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Let θ and μ denote the location and the size of the mode of a probability density. We study
the joint convergence rates of semirecursive kernel estimators of θ and μ. We show how the
estimation of the size of the mode allows measuring the relevance of the estimation of its location.
We also enlighten that, beyond their computational advantage on nonrecursive estimators, the
semirecursive estimators are preferable to use for the construction of confidence regions.

1. Introduction

Let X1, . . . , Xn be independent and identically distributed R
d-valued random variables with

unknown probability density f . The aim of this paper is to study the joint kernel estimation
of the location θ and of the size μ = f(θ) of the mode of f . The mode is assumed to be unique,
that is, f(x) < f(θ) for any x /= θ, and nondegenerated, that is, the second order differential
D2f(θ) at the point θ is nonsingular (in the sequel, Dmg will denote the differential of order
m of a multivariate function g).

The problem of estimating the location of themode of a probability density was widely
studied. Kernel methods were considered, among many others, by Parzen [1], Nadaraya
[2], Van Ryzin [3], Rüschendorf [4], Konakov [5], Samanta [6], Eddy ([7, 8]), Romano [9],
Tsybakov [10], Vieu [11], Mokkadem and Pelletier [12], and Abraham et al. ([13, 14]). The
problem of estimating the size of the mode was brought up by several authors (see, e.g.,
Romano [9] and Vieu [11]), but, at our knowledge, the behaviour of estimators of the size



2 Journal of Probability and Statistics

of the mode has not been investigated in detail, whereas there are at least two statistical
motivations for estimating this parameter. First, the use of an estimator of the size is necessary
for the construction of confidence regions for the location of the mode (see, e.g., Romano [9]).
As a more important motivation, the estimation of the high of the peak gives information on
the shape of a density in a neighbourhood of its mode and, consequently, allows measuring
the pertinence of the parameter location of the mode; this motivation must be related to the
remark made by Vieu [11], who pointed out that the location of the mode is more related to
the shape of the derivative of f , whereas the size of the mode is more related to the shape of
the density itself.

Let us mention that, even though the problem of estimating the size of the mode was
not investigated in the framework of density estimation, it was studied in the framework
of regression estimation. Müller [15] proves in particular the joint asymptotic normality
and independence of kernel estimators of the location and of the size of the mode in
the framework of nonparametric regression models with fixed design. In the framework
of nonparametric regression with random design, a similar result is obtained by Ziegler
([16, 17]) for kernel estimators and by Mokkadem and Pelletier [18] for estimators issued
from stochastic approximation methods.

This paper is focused on semirecursive kernel estimators of θ and f(θ). To explain why
we chose this option of semirecursive estimators, let us first recall that the (nonrecursive)
wellknown kernel estimator of the location of the mode introduced by Parzen [1] is defined
as a random variable θ∗

n satisfying

f∗
n(θ

∗
n) = sup

y∈Rd

f∗
n

(
y
)
, (1.1)

where f∗
n is Rosenblatt’s estimator of f ; more precisely,

f∗
n(x) =

1

nhd
n

n∑

i=1

K

(
x −Xi

hn

)
, (1.2)

where the bandwidth (hn) is a sequence of positive real numbers going to zero and the kernel
K is a continuous function satisfying lim‖x‖→+∞K(x) = 0,

∫
Rd K(x)dx = 1. The asymptotic

behaviour of θ∗
n waswidely studied (see, among others, [1–9, 11, 12]), but, on a computational

point of view, the estimator θ∗
n has a main drawback: its update, from a sample size n to

a sample size n + 1, is far from being immediate. Applying the stochastic approximation
method, Tsybakov [10] introduced the recursive kernel estimator of θ defined as

Tn = Tn−1 + γn
1

hd+1
n

∇K

(
Tn−1 −Xn

hn

)
, (1.3)

where T0 ∈ R
d is arbitrarily chosen and the stepsize (γn) is a sequence of positive real

numbers going to zero. The great property of this estimator is that its update is very rapid.
Unfortunately, for reasons inherent to stochastic approximation algorithms properties, very
strong assumptions on the density f must be required to ensure its consistency. A recursive
version fn of Rosenblatt’s density estimator was introduced by Wolverton and Wagner [19]
(and discussed, among others, by Yamato [20], Davies [21], Devroye [22], Menon et al. [23],
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Wertz [24], Wegman and Davies [25], Roussas [26], and Mokkadem et al. [27]). Let us recall
that fn is defined as

fn(x) =
1
n

n∑

i=1

1

hd
i

K

(
x −Xi

hi

)
. (1.4)

Its update from a sample of size n to one of size n + 1 is immediate since fn clearly satisfies
the recursive relation

fn(x) =
(
1 − 1

n

)
fn−1(x) +

1

nhd
n

K

(
x −Xn

hn

)
. (1.5)

This property of rapid update of the density estimator is particularly important in the
framework of mode estimation, since the number of points where f must be estimated is
very large. We thus define a semirecursive version of Parzen’s estimator of the location of
the mode by using Wolverton-Wagner’s recursive density estimator, rather than Rosenblatt’s
density estimator. More precisely, our estimator θn of the location θ of the mode is a random
variable satisfying

fn(θn) = sup
y∈Rd

fn
(
y
)
. (1.6)

Let us now come back to the problem of estimating the size f(θ) of the mode. The
ordinarily used estimator is defined as μ∗

n = f∗
n(θ

∗
n) (f

∗
n being Rosenblatt’s density estimator

and θ∗
n Parzen’s mode estimator); the consistency of μ∗

n is sufficient to allow the construction
of confidence regions for θ (see, e.g., Romano [9]). Adapting the construction of μ∗

n to the
semirecursive framework would lead us to estimate f(θ) by

μn = fn(θn). (1.7)

However, this estimator has two main drawbacks (as well as μ∗
n). First, the use of a higher

order kernel K is necessary for (μn − μ) to satisfy a central limit theorem and thus for the
construction of confidence intervals of μ (and of confidence regions for (θ, μ)). Moreover, in
the case when a higher order kernel is used, it is not possible to choose a bandwidth for which
both estimators θn and μn converge at the optimal rate. These observations lead us to use two
different bandwidths, one for the estimation of θ, the other one for the estimation of μ. More
precisely, let f̃n be the recursive kernel density estimator defined as

f̃n(x) =
1
n

n∑

i=1

1

h̃d
i

K

(
x −Xi

h̃i

)

, (1.8)

where the bandwidth (h̃n) may be different from (hn) used in the definition of fn (see (1.4));
we estimate the size of the mode by

μ̃n = f̃n(θn), (1.9)

where θn is still defined by (1.6) and thus with the first bandwidth (hn).
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The purpose of this paper is the study of the joint asymptotic behaviour of θn and
μ̃n. We first prove the strong consistency of both estimators. We then establish the joint
weak convergence rate of θn and μ̃n. We prove in particular that adequate choices of the
bandwidths lead to the asymptotic normality and independence of these estimators and that
the use of different bandwidths allow obtaining simultaneously the optimal convergence
rate of both estimators. We then apply our weak convergence rate result to the construction
of confidence regions for (θ, μ) and illustrate this application with a simulations study.
This application enlightens the advantage of using semirecursive estimators rather than
nonrecursive estimators. It also shows how the estimation of the size of the mode gives
information on the relevance of estimating its location. Finally, we establish the joint strong
convergence rate of θn and μ̃n.

