mn(t)
∣∣∣ > ε

}
= 0, (4.29)

which jointly with the previous relation and condition (4.25) entails (4.27).

Lemma 4.4. Let for each n, Mn be an R-valued starting from zero locally square integrable martin-
gale with respect to a flow (Gn(t), t ∈ R+) andHn a sub-σ-algebra of Gn(0). Suppose that conditions
(RC) (Yn = Mn), (4.24) (for all m and t) and (4.25) (for all t and ε) are fulfilled; for all m ∈ N and
u2 > u1 ≥ 0,

〈Mm
n 〉(u2) − 〈Mm

n 〉(u1) ≤ 〈Mn〉(u2) − 〈Mn〉(u1); (4.30)

for any t > 0 and bounded uniformly continuous function f : R+ → R,

E
(
f(〈Mn〉(t)) | Hn

) − f(〈Mn〉(t)) P−→ 0. (4.31)
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Then, for any t,

E
(
eiMn(t) | Hn

)
− e−〈Mn〉(t)/2 P−→ 0. (4.32)

Proof. (1◦) Let us fix t and denote αn = eTn(t), βn = eiMn(t) so that ξn(t) = αnβn. If there exists
a nonrandom constant N such that 〈Mn〉(s) ≤ N for all n and s, then all the conditions of
Lemma 4.3 are fulfilled, and therefore,

E
(
αnβn | Hn

) P−→ 1. (4.33)

Also, under this assumption αn = gN(Tn(t)), where gN(x) = ex
[N]
,

x[N] =
Nx

N ∨ |x| . (4.34)

So, substituting f(x) = gN(2x) to (4.31), we obtain (2.7), whence by Lemma 2.5, relation (2.8)

follows. Juxtaposing it with (4.33), we get αnE(βn | Hn) − 1 P→ 0. Dividing both sides of this
relation by αn (≥ 1), we arrive at (4.32).

(2◦) Let us waive the extra assumption.
Denote σkn = inf{s : 〈Mn〉(s) ≥ k},

Tkn(s) = Tn(s)I[0,σkn[(s) + Tn(σkn−)I[σkn,∞[(s), (4.35)

Tm
kn(s) = Tm

n (s)I[0,σkn[(s) + Tm
n (σkn−)I[σkn,∞[(s), (4.36)

and likewise with M instead of T . Lemma 2.18 asserts predictability of σkn. By construction
and condition (4.33), σkn ≤ inf{s : 〈Mm

n 〉(s) ≥ k}. Thus, Theorem 2.22 asserts that Mkn and
Mm

kn
are square integrable martingales and 〈Mkn〉 = 2Tkn, 〈Mm

kn
〉 = 2Tm

kn
. Consequently, for

any t2 > t1 > 0

〈
Mm

kn

〉
(t2) −

〈
Mm

kn

〉
(t1) ≤ 〈Mkn〉(t2) − 〈Mkn〉(t1). (4.37)

In view of (4.35) and (4.34),

(Tn(t))[k] − Tkn(t) =
(

kTn(σkn)
k ∨ Tn(σkn)

− Tn(σkn−)
)
I[σkn,∞[(t), (4.38)

whence

∣∣∣(Tn(t))[k] − Tkn(t)
∣∣∣ ≤ ΔTn(σkn ∧ t) ≤ max

s≤t
ΔTn(s). (4.39)

Here, in condition (4.6) is fulfilled because of (RC).
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Let f be a bounded uniformly continuous function. Then,

E
(
f
(
(Tn(t))[k]

)
| Hn

)
− f
(
(Tn(t))[k]

)
P−→ 0, (4.40)

by condition (4.30);

f(Tkn(t)) − f
(
(Tn(t))

[k]
)

P−→ 0, (4.41)

on the strength of (4.39), (4.6) and uniform continuity of f . From the second relation, we get,
since f is bounded,

E
(
f(Tkn(t)) − f

(
(Tn(t))[k]

)
| Hn

)
P−→ 0. (4.42)

These three relations together yield

E
(
f(Tkn(t)) | Hn

) − f(Tkn(t))
P−→ 0. (4.43)

Thus, the sequences (Mkn, n ∈ N) and (Mm
kn, n ∈ N) satisfy all the conditions of the lemma

plus the above extra assumption. Then, according to item (1◦) E(eiMkn(t) | Hn)−e−〈Mkn〉(t)/2 P→
0 as n → ∞. Hence, and from (RC), relation (4.32) emerges by the same argument as (4.4)
was derived from (4.20) and (4.22).

