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Estimation of nonlinear fixed-effects models is plagued by the incidental parameters problem.
This paper proposes a procedure for choosing appropriate densities for integrating the incidental
parameters from the likelihood function in a general context. The densities are based on priors
that are updated using information from the data and are robust to possible correlation of
the group-specific constant terms with the explanatory variables. Monte Carlo experiments are
performed in the specific context of stochastic frontier models to examine and compare the
sampling properties of the proposed estimator with those of the random-effects and correlated
random-effects estimators. The results suggest that the estimator is unbiased even in short panels.
An application to a cross-country panel of EU manufacturing industries is presented as well. The
proposed estimator produces a distribution of efficiency scores suggesting that these industries are
highly efficient, while the other estimators suggest much poorer performance.

1. Introduction

The incidental parameters problem was formally defined and studied by Neyman and Scott
[1]. In general, the problem appears in many models for which the number of parameters to
be estimated grows with the number of observations. In such a model, even parameters that
are common to all observations cannot be consistently estimated due to their dependence
on observation- or group-specific parameters. In econometrics, the issue appears to be more
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relevant in panel-data models where the incidental parameters—although not as much
parameters as latent data—represent group-specific intercepts. In this setting, the number
of incidental parameters grows linearly with the cross-sectional dimension of the panel.
Evidence on the inconsistency of estimators when the problem is ignored are available for
discrete choice models [2], the Tobit [3], and the stochastic frontier models [4, 5].

Lancaster [6] identified three axes around which the proposed solutions concentrate:
(i) integrate the incidental parameters out from the likelihood based on an assumed density,
(ii) replace the incidental parameters in the likelihood function by their maximum-likelihood
estimates andmaximize the resulting profile with respect to the common parameters, and (iii)
transform the incidental parameters in a way that they become approximately orthogonal to
the common parameters, and then integrate them from the likelihood using a uniform prior.

In the case of integrated likelihood, the Bayesian approach is straightforward:
formulate a prior for each incidental parameter and use this prior to integrate them from the
likelihood. As pointed out by Chamberlain [7], such a procedure does not provide a definite
solution to the problem. When the number of incidental parameters grows, the number of
priors placed on these parameters will grow as well and, therefore, the priors will never be
dominated by the data. It appears, however, that this is the best that could be done. In the
end, the problem of incidental parameters becomes one of choosing appropriate priors.

There exists no direct counterpart to the Bayesian approach in frequentist statistics.
Instead, a random-effects formulation of the problem could be used [4, 5]. In this setting,
the incidental parameters are integrated from the likelihood based on a “prior” density.
However, this density is not updated by the data in terms of its shape, but only in terms of its
parameters. As such, it cannot be considered a prior in the sense the term is used in a Bayesian
framework. (The usual practice is to use a normal density as a “prior” which does not depend
on the data.) This random-effects formulation will produce a fixed-T consistent estimator as
long as the true underlying data-generating process is such that the group-specific parameters
are uncorrelated with the regressors.

Allowing for the incidental parameters to be correlated with the regressors, Abdulai
and Tietje [8] use Mundlak’s [9] view on the relationship between fixed- and random-effects
estimators, in the context of a stochastic frontier model. Although this approach is likely to
mitigate the bias of the random-effects estimator, there is no evidence on how Mundlak’s
estimator performs in nonlinear models.

This study proposes a different method for integrating the incidental parameters from
the likelihood in a frequentist setting. In panel-data models, the incidental parameters are
treated as missing data and the approach developed by Gelfand and Carlin [10] is used to
update a true prior (in the Bayesian sense) on the incidental parameters using information
from the data. The formulated posterior is then used to integrate the incidental parameters
from the likelihood.

The rest of the paper is organized as follows: in Section 2, the proposed estimator
is developed in a general framework and related to existing frequentist and Bayesian
estimators. The following section discusses some practical considerations and possible
computational pitfalls. Section 4 presents a set of Monte Carlo experiments in the specific
context of stochastic frontier models. The sampling properties of the proposed estimator
are compared to those of the linear fixed effects, random effects, and random effects with
Mundlak’s approach. The next section provides an application of the estimators to a dataset
of EU manufacturing industries, while Section 6 presents some concluding comments.