2. Assumptions and Main Results

Throughout this paper, (hn) and (h̃n) are defined as hn = h(n) and h̃n = h̃(n) for all n ≥ 1,
where h and h̃ are two positive functions.

2.1. Strong Consistency

The conditions we require for the strong consistency of θn and μ̃n are the following.

(A1)(i) K is an integrable, differentiable, and even function such that
∫
Rd K(z)dz = 1.

(ii) There exists ζ > 0 such that
∫
Rd ‖z‖ζ|K(z)|dz < ∞.

(iii) K is Hölder continuous.

(iv) There exists γ > 0 such that z 	→ ‖z‖γ |K(z)| is a bounded function.

(A2)(i) f is uniformly continuous on R
d.

(ii) There exists ξ > 0 such that
∫
Rd ‖x‖ξf(x)dx < ∞.

(iii) There exists η > 0 such that z 	→ ‖z‖ηf(z) is a bounded function.

(iv) There exists θ ∈ R
d such that f(x) < f(θ) for all x /= θ.

(A3)(i) The function h is locally bounded and varies regularly with exponent (−a) with
a ∈]0, 1/d[.

(ii) The function h̃ is locally bounded and varies regularly with exponent (−ã) with
ã ∈]0, 1/d[.

Remark 2.1. Note that (A1)(iv) implies that K is bounded.

Remark 2.2. Let us recall that a positive function (not necessarily monotone) L defined on
]0,∞[ is slowly varying if limt→∞L(tx)/L(t) = 1 and that a function G varies regularly with
exponent ρ, ρ ∈ R, if and only if it is of the form G(x) = xρL(x) with L slowly varying (see,
e.g., Feller [28, page 275]). Typical examples of regularly varying functions are xρ, xρ logx,
xρ log logx, xρ logx/ log logx, and so on.
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Proposition 2.3. Let θn and μ̃n be defined by (1.6) and (1.9), respectively.

(i) Under (A1), (A2), and (A3)(i), limn→∞θn = θ a.s.

(ii) Under (A1)–(A3), limn→∞μ̃n = μ a.s.

Let us mention that the assumptions required on the probability density to establish
the strong consistency of the semirecursive estimator of the location of the mode are slightly
stronger than those needed for the nonrecursive estimator θ∗

n (see, e.g., [9, 12]), but are much
weaker than those needed for the recursive estimator (see [10]). Let us also note that the
strong consistency of μ̃∗

n can be proved in the same way as that of μ̃n.

2.2. Weak Convergence Rate

In order to state the weak convergence rate of θn and μ̃n, we need the following additional
assumptions on K, f , h, and h̃.

(A4)(i) K is twice differentiable on R
d.

(ii) z 	→ z∇K(z) is integrable.

(iii) For any (i, j) ∈ {1, . . . , d}2, ∂2K/∂xi∂xj is bounded integrable and Hölder
continuous.

(iv) K is a kernel of order q ≥ 2, that is, for all s ∈ {1, . . . , q − 1}, for all j ∈ {1, . . . , d},∫
Rd y

s
j K(y)dyj = 0 and

∫
Rd |yq

j K(y)|dy < ∞.

(A5)(i) D2f(θ) is nonsingular.

(ii) D2f is q-times differentiable; ∇f and Dqf are bounded.

(iii) For any (i, j) ∈ {1, . . . , d}2, supx∈Rd‖Dq(∂2f/∂xi∂xj)‖ < ∞, and for any k ∈
{1, . . . , d}, supx∈Rd‖Dq(∂f/∂xk)‖ < ∞.

(A6)(i) a ∈]0, 1/(d + 4)[.

(ii) ã ∈]0, 1/(d + 2)[.

Remark 2.4. Note that (A4)(ii) and (A4)(iii) imply that ∇K is Lipschitz-continuous and
integrable; it is thus straightforward to see that lim‖x‖→∞‖∇K(x)‖ = 0 (and in particular
∇K is bounded).

Let G be the d × d matrix defined by G(i,j) =
∫
Rd(∂K/∂xi)(x)(∂K/∂xj)(x)dx and set

β
q

j =
∫

Rd

y
q

j K
(
y
)
dy,

B
(θ)
a,q =

⎧
⎪⎪⎨

⎪⎪⎩

(−1)q
q!
(
1 − aq

)∇
⎛

⎝
d∑

j=1

β
q

j

∂qf

∂x
q

j

(θ)

⎞

⎠ if aq < 1,

0 otherwise,

Σ(θ)
a =

f(θ)
1 + a(d + 2)

G.

(2.1)
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The following theorem gives the weak convergence rate of the semirecursive kernel mode
estimator θn.

Theorem 2.5 (Weak convergence rate of θn). Let θn be defined by (1.6), and assume that (A1),
(A2), (A3)(i), (A4), (A5), and (A6)(i) hold.

(1) If there exists c ≥ 0 such that limn→∞nh
d+2+2q
n = c, then

√
nhd+2

n (θn − θ) D−→ N
(
−√c

[
D2f(θ)

]−1
B
(θ)
a,q ,
[
D2f(θ)

]−1
Σ(θ)
a

[
D2f(θ)

]−1)
. (2.2)

(2) If limn→∞nh
d+2+2q
n = ∞, then

h
−q
n (θn − θ) P−→ −

[
D2f(θ)

]−1
B
(θ)
a,q . (2.3)

Remark 2.6. If limn→∞nh
d+2+2q
n = c /= 0 or if limn→∞nh

d+2+2q
n = ∞, then aq < 1, and thus B(θ)

a,q is
usually nonzero.

In order to compare the semirecursive estimator θn with the well-known nonrecursive
Parzen’s estimator θ∗

n, let us recall that Theorem 2.5 holds when θn is replaced by θ∗
n and a

by zero (see e.g., Parzen [1] in the case d = 1, and Mokkadem and Pelletier [12] in the case
d ≥ 1). The main advantage of θn on θ∗

n is that, due to the factor [1 + a(d + 2)]−1 standing in
the definition of Σ(θ)

a , the asymptotic covariance of θ∗
n is smaller than that of θn; this property

will be discussed again in Section 2.3.
In order to state the weak convergence rate of μ̃n, we need the following notation

(where γ > 0 and where (bn) is a positive sequence):

w
(
bn, γ

)
=

(
logn

)1+γ

nbd+2n

+ b
2q
n ,

Pn

(
γ
)
=
[
w
(
hn, γ

)]2 +w
(
hn, γ

)
w
(
h̃n, γ

)
,

B
(μ)
ã,q

=

⎧
⎪⎪⎨

⎪⎪⎩

(−1)q
q!
(
1 − ãq

)
d∑

j=1

β
q

j

∂qf

∂x
q

j

(θ) if ãq < 1,

0 otherwise,

Σ(μ)
ã

=
f(θ)
1 + ãd

∫

Rd

K2(z)dz.