Theorem 4.5. Let for each n ∈ N Xn,X
1
n, X

2
n . . . be locally square integrable martingales with respect

to a flow Fn. Suppose that the sequence (tr〈Xn〉) is r.c. inC and for allm ∈ N, t > s > 0, ε > 0, t2 >
t1 ≥ 0, z ∈ R

d∗ and bounded uniformly continuous functions f : R+ → R

lim
n→∞

Emax
u≤t

|ΔXm
n (u)|2 = 0, (4.44)

lim
l→∞

lim
n→∞

P
{
tr
〈
Xl

n −Xn

〉
(t) > ε

}
= 0, (4.45)

〈zXm
n 〉(t2) − 〈zXm

n 〉(t1) ≤ 〈zXn〉(t2) − 〈zXn〉(t1), (4.46)

E
(
f(〈zXn〉(t)) | Fn(s)

) − f(〈zXn〉(t)) P−→ 0. (4.47)

Then, (1) for any p, l ∈ N, tp > · · · > t1 > t0 ≥ s > 0, z1, . . . , zp ∈ R
d∗, and sl > · · · > s1 > 0

E

⎛

⎝exp

⎧
⎨

⎩
i

p∑

j=1

zj
(
Xn

(
tj
) −Xn

(
tj−1
))
⎫
⎬

⎭
| Fn(s)

⎞

⎠

− exp

⎧
⎨

⎩
−1
2

p∑

j=1

zj
(〈Xn〉

(
tj
) − 〈Xn〉

(
tj−1
))
z	j

⎫
⎬

⎭
P−→ 0

(4.48)
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(2) under the extra assumption that the sequence (Xn(0)) is stochastically bounded,

E

⎛

⎝exp

⎧
⎨

⎩
i

p∑

j=1

zj
(
Xn

(
tj
) −Xn

(
tj−1
))
⎫
⎬

⎭
F(Xn(0), 〈Xn〉(s1), . . . , 〈Xn〉(sl)) | Fn(s)

⎞

⎠

− exp

⎧
⎨

⎩
−1
2

p∑

j=1

zj
(〈Xn〉

(
tj
) − 〈Xn〉

(
tj−1
))
z	j

⎫
⎬

⎭
F(Xn(0), 〈Xn〉(s1), . . . , 〈Xn〉(sl)) P−→ 0,

(4.49)

for all p, l ∈ N, tp > · · · > t1 > t0 ≥ s > 0, z1, . . . , zp ∈ R
d∗, sl > · · · > s1 > 0, and F ∈ Cb(Rd × Sl).

Proof. The relative compactness condition implies that for any t, the sequence (‖〈Xn〉‖(t)) is
stochastically bounded. Then, it follows from (4.47) by Corollary 2.8 that for any t > t′ ≥ s > 0,
ε > 0, z ∈ R

d∗ and ϕ ∈ Cb(R2
+)

E
∣∣E
(
ϕ
(〈zXn〉(t), 〈zXn〉

(
t′
)) | Fn(s)

) − ϕ
(〈zXn〉(t), 〈zXn〉

(
t′
))∣∣ −→ 0. (4.50)

If, moreover, the sequence (Xn(0)) is stochastically bounded, then the same corollary asserts
that, in the notation of formula (4.49),

E(F(Xn(0), 〈Xn〉(s1), . . . , 〈Xn〉(sl)) | Fn(s))

−F(Xn(0), 〈Xn〉(s1), . . . , 〈Xn〉(sl)) P−→ 0.
(4.51)

Let us fix j and denoteMn(u) = zjXn(tj−1+u)−zjXn(tj−1) (likewise with a superscript),
Gn(u) = Fn(tj−1 + u). Then,

〈Mn〉(u) =
〈
zjXn

〉(
tj−1 + u

) − 〈zjXn

〉(
tj−1
)
, (4.52)