Journal of Probability and Statistics 3

2. Monte Carlo Maximum Likelihood in Panel Data Models

We consider the following general formulation of a panel-data model:

yit = z′iγ + x′itβ + εit, (2.1)

where yit and xit are time-varying observed data. The zis are time-invariant and unobserved
data, which are potentially correlated with the xis. Since the zis are unobserved, they will be
absorbed in the group-specific constant term. The estimable model becomes

yit = αi + x′itβ + εit. (2.2)

The view of the fixed effects as latent data rather than parameters justifies, from a frequentist
perspective, the subsequent integration of the αis from the likelihood function. The nature of
the dependent variable (discrete, censored, etc.) and different distributional assumptions on
ε give rise to an array of econometric models.

In such a model, it is usually straightforward to derive the density of the dependent
variable conditional on the independent and the group-specific intercept. Let yi and xi be the
vector and matrix of the stacked data for group i. The contribution to the likelihood of the ith
group conditional on αi is

L(θ | yi, xi, αi) = f(yi | xi,θ, αi), (2.3)

where f(yit | xit,θ, αi) is easy to specify. Maximum likelihood estimation is based on the
density of observed data; that is, on the density of yi marginally with respect to αi. In an
integrated-likelihood approach, the fixed effects are integrated out from the joint density of
yi and αi. We follow Gelfand and Carlin [10] to derive an appropriate density according to
which such an integration can be carried out by writing the density of the data marginally
with respect to the fixed effects as

f(yi | xi,θ) = f(yi | xi,ψ)
∫
Ai

f(yi, αi | xi,θ)
f(yi, αi | xi,ψ)f(αi | yi, xi,ψ)dαi, (2.4)

where ψ is any point in the parameter space of θ.
It is obvious from this formulation that f(yi, αi | xi,ψ) plays the role of an importance

density for the evaluation of the integral. However, it is a very specific importance density: it
has the same functional form as the unknown f(yi, αi | xi,θ), but is evaluated at any chosen
(by the researcher) point ψ . The same functional form of the integrand and the importance
density can be exploited to reach a form in which, under some additional assumptions, every
density will be known or easy to assume a functional form for it. Typically, the integral in (2.4)
would be evaluated by simulation. For this formulation of themarginal likelihood, Geyer [11]
showed that, under loose regularity conditions, the Monte Carlo likelihood hypoconverges
to the theoretical likelihood and the Monte Carlo maximum likelihood estimates converge to
the maximum likelihood estimates with probability 1.
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The joint density of yi and αi can be written as the product of the known (from (2.3))
conditional likelihood and the marginal density of αi. Then, (2.4) becomes

f(yi | xi,θ) = f(yi | xi,ψ)
∫
Ai

f(yi | xi,θ, αi)p(αi | xi,θ)
f(yi | xi,ψ , αi)p(αi | xi,ψ)f(αi | yi, xi,ψ)dαi. (2.5)

The following assumption is imposed on the data-generating process:

p(αi | xi,θ) = p(αi | xi,ψ) ∀αi ∈ Ai. (2.6)

In words, this assumption means that the way αi and xi are related does not depend on θ.
One may think of this as the relationship between αi and xi being determined by a set of
parameters η, prior to the realization of yi. (In mathematical terms, this would require that
f(yi, αi | xi,θ, η) = f(yi | xi,θ, αi) × p(αi | xi, η).) This implies that the set of parameters that
enter the distribution of αi conditionally on xi, but unconditionally on yi, is disjoint of θ.

In practice and depending on the application at hand, this assumption may or may
not be restrictive. Consider, for example, the specification of a production function where y
is output, x is a vector of inputs, and a represents the effect of time-invariant unobserved
characteristics, such as the location of the production unit, on output. The assumption stated
in (2.6) implies that, although location may affect the levels of input use, the joint density of
location and inputs does not involve the marginal productivity of inputs. On the other hand,
conditionally on output, the density of α does involve the marginal productivity coefficients,
since this conditional density is obtained by applying Bayes’ rule on f(yi | xi,θ, αi).