(2.4)

Theorem 2.7 (Weak convergence rate of μ̃n). Let μ̃n be defined by (1.9), and assume that (A1)–
(A6) hold.

(1) If there exists c̃ ≥ 0 such that limn→∞nh̃
d+2q
n = c̃ and if there exists γ > 0 such that

limn→∞nh̃d
nPn(γ) = 0, then

√
nh̃d

n

(
μ̃n − μ

) D−→ N
(
−
√
c̃B

(μ)
ã,q

,Σ(μ)
ã

)
. (2.5)
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(2) If limn→∞nh̃
d+2q
n = ∞ and if there exists γ > 0 such that limn→∞h̃

−2q
n Pn(γ) = 0, then

h̃
−q
n

(
μ̃n − μ

) P−→ B
(μ)
ã,q

. (2.6)

Remark 2.8. If limn→∞nh̃
d+2q
n = c̃ /= or if limn→∞nh̃

d+2q
n = ∞, then ãq < 1, so that B(μ)

ã,q
is usually

nonzero.

Remark 2.9. Following the proof of Theorem 2.7, it can be shown that the results of
Theorem 2.7 also hold when μ̃n is replaced by μ̃∗

n and ã by zero.

Let us consider the case when (hn) = (h̃n), that is, the case when the same bandwidth
is used to define θn and μ̃n (or θ∗

n and μ̃∗
n). If K is a two-order kernel (i.e., if q = 2), then the

condition limn→∞nh̃
d+2q
n = c̃ ≥ 0 implies that limn→∞nh̃d

nPn(γ) = ∞ for all γ > 0, so that the
condition required in Part 1 of Theorem 2.7 is not satisfied: the limit of (μ̃n−μ) (or of (μ̃∗

n−μ))
suitably normalized is then necessary degenerated. This is the first main drawback of using
the same bandwidth to estimate the location and the size of the mode: to construct confidence
intervals for μ, the use of higher-order kernels is unavoidable.

The estimation of the size of the mode is of course not independent of the estimation
of the location, since the estimator μ̃n is constructed with the help of the estimator θn. To
get a good estimation of the size of the mode, it seems obvious that θn should be computed
with a bandwidth (hn) leading to its optimal convergence rate (or, at least, to a convergence
rate close to the optimal one). The main information given by Theorem 2.7 is that, for μ̃n to
converge at the optimal rate, the use of a second bandwidth (h̃n) is then necessary.

Now, set

Ba,ã,q =

⎛

⎝
B
(θ)
a,q

B
(μ)
ã,q

⎞

⎠, Σa,ã =

⎛

⎝
Σ(θ)
a 0

0 Σ(μ)
ã

⎞

⎠, A =

⎛

⎝−[D2f(θ)
]−1 0

0 1

⎞

⎠, (2.7)

and, for any c, c̃ ≥ 0, D(c, c̃) =
(√

cId 0
0

√
c̃

)
where Id is the d × d identity matrix. The following

corollary gives a central limit theorem for the couple (θn, μ̃n).

Corollary 2.10 (Joint weak convergence rate of θn and μ̃n). Let θn and μ̃n be defined by (1.6) and
(1.9), respectively, and let the assumptions of the first parts of Theorems 2.5 and 2.7 hold. Then,

⎛

⎜
⎝

√
nhd+2

n (θn − θ)
√
nh̃d

n

(
μ̃n − μ

)

⎞

⎟
⎠

D−→ N(D(c, c̃)ABa,ã,q, AΣa,ãA
)
. (2.8)

Remark 2.11. Following the proof of Corollary 2.10, it can be shown that the result of
Corollary 2.10 also holds when θn is replaced by θ∗

n, μ̃n by μ̃∗
n, and a and ã by zero.

Let us enlighten that, in view of Corollary 2.10, in the case when the couple (θn, μ̃n)
satisfies a central limit theorem, the estimators θn and μ̃n are asymptotically independent,
although, in its definition, the estimator of the size of the mode is heavily connected to that
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of the location of the mode. This property is not quite surprising since, as pointed out by
Vieu [11], the location of the mode gives information on the shape of the density derivative,
whereas the size of the mode gives information on the shape of the density itself. This
constatation must be related to the fact that the weak (and strong) convergence rate of θn
is given by that of the gradient of fn, whereas the weak (and strong) convergence rate of μ̃n

is given by that of f̃n itself; the variance of the density estimators converging to zero faster
than that of the estimators of the density derivatives, the asymptotic independence of θn and
μ̃n is completely explained.

Let us finally say one word on our assumptions on the bandwidths. In the framework
of nonrecursive estimation, there is no need to assume that (hn) and (h̃n) are regularly varying
sequences. In the case of semirecursive estimation, this assumption cannot obviously be
omitted, since the exponents a and ã stand in the expressions of the asymptotic bias Ba,ã,q

and variance Σa,ã. This might be seen as a slight inconvenient of semirecursive estimation;
however, as it is enlightened in the following section, it turns out to be an advantage,
since the asymptotic variances of the semirecursive estimators are smaller than those of the
nonrecursive estimators.

2.3. Construction of Confidence Regions and Simulations Studies

The application of Theorems 2.5, 2.7, and Corollary 2.10 allows the construction of confidence
regions of the location and of the size of the mode, as well as confidence ellipsoids of the
couple (θ, μ). Hall [29] shows that, in order to construct confidence regions, avoiding bias
estimation by a slight undersmoothing is more efficient than explicit bias correction. In the
framework of undersmoothing, the asymptotic bias of the estimator is negligible in front of
its asymptotic variance; according to the estimation by confidence regions point of view, the
parameter to minimize is thus the asymptotic variance. Now, set

Σ∗ =

(
[1 + a(d + 2)]Id 0

0 [1 + ãd]

)

Σa,ã, (2.9)

and note that, in view of Corollary 2.10 and of Remark 2.11, AΣa,ãA (resp. AΣ∗A) is
the asymptotic covariance matrix of the semirecursive estimators (θn, μ̃n) (resp., of the
nonrecursive estimators (θ∗

n, μ̃
∗
n)). In order to construct confidence regions for the location

and/or size of the mode, it is thus much preferable to use semirecursive estimators
rather than nonrecursive estimators. Simulations studies confirm this theoretical conclusion,
whatever the parameter (θ, μ or (θ, μ)) for which confidence regions are constructed is.
For sake of succinctness, we do not give all these simulations results here but focus on the
construction of confidence ellipsoid for (θ, μ); the aim of this example is of course to enlighten
the advantage of using semirecursive estimators rather than nonrecursive estimators but
also to show how this confidence region gives information on the shape of the density and
consequently allows measuring the pertinence of the parameter location of the mode.