Mn

(
tj − tj−1

)
= zjXn

(
tj
) − zjXn

(
tj−1
)
,

〈Mn〉
(
tj − tj−1

)
=
〈
zjXn

〉(
tj
) − 〈zjXn

〉(
tj−1
)
,

max
u≤t

|ΔMm
n (u)| = max

u≤tj−1+t
∣∣zjΔXm

n (u)
∣∣,

〈
Ml

n −Mn

〉
(u) =

〈
zj
(
Xl

n −Xn

)〉(
tj−1 + u

) −
〈
zj
(
Xl

n −Xn

)〉(
tj−1
)
.

(4.53)

So we have the implications: (4.44) ⇒ (4.24); (4.45) ⇒ (4.25). Setting in (4.50) t = tj−1 + u,
t′ = tj−1, z = zj , ϕ(x, y) = f(x − y) (f ∈ Cb(R+)), and taking to account (4.52), we get (4.31)
withHn = Gn(0). Equality (4.52) shows that the sequence (〈Mn〉) is r.c. in C, since (〈Xn〉) has
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this property. The similar equality forMm
n and condition (4.46) imply (4.30). Thus, Lemma 4.4

asserts that for any t relation (4.32) with Hn = Gn(0) holds. Putting t = tj − tj−1, we convert it
to

E
(
eizj (Xn(tj )−Xn(tj−1)) | Fn

(
tj−1
)) − e−zj (〈Xn〉(tj )−〈Xn〉(tj−1))z	j /2 P−→ 0. (4.54)

Denote the left-hand side of this relation by κn. Inequality |κn| ≤ 2 allows to rewrite it in the
form E|κn| → 0. Consequently, for any s ∈ [0, tj−1]

E
(
eizj (Xn(tj )−Xn(tj−1)) | Fn(s)

)
− E
(
e−zj (〈Xn〉(tj )−〈Xn〉(tj−1))z	j /2 | Fn(s)

)
P−→ 0. (4.55)

Hence, and from (4.50) (ϕ(x, y) = f(x − y)), we have for j = 1, . . . , p

E
(
eizj (Xn(tj )−Xn(tj−1)) | Fn(s)

)
− e−zj (〈Xn〉(tj )−〈Xn〉(tj−1))z	j /2 P−→ 0. (4.56)

Now, (4.48) emerges from Lemma 2.4.
Relation (4.49) follows from (4.48) and (4.51) by Lemma 2.5.

Remark 4.6. Relation (4.49) implies that every partial limit (with respect to the weak convergence in
law) of a sequence (Xn) is a process with conditionally independent increments.

The following result can facilitate the verification of condition (4.47).

Lemma 4.7. Let for each n ∈ N Qn be an S-valued or R
k-valued random process adapted to a flow Fn

on a probability space (Ωn,Fn,Pn). Suppose that there exists a sequence (Λn) of scalar random pro-
cesses such that, for any n ∈ N and u > 0, Λn(u) is an Fn(0)-measurable positive random variable;
for all t > s > 0,

Qn(t) − Λn(t)
Λn(s)

Qn(s)
P−→ 0. (4.57)

Then, for all for t > s > 0 and bounded uniformly continuous functions g on S (or on R
k),

E
(
g(Qn(t)) | Fn(s)

) − g(Qn(t))
P−→ 0. (4.58)

Proof. Denote λn(t, s) = Λn(t)/Λn(s). Condition (4.57) implies that

P{|Qn(t) − λn(t, s)Qn(s)| > ε | Hn} P−→ 0, (4.59)
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for any t > s > 0, ε > 0 and sequence (Hn)whose nth member is a sub-σ-algebra ofFn. Hence,
and from the evident inequality

E
(∣∣g(Qn(t)) − g(λn(t, s)Qn(s))

∣
∣ | Hn

)

≤ 2‖g‖∞P{‖Qn(t) − λn(t, s)Qn(s)‖ > ε | Hn} + sup
‖A−B‖≤ε

∣
∣g(A) − g(B)

∣
∣,

(4.60)

we get by the choice of g

E
(
g(Qn(t)) − g(λn(t, s)Qn(s)) | Hn

) P−→ 0. (4.61)

Setting here at first Hn = Fn(s) and then Hn = Fn(t), subtracting the second relation from
the first and recalling that the random variable λn(t, s)Qn(s) is, by the assumptions about Qn

and Λn, Fn(s)-measurable, we arrive at (4.58).