Under the assumption stated in (2.6), (2.5) can be simplified to

L(θ | yi, xi) = f(yi | xi,ψ)
∫
Ai

f(yi | xi,θ, αi)
f(yi | xi,ψ , αi)f(αi | yi, xi,ψ)dαi. (2.7)

Theoretically, f(αi | yi, xi,ψ) can be specified in a way that takes into account any
prior beliefs on the correlation between the constant terms and the independent variables.
Then, the integral can be evaluated by simulation. Practically, however, there is no guidance
on how to formulate these beliefs. Furthermore, the choice of f(αi | yi, xi,ψ) is not updated
during the estimation process and it is not truly a prior, just as in frequentist random effects.
Alternatively, we can only specify the marginal density of αi and use Bayes’ rule to get

f(αi | yi, xi,ψ) ∝ L(
ψ | yi, xi, αi

) × p(αi | xi,ψ). (2.8)

Again, there is not much guidance on how to specify p(αi | xi,ψ). (Additionally, in order to
be consistent with assumption (2.6), we need to assume a density for αi that does not involve
ψ .) But now the issue is not as important: it is f(αi | yi, xi,ψ) and not the assumed p(αi | xi,ψ)
that is used for the integration. That is, p(αi | xi,ψ) is a prior in the Bayesian sense of the term
since it is filtered through the likelihood for a given ψ before it is used for the integration.
Accordingly, f(αi | yi, xi,ψ) is the posterior density of αi.
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Before examining the role of the prior in the estimation, we note that the frequentist
random-effects approach can be derived by using (2.8) to simplify (2.7). If αi is assumed
to be independent of xi and the parameters of its density are different from ψ , then
the unconditional likelihood does not depend on ψ and the estimator becomes similar to
the one Greene [4] suggests

L(θ | yi, xi) =
∫
Ai

f(yi | xi,θ, αi)p(αi)dαi. (2.9)

It is apparent that there is an advantage in basing the estimation on the likelihood
function in (2.7) rather than (2.9). By sampling from f(αi | yi, xi,ψ) instead of p(αi), we are
using information contained in the data on the way αi is correlated with xi. For example,
we may assume that in the prior αi is normally or uniformly distributed and that it is
independent of the data. But even this prior independence assumption will not impose
independence in the estimation, because of the filtering of the prior through the likelihood in
(2.8).

As it is the case in Bayesian inference, the role of the prior density of αi diminishes with
the increase in the number of time observations per group. But the short time dimension of the
panel is the original cause of the incidental parameters problem. The estimator proposed here
is still subject to the critique that was developed for the corresponding Bayesian estimator:
the density of the data will not dominate the prior asN → ∞with T held fixed. On the other
hand, when the true data-generating process is such that the group-specific constant terms
are correlated with the independent variables, the method proposed here will mitigate the
bias from which the random-effects estimator suffers.

3. Calculations and Some Practical Considerations

The first step in the application of the MC maximum likelihood estimator developed in the
previous section is to sample from the posterior of αi given ψ . Since this posterior density
involves the likelihood function, its functional formwill, in general, not resemble the kernel of
any known distribution. But, this posterior is unidimensional for every αi and simple random
sampling techniques, such as rejection sampling, can be used. Of course, the Metropolis-
Hastings algorithm provides a more general framework for sampling from any distribution.
In the context of the posterior in (2.8), a Metropolis-Hastings algorithm could be used to
construct a Markov chain for each αi, while holding ψ fixed.

Given thatM random numbers are drawn from the posterior of each αi, the simulated
likelihood function for the entire dataset can be written as

L̃(θ | y,X,α) =
[

N∏
i=1

f(yi | xi,ψ)
]⎡
⎣ N∏

i=1

1
M

M∑
j=1

f
(
yi | xi,θ, αij

)
f
(
yi | xi,ψ , αij

)
⎤
⎦, (3.1)

where αij is the jth draw from f(αi | yi, xi,ψ). The MC likelihood function can be maximized
with respect to θ. The first term in the product is constant with respect to θ and can be ignored
during the optimization. The relevant part of the simulated log-likelihood is

log L̃(θ | y,X,α) =
N∑
i=1

log

⎡
⎣ 1
M

M∑
j=1

f
(
yi | xi,θ, αij

)
f
(
yi | xi,ψ , αij

)
⎤
⎦. (3.2)
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One practical issue that remains to be resolved is the choice of ψ . Theoretically, this
choice should not matter. In practice, however, when the calculations are carried on finite-
precision machines, it does. In principle, f(yi, αi | xi,ψ) should mimic the shape of f(yi, αi |
xi,θ), as it plays the role of an importance density for the evaluation of the integral in (2.4).
If ψ is chosen to be far away from θ, then the two densities will have probability mass over
different locations and the ratio in (3.2) will be ill behaved in the points of the parameter
space where the proposal density approaches zero, while the likelihood does not.