To construct confidence regions for (θ, μ), we consider the case d = 1. The following
corollary is a straightforward consequence of Corollary 2.10.
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Corollary 2.12. Let θn and μ̃n be defined by (1.6) and (1.9), respectively, and let the assumptions of
the first parts of Theorems 2.5 and 2.7 hold. We then have

(1 + 3a)nh3
n

[
f ′′(θ)

]2

f(θ)
∫
R
K′2(x)dx

(θn − θ)2 +
(1 + ã)nh̃n

f(θ)
∫
R
K2(x)dx

(
μ̃n − μ

)2 D−→ χ2(2). (2.10)

Moreover, (2.10) still holds when the parameters f(θ) and f ′′(θ) are replaced by consistent estimators.

Remark 2.13. In view of Remark 2.11, in the case when the nonrecursive estimators θ∗
n and μ̃∗

n

are used, (2.10) becomes

nh3
n

[
f ′′(θ)

]2

f(θ)
∫
R
K′2(x)dx

(θ∗
n − θ)2 +

nh̃n

f(θ)
∫
R
K2(x)dx

(
μ̃∗
n − μ

)2 D−→ χ2(2) (2.11)

(and, again, this convergence still holds when the parameters f(θ) and f ′′(θ) are replaced by
consistent estimators).

Let f̌ ′′
n (resp., f̌∗

n
′′) be the recursive estimator (resp., the nonrecursive Rosenblatt’s

estimator) of f ′′ computed with the help of a bandwidth ȟn, and set

Pn =
(1 + 3a)nh3

n

[
f̌ ′′
n(θn)

]2

f̃n(θn)
∫
R
K′2(x)dx

, Qn =
(1 + ã)nh̃n

f̃n(θn)
∫
R
K2(x)dx

,

P ∗
n =

nh3
n

[
f̌∗
n
′′(θ∗

n)
]2

f̃∗
n(θ∗

n)
∫
R
K′2(x)dx

, Q∗
n =

nh̃n

f̃∗
n(θ∗

n)
∫
R
K2(x)dx

.

(2.12)

Moreover, let cα be such that P(Z ≤ cα) = 1 − α, where Z is χ2(2)-distributed; in view of
Corollary 2.12 and Remark 2.13, the sets

Eα =

{ (
θ, μ

)

Pn(θn − θ)2 +Qn

(
μ̃n − μ

)2 ≤ cα

}

E∗
α =

{ (
θ, μ

)

P ∗
n(θ∗

n − θ)2 +Q∗
n

(
μ̃∗
n − μ

)2 ≤ cα

} (2.13)

are confidence ellipsoids for (θ, μ) with asymptotic coverage level 1 − α. Let us dwell on the
fact that both confidence regions have the same asymptotic level, but the lengths of the axes of
the first one (constructed with the help of the semirecursive estimators θn and μ̃n) are smaller
than those of the second one (constructed with the help of the nonrecursive estimators θ∗n and
μ̃∗
n).

We now present simulations results. In order to see the relationship between the shape
of the confidence ellipsoids and that of the density, the density f we consider is the density of
theN(0, σ2)-distribution, the parameter σ taking the values 0.3, 0.4, 0.5, 0.7, 0.75, 1, 1.5, 2, and



10 Journal of Probability and Statistics

2.5. We use the sample size n = 100 and the coverage level 1−α = 95% (and thus cα = 5.99). In
each case, the number of simulations isN = 5000. The kernel we use is the standard Gaussian
density; the bandwidths are

hn =
n−1/7
(
logn

) , h̃n =
n−1/5
(
logn

) , ȟn = n−1/9. (2.14)

Table 1 gives, for each value of σ, the empirical values of θn, θ∗
n, μn, μ∗

n (with respect to the
5000 simulations) and

b: the empirical length of the θ-axis of the confidence ellipsoid E5%;
b∗: the empirical length of the θ-axis of the confidence ellipsoid E∗

5%;
a: the empirical length of the μ-axis of the confidence ellipsoid E5%;
a∗: the empirical length of the μ-axis of the confidence ellipsoid E∗

5%;
p: the empirical coverage level of the confidence ellipsoid E5%;
p∗: the empirical coverage level of the confidence ellipsoid E∗

5%.
Confirming our theoretical results, we see that the empirical coverage levels of both

confidence ellipsoids E∗
5% and E5% are similar but that the empirical areas of the ellipsoids E5%

(constructed with the help of the semirecursive estimators) are always smaller than those of
the ellipsoids E∗

5% (constructed with the help of the nonrecursive estimators).
Let us now discuss the interest of the estimation of the size of the mode and that of

the joint estimation of the location and size of the mode. Both estimations give information
on the shape of the probability density and, consequently, allow measuring the pertinence of
the parameter location of the mode. Of course, the parameter θ is significant only in the case
when the high of the peak is large enough; sincewe consider here the example of theN(0, σ2)-
distribution, this corresponds to the case when σ is small enough. Estimating only the size of
the mode gives a first idea of the shape of the density around the location of the mode (for
instance, when the size is estimated around 0.16, it is clear that the density is very flat). Now,
the shape of the confidence ellipsoids allows getting a more precise idea. As a matter of fact,
for small values of σ, the length of the μ-axis is larger than that of the θ-axis; as σ increases,
the length of the μ-axis decreases, and the one of the θ-axis increases (for σ = 2.5, the length of
the θ-axis is larger than 20 times the one of the μ-axis). Let us underline that these variations
of the lengths of the axes are not due to bad estimations results; Table 2 gives the values of
the lengths b (resp., b∗) of the θ-axis, a (resp., a∗) of the μ-axis of the ellipsoids computed
with the semirecursive estimators θn and μ̃n (resp., with the nonrecursive estimators θ∗

n and
μ̃∗
n) in the case when the true values of the parameters f(θ) and f ′′(θ) are used (that is, by

straightforwardly applying (2.10) and (2.11)).

2.4. Strong Convergence Rate

To establish the strong convergence rate of θn and μ̃n, we need the following additional
assumption.

(A7)(i) h is differentiable, and its derivative varies regularly with exponent (−a − 1).

(ii) h̃ is differentiable, and its derivative varies regularly with exponent (−ã − 1).