Example 4.8. Let Fn(t) = F(nt) and Qn(t) = n−1R(nt), where R is an F-adapted random pro-
cess (so that Qn is Fn-adapted). Writing

Qn(t) − t

s
Qn(s) = t

(
R(nt)
nt

− R(nt)
ns

)
, (4.62)

we see that condition (4.57) will be fulfilled with Λn(t) = t if we demand that t−1R(t) tend in
probability to some limit as t → ∞.

5. The Convergence Theorems

Theorem 5.1. Let (Yn) be a sequence of local square integrable martingales satisfying conditions
(RC), (3.10), and, for each t, the condition

Emax
s≤t

|ΔYn(s)|2 −→ 0. (5.1)

Then, for any infinite set J0 ⊂ N there exist an infinite set J ⊂ J0 and a continuous local martingale YJ

such that

(Yn, 〈Yn〉) C−→
(
YJ,
〈
YJ
〉)

as n −→ ∞, n ∈ J. (5.2)

Proof. (1◦) Denote τln = inf{t : |Yn(t) − Yn(0)| ≥ l}, Y l
n(t) = Yn(t ∧ τln), Kn = 〈Yn〉, Kl

n = 〈Y l
n〉 (so

that Kl
n(t) = Kn(t ∧ τln)),

ηn = (Yn,Kn), ηl
n =
(
Y l
n,K

l
n

)
, (5.3)

regarding ηn and ηl
n as R

d+d2
-valued processes.

Conditions (RC), (3.10) and (5.1) imply by Corollary 3.10 that the sequence (ηn) is r.c.
in C. Then, by Corollaries 2.10 and 2.11, for any l ∈ N the sequence of compound processes
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(η1
n, . . . , η

l
n,Kn) is r.c. in C, too. Hence, using the diagonal method, we deduce that for any

infinite set J0 ⊂ N, there exist an infinite set J ⊂ J0 and random processes Y 1, K1, Y 2, K2 . . .
such that for all l ∈ N

(
η1
n, . . . , η

l
n,Kn

)
C−→
(
η1, . . . , ηl, K

)
as n −→ ∞, n ∈ J, (5.4)

where

ηi =
(
Y i,Ki

)
. (5.5)

The distribution of the right-hand side of (5.4) may depend on J , so the minute notation
would be something like (ηJ,1, . . . , ηJ,l, KJ). We suppress, “for technical reasons”, the super-
script J , keeping, however, it in mind.

(2◦) By the definition of Y l
n,

sup
s≤t

∣∣∣Y l
n(s) − Y l

n(0)
∣∣∣ ≤ l +max

s≤t
|ΔYn(s)|, (5.6)

which together with (5.1) shows that for any l and t, the sequence (sups≤t|Y l
n(s) − Y l

n(0)|
2
,

n ∈ N) is uniformly integrable. Then, it follows from (5.3)–(5.5) by Corollary 3.17 and
Remark 3.13 that Y l is a continuous martingale and

Kl =
〈
Y l
〉
. (5.7)

(3◦)Writing

{

sup
s≤t

∣∣∣ηl
n(s) − ηn(s)

∣∣∣ > 0

}

⊂
{
τln < t

}
⊂
{

sup
s≤t

|Yn(s) − Yn(0)| ≥ l

}

, (5.8)

and recalling that (Yn) is r.c. in C, we arrive at (2.26).
(4◦) Note that the processes η1, η2 . . . are given, in view of (5.4), on a common proba-

bility space. Let us show that

lim
l→∞

sup
i>l

E�
(
ηi, ηl

)
= 0, (5.9)

where � is the metric in D defined by

�
(
f, q
)
=

∞∑

m=1

2−m
(

1 ∧ sup
s≤m

∣∣f(s) − g(s)
∣∣
)

. (5.10)