Gelfand and Carlin [10] propose solving this problem by choosing an initial ψ and
running some iterations by replacing ψ with the MCmaximum likelihood estimates from the
previous step. In the final step, the number of samples is increased to reduce the Monte Carlo
standard errors. The estimator produced by this iterative procedure has the same theoretical
properties as an estimator obtained by choosing any arbitrary ψ . On the other hand, this
iterative procedure introduces another problem: if during this series of iterationsψ converges
to the value of θ supported by the data, then in the subsequent iteration the ratio in (3.2)will
be approximately unity. (In practice, the simulated likelihood will never be exactly one due
to the noise introduced through the random sampling.)As a consequence, the MC likelihood
function will no longer depend on θ or at least it will be very flat. This leads to numerical
complications that now have to do with the routine used for maximizing the likelihood. A
way to overcome this problem is by introducing some noise to the estimate of θ from iteration,
say k, before using it in place of ψ for iteration k + 1. Additionally, increasing the variance
parameter(s) contained in ψ will result in the proposal density having heavier tails than the
likelihood, alleviating in this way the numerical instability problem in the ratio of the two
densities.

4. Monte Carlo Experiments

In this section, we perform a set of Monte Carlo experiments on the stochastic frontier
model [12, 13]. Wang and Ho [14] have analytically derived the likelihood function for the
class of stochastic frontiers models that have the scaling property [15] by using within and
first-difference transformations. Instead of restricting attention to this class of models, the
formulation proposed by Meeusen and van den Broeck [13] is used here

yit = αi + x′itβ + vit − uit, (4.1)

where the noise component of the error term is assumed to follow a normal distribution
with mean zero and variance σ2

v, while the inefficiency component of the error is assumed to
follow an exponential distribution with rate λ. The technical efficiency score for observation
i in period t is defined as TEit = exp{−uit} and assumes values on the unit interval.

Under the described specification and assuming independence over t, the contribution
of group i to the likelihood conditional on the fixed effects is

f(yi | xi,θ, αi) ≡ L(θ | yi, xi, αi)

=
T∏
t=1

1
λ
Φ
(
− εit
σv

− σv
λ

)
exp

{
εit
λ

+
1
2

(σv
λ

)2
}
,

(4.2)
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where εit = yit − αi − x′itβ and θ = [β′ logσ2
v logλ2]′. A major objective of an application of

a stochastic frontier model is usually the estimation not only of the model’s parameters, but
also of the observation-specific efficiency scores. These estimates can be obtained as

E
(
e−uit | εit

)
=

Φ
((
μ̃it/σv

) − σv)
Φ
(
μ̃it/σv

) exp

{
−μ̃it +

σ2
v

2

}
, (4.3)

where μ̃it = −εit − σ2
v/λ.

Three experiments are performed for panels of varying length (T = 4, 8, and 16), while
keeping the total number of observations (cross-section and time dimensions combined)
fixed at 2000. The sampling properties of four estimators are examined: (i) linear fixed
effects within estimator, (ii) MC maximum likelihood, (iii) simple random effects, and (iv)
correlated random effects using Mundlak’s approach.

The data are generated in the following sequence:

(i) N αis are drawn from a normal distribution with mean zero and variance 2,

(ii) for each i, T draws are obtained from a normal distribution with mean αi + (1/2)α2i
and standard deviation equal to 1/2 for two independent variables, x1 and x2,

(iii) NT draws are obtained from a normal distribution with zero mean and standard
deviation equal to 0.3 for vit,

(iv) NT draws are obtained from an exponential distribution with rate equal to 0.3 for
uit,

(v) the dependent variable is constructed as yit = αi + 0.7x1,i + 0.4x2,i + vit − uit.
For theMCmaximum likelihood estimator, uniform priors are assumed for the αis and

their integration from the likelihood is based on 3000 random draws from their posterior.
These draws are obtained using a Metropolis-Hastings random-walk algorithm. For the
random-effects estimators, each αi is assumed to follow a normal distribution with mean
μ and variance σ2

α. Integration of the unobserved effects for the random-effects estimator,
is carried using Gaussian quadratures. (Although integration of the unobserved effects can
be carried using simulation as suggested by Greene [4], under normally distributed αi’s
integration through a Gauss-Hermite quadrature reduces computational cost substantially.)