The following two theorems give the almost sure convergence rate of θn and of μ̃n,
respectively. Before stating them, let us enlighten that Proposition 2.3 in Mokkadem and
Pelletier [12] ensures that the matrix G (and thus the matrix Σ(θ)

a ) is nonsingular.
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Table 1

σ 0.3 0.4 0.5 0.7 0.75 1 1.5 2 2.5
θn −0.002 0.004 0.001 0.003 0.002 0.014 −0.005 −0.009 0.014
θ∗
n 0.003 0.005 0.001 0.005 −0.008 0.016 0.003 −0.020 −0.046

b 1.154 1.346 1.805 2.898 3.160 5.218 10.094 17.866 17.405
b∗ 1.166 1.458 1.968 3.300 3.582 5.925 12.943 21.946 23.715
μn 1.335 0.989 0.782 0.564 0.522 0.401 0.263 0.196 0.155
μ∗
n 1.312 0.979 0.783 0.562 0.512 0.388 0.269 0.193 0.163

a 0.444 0.399 0.365 0.322 0.315 0.283 0.247 0.224 0.210
a∗ 0.514 0.459 0.420 0.369 0.363 0.327 0.287 0.261 0.246
p 98.7% 97.8% 98.2% 98.4% 97.7% 97.8% 97.5% 97.2% 98.4%
p∗ 98.6% 98.1% 98.4% 98.2% 96.8% 96.6% 96.9% 97.7% 98.2%

Table 2

σ 0.3 0.4 0.5 0.7 0.75 1 1.5 2 2.5
b 0.159 0.327 0.571 1.357 1.572 3.227 8.895 18.260 31.899
b∗ 0.190 0.390 0.682 1.622 1.879 3.858 10.631 21.825 38.127
μ 1.333 0.998 0.798 0.570 0.532 0.399 0.266 0.199 0.159
a 0.465 0.403 0.360 0.303 0.294 0.255 0.208 0.180 0.161
a∗ 0.509 0.441 0.395 0.332 0.322 0.279 0.228 0.197 0.176

Theorem 2.14 (Strong convergence rate of θn). Let θn be defined by (1.6), and assume that (A1),
(A2), (A3)(i), (A4), (A5), (A6)(i), and (A7)(i) hold.

(1) If there exists c ≥ 0 such that limn→∞nh
d+2+2q
n /[2 log logn] = c, then, with probability

one, the sequence ((
√
nhd+2

n /
√
2 log logn)(θn − θ)) is relatively compact and its limit set

is the ellipsoid

E =
{
ν ∈ R

d such that
(
−D2f(θ)ν − √

cB
(θ)
a,q

)T[
Σ(θ)
a

]−1(−D2f(θ)ν − √
cB

(θ)
a,q

)
≤ 1
}
. (2.15)

(2) If limn→∞nh
d+2+2q
n /[2 log logn] = ∞, then, with probability one, limn→∞h

−q
n (θn − θ) =

−[D2f(θ)]−1B(θ)
a,q .

Theorem 2.15 (Strong convergence rate of μ̃n). Let μ̃n be defined by (1.9), and assume that (A1)–
(A7) hold.

(1) If there exists c̃ ≥ 0 such that limn→∞nh̃
d+2q
n /[2 log logn] = c̃ and if there exists γ > 0

such that limn→∞nh̃d
nPn(γ)/ log logn = 0, then, with probability one, the sequence

⎛

⎜
⎝

√
nh̃d

n
√
2 log logn

(
μ̃n − μ

)

⎞

⎟
⎠ (2.16)

is relatively compact, and its limit set is the interval [
√
c̃B

(μ)
ã,q

−
√
Σ(μ)
ã

;
√
c̃B

(μ)
ã,q

+
√
Σ(μ)
ã

].
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(2) If limn→∞nh̃
d+2q
n / log logn = ∞ and if there exists γ > 0 such that limn→∞h̃

−2q
n Pn(γ) =

0, then, with probability one, limn→∞h̃
−q
n (μ̃n − μ) = B

(μ)
ã,q

.

To establish a law of the iterated logarithm for the couple (θn, μ̃n), we need the
following additional assumption.

(A8) There exists n0 ∈ N such that

n ≥ m ≥ n0 =⇒ max

{
mh

−(d+2)
m

nh
−(d+2)
n

;
mh̃−d

m

nh̃−d
n

}

=
min

{
mh

−(d+2)
m ;mh̃−d

m

}

min
{
nh

−(d+2)
n ;nh̃−d

n

} . (2.17)

Remark 2.16. Assumption (A8) holds when a/= ã. In the case when a = ã, set Lθ(n) = nahn

and Lμ(n) = nah̃n; (A8) is then satisfied when Lθ(n) = (Lμ(n))
d/(d+2) for n large enough.

Corollary 2.17 (Joint strong convergence rate of θn and μ̃n). Let θn and μ̃n be defined by (1.6)
and (1.9), respectively; let the assumptions of Parts 1 of Theorems 2.14 and 2.15 hold, as well as (A8).
Then, with probability one, the sequence

1
√
2 log logn

⎛

⎜
⎝

√
nhd+2

n (θn − θ)
√
nh̃d

n

(
μ̃n − μ

)

⎞

⎟
⎠ (2.18)

is relatively compact, and its limit set is the ellipsoid

E =
{
ν ∈ R

d+1 such that
(
A−1ν −D(c, c̃)Ba,ã,q

)T
Σ−1
a,ã

(
A−1ν −D(c, c̃)Ba,ã,q

)
≤ 1
}
. (2.19)

Laws of the iterated logarithm for Parzen’s nonrecursive kernel mode estimator in the
multivariate framework were established by Mokkadem and Pelletier [12]. The technics of
demonstration used in the framework of nonrecursive estimators are totally different from
those employed to prove Theorem 2.14. This is due to the following fundamental difference
between the nonrecursive estimator θ∗

n and the semirecursive estimator θn: the study of
the asymptotic behaviour of θ∗

n comes down to the one of a triangular sum of independent
variables, whereas the study of the asymptotic behaviour of θn reduces to the one of a sum of
independent variables. Of course, this difference is not quite important for the study of the
weak convergence rate. But, for the study of the strong convergence rate, it makes the case
of the semirecursive estimation much easier than the case of the nonrecursive estimation. In
particular, on the opposite to the weak convergence rate, the joint strong convergence rate of
the nonrecursive estimators θ∗

n and μ̃∗
n cannot be obtained by following the lines of the proof

of Theorem 2.14 and remains an open question.
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3. Proofs

Let us first note that an important consequence of (A3)(i) is that

if βa < 1, then lim
n→∞

1

nh
β
n

n∑

i=1

h
β

i =
1

1 − aβ
. (3.1)

Moreover, for all ε > 0,

1
n

n∑

i=1

h
q

i = O
(
h
q
n + nε−1

)
. (3.2)

As a matter of fact: (i) if aq < 1, (3.2) follows easily from (3.1); (ii) if aq > 1, since
∑

i h
q

i is
summable, (3.2) holds; (iii) if aq = 1, then h

q
n = O(nε−1), so that

∑n
i=1 h

q

i = O(nε), and thus
(3.2) follows.

Of course, in view of (A3)(ii), (3.1) and (3.2) also hold when (hn) and a are replaced
by (h̃n) and ã, respectively.

Our proofs are now organized as follows. Section 3.1 is devoted to the proof of
Proposition 2.3. In Section 3.2, we state some preliminary lemmas, which are crucial in the
proof of the convergence rates of θn and μ̃n and which are proved in Section 3.6. Section 3.3 is
reserved to the proof of Theorems 2.5 and 2.14, Section 3.4 to that of Theorems 2.7 and 2.15,
and Section 3.5 to that of Corollaries 2.10 and 2.17.