From (5.4), we have by Lemma 2.15

sup
s≤m

∣∣∣ηi
n(s) − ηl

n(s)
∣∣∣

d−→ sup
s≤m

∣∣∣ηi(s) − ηl(s)
∣∣∣ as n −→ ∞, n ∈ J, (5.11)
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for all natural m, i and l. Then, Alexandrov’s theorem asserts that for any ε > 0,

P

{

sup
s≤m

∣
∣
∣ηi(s) − ηl(s)

∣
∣
∣ > ε

}

≤ lim
n→∞, n∈J

P

{

sup
s≤m

∣
∣
∣ηi

n(s) − ηl
n(s)
∣
∣
∣ > ε

}

, (5.12)

which together with the definitions of ηk
n, lim and lim yields, for i > l,

P

{

sup
s≤m

∣
∣
∣ηi(s) − ηl(s)

∣
∣
∣ > ε

}

≤ lim
n→∞, n∈J

P

{

sup
s≤m

|Yn(s)| > l

}

. (5.13)

Hence, and from the evident inequality

E
(
1 ∧ γ

) ≤ ε + P
{
γ > ε

}
, (5.14)

where γ is an arbitrary nonnegative random variable, we get for i > l,

E

(

1 ∧ sup
s≤m

∣∣∣ηi(s) − ηl(s)
∣∣∣

)

≤ ε + lim
n→∞, n∈J

P

{

sup
s≤m

|Yn(s)| ≥ l

}

. (5.15)

By the Lenglart-Rebolledo inequality,

P

{

sup
s≤m

|Yn(s)| ≥ l

}

≤ a

l2
+ P{trKn(m) ≥ a}, (5.16)

for any a > 0. Relation (5.4) implies, by Alexandrov’s theorem, that

lim
n→∞, n∈J

P{trKn(m) ≥ a} ≤ P{trK(m) ≥ a}, (5.17)

which together with (5.10)–(5.16) yields

sup
i>l

E�
(
ηi, ηl

)
≤ ε +

a

l2
+

∞∑

m=1

2−mP{trK(m) ≥ a}. (5.18)

Hence, letting l → ∞, then a → ∞ finally ε → 0, we obtain (5.9).
(5◦) Obviously, � metrizes the U-convergence and the metric space (C, �) is complete.

Relation (5.9) means that the sequence (ηl) of C-valued random elements is fundamental in
probability. Then, by the Riesz theorem, each of its subsequences contains a subsequence con-
verging w.p.1. The limits of every two convergent subsequences coincide w.p.1 because of
(5.9). So, there exists a C-valued random element (= continuous random process) η such that

lim
l→∞

E�
(
ηl, η

)
= 0. (5.19)
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And this is a fortified form of the relation

ηl C−→ η. (5.20)

In particular, the sequence (ηl) is r.c. in C (which can be proved directly, but such proof does
not guarantee that partial limits are given on the same probability space that the prelimit
processes are).

(6◦) Relation (5.4) together with the conclusions of items (3◦) and (5◦) shows that all
the conditions of Corollary 2.14 (with the range of n restricted to J) are fulfilled (and even
overfulfilled: relation (5.20) proved above without recourse to Corollary 2.14 contains both
an assumption and a conclusion of the latter). So, Corollary 2.14 asserts, in addition to (5.20),
that

ηn
C−→ η as n −→ ∞, n ∈ J. (5.21)

This pair of relations can be rewritten, in view of (5.3) and (5.5), in the form

(
Y l,Kl

)
C−→ (Y,K), (5.22)

(Yn,Kn)
C−→ (Y,K) as n −→ ∞, n ∈ J, (5.23)

where (Y,K) is a synonym of η. We wish to stress again that, firstly, all the processes in (5.22)
are given on a common probability space and, secondly, they depend on the choice of J .