Table 1 presents the means, mean squared errors, and percent biases for the four
estimators, based on 1000 repetitions. The linear fixed-effects estimator is unbiased with
respect to the slope parameters, as well as with respect to the standard deviation of
the composite error term. This estimator, however, cannot distinguish between the two
components of the error. Nevertheless, it can be used to provide group-specific but time-
invariant efficiency scores using the approach of Schmidt and Sickles [16]. This approach has
the added disadvantage of treating all unobserved heterogeneity as inefficiency.

On the other hand, as expected, the simple random-effects estimator is biased with
respect to the slope parameters. Interestingly, however, the bias is much smaller for the
variance parameter of the inefficiency component of the error term. This suggests that one
may use the simple random-effects estimator to obtain an indication of the distribution of
the industry-level efficiency even in the case where the group effects are correlated with the
independent variables.

The MC maximum likelihood and the correlated random-effects estimators are
virtually unbiased both with respect to the slope and the variance parameters, even for small
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T . Furthermore, the mean squared errors of both estimators decrease as the time dimension
of the panel increases. For the MC maximum likelihood estimator this can be attributed to
the fact that as T increases more information per group is used to formulate the posterior of
αi.

Obtaining estimates of observation-specific efficiency scores involves first generating
estimates of the group intercepts. Estimates of the group effects can be obtained for the
random-effects estimators using group averages of the dependent and independent variables,
accounting at the same time for the skewness of the composite error term [14]. On the
other hand, the MC maximum likelihood estimator can provide estimates of the αis by
treating them as quantities to be estimated by simulation after the estimation of the common
parameters of the model. In both estimators, the αis and θ are replaced in (4.3) by their point
estimates to obtain estimates of the observation-specific efficiency scores.

Nevertheless, both the random-effects and the MC maximum likelihood estimators of
the αis are only T consistent. A different approach, which is consistent with treating the αis
as missing data, is to integrate them from the expectation in (4.3). That is, one may obtain the
expectation of e−uit | ε̂it unconditionally on the missing data. In this way, the uncertainty
associated with the αis is accommodated when estimating observation-specific efficiency
scores. The integration of the αis is achieved using the following procedure:

(1) draw M samples from f(αi | yi, xi, θ̂) where θ̂ is either the random-effects or the
MC maximum likelihood point estimate,

(2) for each draw j = 1, 2, . . . ,M, evaluate E(e−uit | ε̂it,j), where ε̂it,j = yit − αi,j − x′itβ̂,

(3) take the sample mean of the E(e−uit | ε̂it,j)s over j.
By the law of iterated expectations, this sample mean will converge to the unconditional
expectation of e−uit | ε̂it,j . (In the random-effects model, integration can also be performed by
quadratures rather than simulation.)

Figure 1 presents scatter plots of the actual versus the predicted efficiency scores for
the MC maximum likelihood and the correlated random-effects estimators for a particular
Monte Carlo repetition. Apart from the known problem of underestimating the scores of
highly efficient observations, the approach of integrating the αis from the expectation of
e−uit | ε̂it produces good predictions for the efficiency scores for the MC maximum likelihood
estimator. On the other hand, the predictions of the correlated random-effects estimator
are more dispersed around the 45◦ line. The MC maximum likelihood estimator has an
advantage over the random-effects estimator because it does not need to specify a systematic
relationship between the group effects and the independent variables. In other words, the
quality of the estimates of the efficiency scores from the random-effects estimator deteriorates
if there is a lot of noise in the relationship between the group effects and the group means of
the independent variables.

5. Application

This section presents an application of the estimators discussed in this paper to a panel of
European manufacturing industries. The dataset comes from the EU-KLEMS project [17] and
covers the period from 1970 to 2007. It contains annual information at the country level for
industries classified according to the 4-digit NACE revision 2 system. The part of the dataset
used for the application covers 10 manufacturing industries for 6 countries for which the
required data series are complete (Denmark, Finland, Italy, Spain, The Netherlands, and UK).
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Figure 1: Actual versus predicted efficiency scores with simulated data.