3.1. Consistency of θn and μ̃n: Proof of Proposition 2.3

Since θn is the mode of fn and θ the mode of f , we have

0 ≤ f(θ) − f(θn) =
[
f(θ) − fn(θn)

]
+
[
fn(θn) − f(θn)

] ≤ [f(θ) − fn(θ)
]
+
[
fn(θn) − f(θn)

]

≤ ∣∣f(θ) − fn(θ)
∣∣ +
∣∣fn(θn) − f(θn)

∣∣ ≤ 2
∥∥fn − f

∥∥
∞.

(3.3)

The application of Theorem 5 in Mokkadem et al. [27] with |α| = 0 and vn = logn ensures
that, for any δ > 0, there exists c(δ) > 0 such that P[(logn)‖fn − E(fn)‖∞ ≥ δ] ≤
exp(−c(δ)∑n

i=1 h
d
i /(logn)

2). In view of (3.1), since ad < 1, we can write

n2 exp

(

−c(δ)
∑n

i=1 h
d
i

(
logn

)2

)

= n2 exp

(

−c(δ) nhd
n

(
logn

)2

∑n
i=1 h

d
i

nhd
n

)

= o(1). (3.4)

Borell-Cantelli’s Lemma then ensures that limn→∞‖fn−E(fn)‖∞ = 0 a.s. Since limn→∞‖E(fn)−
f‖∞ = 0, it follows from (3.3) that limn→∞f(θn) = f(θ) a.s. Since f is continuous, since
lim‖z‖→∞f(z) = 0, and since θ is the unique mode of f , we deduce that limn→∞θn = θ a.s.
Now, we have

∣∣μ̃n − μ
∣∣ ≤

∣∣∣f̃n(θn) − f(θn)
∣∣∣ +
∣∣f(θn) − f(θ)

∣∣ ≤
∥∥∥f̃n − f

∥∥∥
∞
+ 2
∥∥fn − f

∥∥
∞, (3.5)
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where the last inequality follows from (3.3). Following the proof of the strong uniform
convergence of fn, we show that limn→∞‖f̃n − f‖∞ = 0 a.s. It follows that limn→∞μ̃n = μ
a.s., which concludes the proof of Proposition 2.3.

3.2. Some Preliminary Lemmas

The aim of this section is to state some properties of the density estimators and of their
derivatives, which are crucial in the proof of Theorems 2.5–2.15 and of Corollaries 2.10 and
2.17.

3.2.1. Strong Uniform Convergence Rate of the Derivatives of the Density Estimators

For any d-uplet [α] = (α1, . . . , αd) ∈ N
d, set |α| = α1 + · · · + αd and, for any function g, let

∂[α]g(x) = ∂|α|g/(∂xα1
1 . . . ∂xαd

d )(x) denote the [α]-th partial derivative of g (if |α| = 0, then
∂[α]g = g). In order to prove Theorems 2.5–2.15 and Corollaries 2.10 and 2.17, we need to
know the behaviour of ∂[α]fn for |α| ∈ {0, 1, 2} and that of ∂[α]f̃n for |α| ∈ {0, 1}. For the sake
of conciseness, we state the preliminary lemmas 3.1 and 3.2 for ∂[α]gn where either gn = fn
and |α| ∈ {0, 1, 2} or gn = f̃n and |α| ∈ {0, 1}. Moreover, we set (bn) = (hn) if gn = fn, and
(bn) = (h̃n) if gn = f̃n.

Lemma 3.1. Let (A1), (A2), (A3)(i), (A4), (A5), and (A6)(i) hold. Moreover, if gn = f̃n, then let
(A3)(ii) and (A6)(ii) hold. We have

lim
n→∞

n
∑n

i=1 b
q

i

[
E

[
∂[α]gn(x)

]
− ∂[α]f(x)

]
=

(−1)q
q!

∂[α]

⎛

⎝
d∑

j=1

β
q

j

∂qf

∂x
q

j

⎞

⎠(x), (3.6)

where βqj is defined in (2.1). Moreover, if we setMq = supx∈Rd‖Dq∂[α]f(x)‖, then

lim
n→∞

n
∑n

i=1 b
q

i

sup
x∈Rd

∣∣∣E
(
∂[α]gn(x)

)
− ∂[α]f(x)

∣∣∣ ≤ Mq

q!

∫

Rd

‖z‖q|K(z)|dz. (3.7)

Lemma 3.2. Let U be a compact set of R
d, and assume that (A1), (A2), (A3)(i), (A4), (A5), and

(A6)(i) hold. Moreover, if gn = f̃n, then let (A3)(ii) and (A6)(ii) hold. Then, for all γ > 0, we have

sup
x∈U

∣∣∣∂[α]gn(x) − E

(
∂[α]gn(x)

)∣∣∣ = O

⎛

⎝

√√√
√
(
logn

)1+γ

∑n
i=1 b

d+2|α|
i

⎞

⎠ a.s. (3.8)

Lemma 3.1 is proved in Mokkadem et al. [27], Lemma 3.2 in Section 3.6.
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3.2.2. Convergence Rate of (∇fn(θ) − E(∇fn(θ)), f̃n(θ) − E(f̃n(θ)))

Lemma 3.3.

(1) Under Assumptions (A1), (A2), (A3)(i), (A4), (A5), and (A6)(i), we have

√
nhd+2

n

[∇fn(θ) − E
(∇fn(θ)

)] D−→ N
(
0,Σ(θ)

a

)
. (3.9)

(2) Under Assumptions (A1)–(A6), we have

Wn =

⎛

⎜
⎝

√
nhd+2

n

[∇fn(θ) − E
(∇fn(θ)

)]

√
nh̃d

n

[
f̃n(θ) − E

(
f̃n(θ)

)]

⎞

⎟
⎠

D−→ N(0,Σa,ã). (3.10)

Lemma 3.4.

(1) Under Assumptions (A1), (A2), (A3)(i), (A4), (A5), (A6)(i), and (A7)(i), with probability

one, the sequence ((
√
nhd+2

n [∇fn(θ) − E(∇fn(θ))])/
√
2 log logn) is relatively compact,

and its limit set is {ν ∈ R
d such that νT [Σ(θ)

a ]
−1
ν ≤ 1}.

(2) Under Assumptions (A1)–(A7), with probability one, the sequence ((
√
nh̃d

n[f̃n(θ) −
E(f̃n(θ))])/

√
2 log logn) is relatively compact, and its limit set is the interval

[−
√
Σ(μ)
ã

;
√
Σ(μ)
ã

].

(3) Under Assumptions (A1)–(A8), with probability one, the sequence

1
√
2 log logn

⎛

⎜
⎝

√
nhd+2

n

[∇fn(θ) − E
(∇fn(θ)

)]

√
nh̃d

n

[
f̃n(θ) − E

(
f̃n(θ)

)]

⎞

⎟
⎠ (3.11)

is relatively compact, and its limit set is {ν ∈ R
d+1 such that νTΣ−1

a,ã
ν ≤ 1}.