(7◦) Let us show that Y is a local martingale.
Denote σm = inf{t : trK(t) ≥ m}, andMm(t) = Y (t∧σm),Ml

m(t) = Y l(t∧σm). Equalities
(5.19), (5.10), and (5.5) yield

lim
l→∞

E�
(
Ml

m,Mm

)
= 0, (5.24)

whence

Ml
m

d−→ Mm as l −→ ∞. (5.25)

On the strength of (5.7),

〈
Ml

m

〉
(t) = Kl(t ∧ σm). (5.26)

By the construction of the processes Y l
n and Kl

n for any s ∈ R+ and n ∈ N, the sequence
(trKl

n(s), l ∈ N) increases. Then, due to (5.4) so does (trKl(s), l ∈ N). Hence, we have with ac-
count of (5.19), (5.10), and (5.5)

trKl(s) ≤ trK(s), (5.27)
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for all s and l. Comparing this with (5.26), we see that

E tr
〈
Ml

m

〉
(t) ≤ E trK(t ∧ σm). (5.28)

But trK is a continuous increasing process, so trK(σm) = m, trK(t∧σm) ≤ m. Now, it follows
from (5.25) and (5.28) by Corollary 3.3 that Mm is a uniformly integrable martingale. Thus,
the sequence (σm) localizes Y .

(8◦) Relation Y l C→ Y (a part of (5.22)) where the prelimit processes are, according to
item (2◦), continuous martingales implies by Corollary VI.6.7 [2] that

(
Y l,
[
Y l
])

C−→ (Y, [Y ]). (5.29)

Comparing this with (5.22), we get with account of (3.4) (Y,K) d= (Y, 〈Y〉), hereupon
Corollary 3.5 asserts that K = 〈Y〉.

Corollary 5.2. Let (Yn) be a sequence of local square integrable martingales satisfying conditions
(RC), (3.21), and, for all t > 0, (5.1). Then, Y is a continuous local martingale and relation (3.25)
holds.

Proof. Let J0 be an arbitrary infinite set of natural numbers. Then, Theorem 5.1 whose con-
dition (3.10) is covered by (3.21) asserts existence of an infinite set J ⊂ J0 and a continuous
local martingale YJ such that (5.2) holds. By assumption, the distribution of YJ and, con-
sequently, of (YJ, 〈YJ〉) does not depend on J , which allows to delete the superscript in (5.2).
Hence, taking to account arbitrariness of J0, we conclude that (5.2) holds for J = N.

Corollary 5.3. Let a sequence (Yn) of locally square integrable martingales satisfy conditions (RC)
and, for all t > 0, (5.1). Then, relation (3.19) holds.

Proof. It was shown in items (1◦) and (2◦) of the proof of Theorem 5.1 that for each l, the se-
quence (Y l

n, n ∈ N) satisfies all the conditions of Lemma 3.16 which, therefore, asserts that

[Y l
n] − 〈Y l

n〉 C→ O as n → ∞. Hence, by the same argument as in item (3◦), relation (3.19)
follows.

Theorem 5.4. Let for each n ∈ N Xn,X
1
n, X

2
n . . . be locally square integrable martingales with respect

to a common filtration. Suppose that for all m ∈ N, t > 0 and ε > 0 conditions (4.44) and (4.45) are
fulfilled, and

lim
L→∞

sup
l

lim
n→∞

P
{∣∣∣Xl

n(0)
∣∣∣ > L

}
= 0, (5.30)

lim
L→∞

sup
l

lim
n→∞

P
{
tr
〈
Xl

n

〉
(t) > L

}
= 0, (5.31)

lim
r→ 0

sup
l

lim
n→∞

P

{

sup
(t1,t2)∈Π(t,r)

(
tr
〈
Xl

n

〉
(t2) − tr

〈
Xl

n

〉
(t1)
)
> ε

}

= 0, (5.32)

lim
l→∞

lim
n→∞

P
{∣∣∣Xl

n(0) −Xn(0)
∣∣∣ > ε

}
= 0. (5.33)
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Then, for any infinite set J0 ⊂ N, there exist an infinite set J ⊂ J0 and a continuous local martingale
X such that

(Xn, 〈Xn〉) C−→ (X, 〈X〉) as n −→ ∞, n ∈ J. (5.34)

Note that relation (5.34) is, up to notation, a duplicate of (5.2). So, the superscript J on
the right-hand side is tacitly implied (but suppressed because the conditions of the theorem
contain another superscript).