The production frontier is specified as Cobb-Douglass in capital stock and labor input,
with value added being the dependent variable. A linear time trend is included to capture
autonomous technological progress. The model specification is

logyit = αi + βK logK + βL logL + βtt + vit − uit, (5.1)
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Table 2: Results for the EU-KLEMS model.

Linear fixed effects MC maximum likelihood Simple random effects Correlated random effects

βK 0.3262 0.2687 0.3478 0.1833
βL 0.7265 0.7323 0.6134 0.7388
βt 0.0202 0.0211 0.0173 0.0224
σv — 0.0755 0.0796 0.0705
λ — 0.2057 0.2033 0.2087

where it is assumed that vit ∼ N(0, σ2
v) and uit ∼ Exp(λ). Each industry in each country is

treated as a group with its own intercept, but the production technologies of all industries
across all countries are assumed to be represented by the same slope parameters.

The model is estimated using the linear fixed-effects, MC maximum likelihood, and
simple and correlated random-effects estimators. The results are presented in Table 2. Given
that under the strict model specification the group effects are expected to be correlated
with the regressors, it does not come as a surprise that relatively large discrepancies
between the parameter estimates of the linear fixed-effects and the simple random-effects
estimators appear. Nonnegligible discrepancies are also observed between the linear fixed-
effects estimate of βK and the corresponding estimates from the estimators that account for
possible correlation between the group effects and the independent variables. Although this
result appears to be in contrast with the findings of the Monte Carlo simulations, we need
to keep in mind that the Monte Carlo findings are valid for the estimators on average,
while the application considers a single dataset where particularities could lead to these
discrepancies. For example, limited within variation in the capital and labor variables could
induce multicollinearity and render the point estimates less precise.

On the other hand, all three estimators that can distinguish between noise and
inefficiency effects produce very similar parameter estimates for the variances of the two
error terms. The estimates of the parameter associated with the time trend suggest that the
industries experience, on average, productivity growth at a rate slightly larger than 2%.

Figure 2 presents kernel density estimates of the observation-specific technical
efficiency scores obtained by integrating the group effects from the expectation in (4.3)
using the MC maximum likelihood and the two random-effects estimators. It appears that
only the MC maximum likelihood estimator produces a distribution of technical efficiency
scores similar to the original assumptions imposed by the model, with the majority of the
industries being highly efficient. On the other hand, the simple random-effects estimator
yields a bimodal distribution of efficiency scores.

6. Conclusions and Further Remarks

This paper proposes a general procedure for choosing appropriate densities for frequentist
integrated-likelihood methods in panel data models. The proposed method requires the
placement of priors on the density of the group-specific constant terms. These priors,
however, are updated during estimation and in this way their impact on the final parameter
estimates is minimized.

A set of Monte Carlo experiments were conducted to examine the sampling properties
of the proposed estimator and to compare them with the properties of existing relevant
estimators. Although the experiments were conducted in the specific context of a stochastic
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Figure 2: Kernel density estimates of efficiency scores from the three estimators.

frontier model, the proposed estimator can be generalized to other nonlinear models. The
results suggest that, even in very short panels, both the MC maximum likelihood estimator
and random-effects estimator augmented by the group averages of the regressors are
virtually unbiased in the stochastic frontier model.

Returning to Chamberlain’s [7] observation that in panel-data settings the contribu-
tion of the prior is never dominated by the data, the results from theMonte Carlo experiments
suggest that this is not an issue of major importance. It appears that when the objective is not
the estimation of the incidental parameters but their integration from the likelihood, then
even very vague priors do not introduce any bias in the common parameter estimates.

In the end, which estimator should be chosen? From the estimators considered here,
the MC and Mundlak’s random-effects estimators are able to distinguish inefficiency from
group- and time-specific unobserved heterogeneity, while being reasonably unbiased with
respect to the common parameters. The difference between the two is based on theoretical
grounds. The MC estimator is able to account for the correlation of the group-specific
parameters with the regressors in any unknown form. On the other hand, the correlated
random-effects estimator lacks such a theoretical support; there still exist no analytical results
on the properties of this estimator in nonlinear settings.

Another disadvantage of the correlated random-effects estimator is that it requires the
inclusion of the group means of independent variables in the model. This approach could
induce a high degree of multicollinearity if there is little within variability in the data. Lastly,
in the specific context of stochastic frontier models, the MC maximum likelihood estimator
provides better estimates of the observation-specific efficiency scores.
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