3.3. Convergence Rate of θn: Proof of Theorems 2.5 and 2.14

In order to prove Theorems 2.5 and 2.14, we first show that the weak and strong asymptotic
behaviours of θn − θ are given by those of −[D2f(θ)]−1∇fn(θ) (see Section 3.3.1) and then
deduce the convergence rates of θn − θ from those of ∇fn(θ) (see Section 3.3.2).

3.3.1. Relationship between (θn − θ) and ∇fn(θ)

By definition of θn, we have ∇fn(θn) = 0, so that

∇fn(θn) − ∇fn(θ) = −∇fn(θ). (3.12)
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For each i ∈ {1, . . . , d}, a Taylor expansion applied to the real valued application ∂fn/∂xi

implies the existence of εn(i) = (ε(1)n (i), . . . , ε(d)n (i))t such that

∂fn
∂xi

(θn) −
∂fn
∂xi

(θ) =
d∑

j=1

∂2fn
∂xi∂xj

(εn(i))
(
θ
(j)
n − θ(j)

)
,

∣∣
∣ε

(j)
n (i) − θ(j)

∣∣
∣ ≤

∣∣
∣θ

(j)
n (i) − θ(j)

∣∣
∣ ∀j ∈ {1, . . . , d}.

(3.13)

Define the d × d matrix Hn = (H(i,j)
n )1≤i,j≤d by setting H

(i,j)
n = (∂2fn/∂xi∂xj)(εn(i)); (3.12) can

then be rewritten as

Hn(θn − θ) = −∇fn(θ). (3.14)

Now, letU be a compact set of R
d containing θ. The combination of Lemmas 3.1 and 3.2 with

|α| = 2, gn = fn, and bn = hn ensures that, for any γ > 0 and any ε ∈]0, 1[,

sup
x∈U

∣∣∣∂[α]fn(x) − ∂[α]f(x)
∣∣∣ = O

⎛

⎜
⎝

√√√
√
(
logn

)1+γ

∑n
i=1 h

d+4
i

+
∑n

i=1 h
q

i

n

⎞

⎟
⎠ a.s.

= O

⎛

⎜
⎝

√√√
√
(
logn

)1+γ

nhd+4
n

+ h
q
n + nε−1

⎞

⎟
⎠ = o(1) a.s.

(3.15)

Since D2f is continuous in a neighbourhood of θ and since limn→∞θn = θ a.s., (3.15)
ensures that

lim
n→∞

Hn = D2f(θ) a.s. (3.16)

In view of (3.14), we can thus state the following lemma.

Lemma 3.5. Under Assumptions (A1), (A2), (A3)(i), (A4), (A5), and (A6)(i), the weak and strong
asymptotic behaviour of (θn − θ)T is given by that of −[D2f(θ)]−1∇fn(θ).

3.3.2. Proof of Theorems 2.5 and 2.14

Theorem 2.5 (resp., Theorem 2.14) straightforwardly follows from the application of
Lemma 3.5 of the first part of Lemma 3.3 (resp., of the first part of Lemma 3.4) and of the
following lemma.

Lemma 3.6. Let (A1), (A2), (A3)(i), (A4), (A5), and (A6)(i) hold.

(1) If limn→∞nh
d+2+2q
n ∈]0,∞], then limn→∞h

−q
n E(∇fn(θ)) = B

(θ)
a,q .

(2) If limn→∞nh
d+2+2q
n = 0, then limn→∞

√
nhd+2

n E(∇fn(θ)) = 0.
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Let us now prove Lemma 3.6. The application of Lemma 3.1 (with gn = fn and |α| = 1)
ensures that

lim
n→∞

n
∑n

i=1 h
q

i

E
(∇fn(θ)

)
=

(−1)q
q!

∇
⎛

⎝
d∑

j=1

β
q

j

∂qf

∂x
q

j

(θ)

⎞

⎠. (3.17)

Let us first consider the case when aq < 1. By application of (3.1), we have

lim
n→∞

h
−q
n E

(∇fn(θ)
)
= B

(θ)
a,q . (3.18)

(i) If limn→∞nh
d+2+2q
n ∈]0,∞], then 1 − a(d + 2 + 2q) ≥ 0, and thus aq < 1/2; Part 1 of

Lemma 3.6 thus follows.

(ii) If limn→∞nh
d+2+2q
n = 0, then limn→∞

√
nhd+2

n h
q
n = 0, and Part 2 of Lemma 3.6 also

follows.

It remains to prove Part 2 of Lemma 3.6 in the case when aq ≥ 1. The application of (3.2) then
ensures that, for all ε ∈]0, 1/2[,

√
nhd+2

n

∑n
i=1 h

q

i

n
= O

(√
nhd+2

n

[
h
q
n + nε−1

])
= o(1). (3.19)

In view of (3.17), Part 2 of Lemma 3.6 then follows.

3.4. Convergence Rate of μ̃n: Proof of Theorems 2.7 and 2.15

In order to prove Theorems 2.7 and 2.15, we show that the weak and strong convergence rates
of μ̃n − μ are given by those of f̃n(θ) − f(θ). More precisely, set

Rn =
(
μ̃n − μ

) −
(
f̃n(θ) − f(θ)

)
, (3.20)

and assume that the following two lemmas hold.

Lemma 3.7. Let (A1)–(A6) hold.

(1) If limn→∞nh̃
d+2q
n ∈]0,∞], then limn→∞h̃

−q
n [E(f̃n(θ)) − f(θ)] = B

(μ)
ã,q

.

(2) If limn→∞nh̃
d+2q
n = 0, then limn→∞

√
nh̃d

n[E(f̃n(θ)) − f(θ)] = 0.

Lemma 3.8. Let (A1)–(A6) hold. For all γ > 0, R2
n = O(Pn(γ)) a.s.

In order to prove Theorem 2.7, we first note that the application of the second part of
Lemma 3.3 yields

√
nh̃d

n

[
f̃n(θ) − E

(
f̃n(θ)

)] D−→ N
(
0,Σ(μ)

ã

)
. (3.21)
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In view of Lemma 3.7, it follows that if limn→∞nh̃
d+2q
n = c̃ ≥ 0, then

√
nh̃d

n

[
f̃n(θ) − f(θ)

] D−→ N
(√

c̃B
(μ)
ã,q

,Σ(μ)
ã

)
, (3.22)

and if limn→∞nh̃
d+2q
n = ∞, then

h̃
−q
n

[
f̃n(θ) − f(θ)

]
P−→ B

(μ)
ã,q

. (3.23)

Part 1 (resp., Part 2) of Theorem 2.7 straightforwardly follows from the combination of (3.22)
(resp., of (3.23)) and of Lemma 3.8.

The proof of Theorem 2.15 follows that of Theorem 2.7 (except that the second part of
Lemma 3.4 stands instead of (3.21)); this proof is thus omitted.