Proof. Conditions (5.31) and (5.32) imply that for each m, the sequence (〈Xm
n 〉, n ∈ N) is r.c.

in C. Then, it follows from (4.44) and (5.30) by Lemma 3.9 that the sequence (Xm
n , n ∈ N) is

r.c. in C. So, there exist an infinite set Jm ⊂ Jm−1 and a random process Xm such that

Xm
n

C−→ Xm as n −→ ∞, n ∈ Jm. (5.35)

Consequently, if we denote by J the set whose mth member is that of Jm, then for each m,

Xm
n

C−→ Xm as n −→ ∞, n ∈ J. (5.36)

And this together with (4.44) and relative compactness of (〈Xm
n 〉, n ∈ N) implies by

Corollary 5.2 that Xm is a continuous local martingale and

ηm
n ≡ (Xm

n , 〈Xm
n 〉) C−→ ηm ≡ (Xm, 〈Xm〉) as n −→ ∞, n ∈ J. (5.37)

Then, it follows from (5.30)–(5.32) that

lim
L→∞

sup
l

P
{∣∣∣Xl(0)

∣∣∣ > L
}
= 0, lim

L→∞
sup

l

P
{
tr
〈
Xl
〉
(t) > L

}
= 0,

lim
r→ 0

sup
l

P

{

sup
(t1,t2)∈Π(t,r)

(
tr
〈
Xl
〉
(t2) − tr

〈
Xl
〉
(t1)
)
> ε

}

= 0,

(5.38)

and therefore, the sequences (〈Xl〉), (Xl) and (ηl) are r.c. in C.
Conditions (5.33) and (4.45) imply by the Lenglart-Rebolledo inequality that for all

positive t and ε

lim
l→∞

lim
n→∞

P

{

sup
s≤t

∣∣∣Xl
n(s) −Xn(s)

∣∣∣ > ε

}

= 0. (5.39)

Conditions(5.31) and (4.45) imply by Lemma 3.8 that

lim
l→∞

lim
n→∞

P

{

sup
s≤t

∥∥∥
〈
Xl

n

〉
(s) − 〈Xn〉(s)

∥∥∥ > ε

}

= 0, (5.40)
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which together with the previous relation yields (2.26). Then, Corollary 2.14 asserts existence
of a random process η ≡ (X,H) such that

(
Xl,
〈
Xl
〉)

C−→ (X,H), (5.41)

(Xn, 〈Xn〉) C−→ (X,H) as n −→ ∞, n ∈ J. (5.42)

The ensuing relation Xl C→ X, continuity (due to (5.37)) of all Xl and relative compactness

of (〈Xl〉) imply by Corollary 5.2 that X is a continuous local martingale and (Xl, 〈Xl〉) C→
(X, 〈X〉). Comparing this with (5.41), we get (X,H) d= (X, 〈X〉), which converts (5.42) to
(5.34).

Repeating the deduction of Corollary 5.2 from Theorem 5.1, we get from Theorem 5.4
the following conclusion.

Corollary 5.5. Let for each n ∈ N Xn,X
1
n, X

2
n . . . be locally square integrable martingales with respect

to a common filtration. Suppose that, they have the same initial value; conditions (4.44), (4.45), (5.31),

and (5.32) are fulfilled for all m and t; there exists a random process X such that Xn
C→ X. Then, X

is a continuous local martingale and (Xn, 〈Xn〉) C→ (X, 〈X〉).

Theorem 5.6. Let for each n ∈ N Xn,X
1
n, X

2
n . . . be locally square integrable martingales with respect

to a flow Fn. Suppose that, conditions (4.44)–(4.47) and (5.30)–(5.33) are fulfilled for all m ∈ N, t >
s ≥ 0, > 0, t2 > t1 ≥ 0, z ∈ R

d∗, and bounded uniformly continuous functions f : R+ → R; there

exist an R
d-valued random variable

◦
X and an S+-valued random processH such that

(Xn(0), 〈Xn〉) C−→
( ◦
X,H

)
. (5.43)

Then, (1) for any p, l ∈ N, tp > · · · > t0 ≥ 0, sl > · · · > s1 > 0, z1, . . . zp ∈ R
d∗ and bounded conti-

nuous function F : R
d × Sl

+ → R

E

⎛

⎝exp

⎧
⎨

⎩
i

p∑

j=1

zj
(
Xn

(
tj
) −Xn

(
tj−1
))
⎫
⎬

⎭
F(Xn(0), 〈Xn〉(s1), . . . , 〈Xn〉(sl))

⎞

⎠

−→ E

⎛

⎝exp

⎧
⎨

⎩
−1
2

p∑

j=1

zj
(
H
(
tj
) −H

(
tj−1
))
z	j

⎫
⎬

⎭
F

( ◦
X,H(s1), . . . ,H(sl)

)
⎞

⎠,

(5.44)
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(2) there exists a continuous local martingale X with initial value
◦
X and quadratic characteristic H

such that (Xn, 〈Xn〉) C→ (X,H) and

E

⎛

⎝exp

⎧
⎨

⎩
i

p∑

j=1

zj
(
X
(
tj
) −X

(
tj−1
))
⎫
⎬

⎭
F(X(0), 〈X〉(s1), . . . , 〈X〉(sl))

⎞

⎠

= E

⎛

⎝exp

⎧
⎨

⎩
−1
2

p∑

j=1

zj
(
H
(
tj
) −H

(
tj−1
))
z	j

⎫
⎬

⎭
F
( ◦
X,H(s1), . . . ,H(sl)

)
⎞

⎠,

(5.45)

for any p, l ∈ N, tp > · · · > t0 ≥ 0, sl > · · · > s1 > 0, z1, . . . zp ∈ R
d∗ and bounded continuous func-

tion F : R
d × Sl

+ → R.

Proof. Since the assumptions of this theorem contain those of Theorem 5.4, the conclusion of
the latter is valid. It implies, in particular, that the sequence (〈Xn〉) is r.c. in C. So, firstly, the
assumptions of Theorem 4.5 are also fulfilled (and therefore the conclusions are valid), and,
secondly, the relation

lim
t→ 0

lim
n→∞

P{|Xn(t) −Xn(0)| > ε} = 0 (5.46)

holds.
If t0 > 0, then Theorem 4.5 asserts relation (4.49) which together with (5.43) yields, by

the dominated convergence theorem, (5.44). Relation (5.46) and continuity (due to (5.43)) of
H enable us to let t0 → 0 in (5.44), thus waiving the interim assumption t0 > 0.

Combining (4.49)with the conclusion of Theorem 5.4 and with the dominated conver-
gence theorem, we see that for any infinite set J0 ⊂ N, there exist an infinite set J ⊂ J0 and
a continuous local martingale X such that for all p, l ∈ N, tp > · · · > t0 > 0, sl > · · · > s1 >
0, z1, . . . zp ∈ R

d∗ and bounded continuous function F : R
d × Sl

+ → R

E

⎛

⎝exp

⎧
⎨

⎩
i

p∑

j=1

zj
(
Xn

(
tj
) −Xn

(
tj−1
))
⎫
⎬

⎭
F(Xn(0), 〈Xn〉(s1), . . . , 〈Xn〉(sl))

⎞

⎠

−→ E

⎛

⎝exp

⎧
⎨

⎩
−1
2

p∑

j=1

zj
(〈X〉(tj

) − 〈X〉(tj−1
))
z	j

⎫
⎬

⎭
F(X(0), 〈X〉(s1), . . . , 〈X〉(sl))

⎞

⎠,

(5.47)

as n → ∞, n ∈ J . The comparison of (5.43) and (5.34) shows that the right-hand side of
(5.47) equals

E

⎛

⎝exp

⎧
⎨

⎩
−1
2

p∑

j=1

zj
(
H
(
tj
) −H

(
tj−1
))
z	j

⎫
⎬

⎭
F

( ◦
X,H(s1), . . . ,H(sl)

)
⎞

⎠, (5.48)
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and, therefore, does not depend on the choice of J0 and J . So, (5.47) holds as n ranges over N,
too. This together with (5.44) proves the second statement under the extra assumption t0 > 0
which can be waived exactly as above.

Corollary 5.7. Let the conditions of Theorem 5.6 be fulfilled. Then,X has conditionally with respect to

G ≡ σ(
◦
X, 〈X〉(·)) independent increments.
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