It remains to prove Lemmas 3.7 and 3.8. The proof of Lemma 3.7 follows that of
Lemma 3.6 and is omitted. We now prove Lemma 3.8. We first note that Rn = f̃n(θn) − f̃n(θ);
a Taylor’s expansion implies the existence of ζn such that ‖ζn − θn‖ ≤ ‖θn − θ‖ and

Rn = (θn − θ)T∇f̃n(ζn)

= (θn − θ)T
[
∇f̃n(ζn) − ∇f(ζn) +∇f(ζn) − ∇f(θ)

]
.

(3.24)

Let V be a compact set that contains θ; for n large enough, we get

|Rn| = O

(

‖θn − θ‖
[

sup
x∈V

∥∥∥∇f̃n(x) − ∇f(x)
∥∥∥ + ‖ζn − θ‖

])

= O

(

‖θn − θ‖sup
x∈V

∥∥∥∇f̃n(x) − ∇f(x)
∥∥∥ + ‖θn − θ‖2

)

.

(3.25)

To get an upper bound of |Rn|, we thus need to establish upper bounds of ‖θn − θ‖ and of
supx∈V‖∇f̃n(x) − ∇f(x)‖.

(i) Let us recall that the a.s. convergence rate of (θn − θ) is given by that of
[D2f(θ)]−1∇fn(θ) (see Lemma 3.5). Theorem 2.14 can be applied to obtain the exact
a.s. convergence rate of θn − θ. However, to avoid assuming (A7)(i), we apply here
Lemmas 3.1 and 3.2 (with |α| = 1 and (gn, bn) = (fn, hn)) and get the following
upper bound of the a.s. convergence rate of ∇fn(θ) and thus of θn − θ: for any γ > 0
and ε ∈]0, (1 + a(d + 2))/2[,

‖θn − θ‖2 = O

⎛

⎝
(
logn

)1+γ

∑n
i=1 h

d+2
i

+

[∑n
i=1 h

q

i

n

]2⎞

⎠ = O

((
logn

)1+γ

nhd+2
n

+
[
h
q
n + nε−1

]2
)

a.s.

= O
(
w
(
hn, γ

))
a.s.

(3.26)
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(ii) Noting that

sup
x∈V

∥
∥
∥∇f̃n(x) − ∇f(x)

∥
∥
∥ ≤ sup

x∈V

∥
∥
∥∇f̃n(x) − E

(
∇f̃n(x)

)∥∥
∥ + sup

x∈V

∥
∥
∥E

(
∇f̃n(x)

)
− ∇f(x)

∥
∥
∥, (3.27)

the application of Lemmas 3.1 and 3.2 with |α| = 1, (gn, bn) = (f̃n, h̃n) ensures that,
for any γ > 0 and ε ∈]0, (1 + ã(d + 2))/2[,

sup
x∈V

∥
∥
∥∇f̃n(x) − ∇f(x)

∥
∥
∥
2
= O

⎛

⎝
(
logn

)1+γ

nh̃d+2
n

+

[∑n
i=1 h̃

q

i

n

]2⎞

⎠ a.s.

= O

((
logn

)1+γ

nh̃d+2
n

+
[
h̃
q
n + nε−1

]2
)

a.s.

= O
(
w
(
h̃n, γ

))
a.s.

(3.28)

It follows from (3.25), (3.26), and (3.28) that

|Rn|2 = O
(
w
(
hn, γ

)
w
(
h̃n, γ

)
+
[
w
(
hn, γ

)]2) a.s.

= O
(
Pn

(
γ
))

a.s.,
(3.29)

which concludes the proof of Lemma 3.8.

3.5. Joint Convergence Rate of θn and μ̃n: Proof of Corollaries 2.10 and 2.17

In view of (3.14) and (3.20), we have

(
Hn 0

0 1

)(
θn − θ

μ̃n − μ

)

=

( −∇fn(θ)

f̃n(θ) − f(θ)

)

+

(
0

Rn

)

, (3.30)

and, in view of (3.16), the weak and strong asymptotic behaviour of
(

θn−θ
μ̃n−μ

)
is given by that

of

⎛

⎝
[
D2f(θ)

]−1 0

0 1

⎞

⎠
[( −∇fn(θ)

f̃n(θ) − f(θ)

)

+

(
0

Rn

)]

=

⎛

⎝

[−D2f(θ)
]−1[∇fn(θ) − E

(∇fn(θ)
)]

f̃n(θ) − E

(
f̃n(θ)

)

⎞

⎠ +

⎛

⎝

[−D2f(θ)
]−1

E
(∇fn(θ)

)

E

(
f̃n(θ)

)
− f(θ) + Rn

⎞

⎠.

(3.31)
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Under the assumptions of Corollary 2.10, the application of Part 1 of Lemma 3.6, that of Part
1 of Lemma 3.7, and that of Lemma 3.8 ensure that

lim
n→∞

⎛

⎜
⎝

√
nhd+2

n

[−D2f(θ)
]−1

E
(∇fn(θ)

)

√
nh̃d

n

[
E

(
f̃n(θ)

)
− f(θ) + Rn

]

⎞

⎟
⎠ = D(c, c̃)ABa,ã,q. (3.32)

Corollary 2.10 then follows from the application of Part 2 of Lemma 3.3. The proof of
Corollary 2.17 follows that of Corollary 2.10 (except that Part 3 of Lemma 3.4 is applied
instead of Part 2 of Lemma 3.3) and is omitted.

3.6. Proof of Lemmas 3.2–3.4

3.6.1. Proof of Lemma 3.2

Set vn = [
∑n

i=1 b
d+2|α|
i ]1/2[(logn)1+γ]−1/2. Applying Proposition 3 in Mokkadem et al. [27], it

holds that for any δ > 0, there exists c(δ) > 0 such that

P

[

sup
x∈U

vn

∣∣∣∂[α]gn(x) − E

(
∂[α]gn(x)

)∣∣∣ ≥ δ

]

≤ exp

(

−c(δ)
∑n

i=1 b
d+2|α|
i

2v2
n

)

. (3.33)

Since limn→∞
∑n

i=1 b
d+2|α|
i /(v2

n logn) = ∞, we have, for n large enough, c(δ)
∑n

i=1 b
d+2|α|
i /2v2

n ≥
2 logn, and Lemma 3.2 follows from the application of Borel-Cantelli’s Lemma.

3.6.2. Proof of Lemma 3.3

We only prove the second part of Lemma 3.3: the proof of its first part can be easily deduced.
We first establish that

lim
n→∞

E

(
WnW

T
n

)
= Σa,ã (3.34)

and then check that (Wn) satisfies Lyapounov’s condition. Set

Yk,n =
1

√
nh−d−2

n

h−d−1
k

[
∇K

(
θ −Xk

hk

)
− E

(
∇K

(
θ −Xk

hk

))]
,

Zk,n =
1

√
nh̃−d

n

h̃−d
k

[

K

(
θ −Xk

h̃k

)

− E

(

K

(
θ −Xk

h̃k

))]

,

(3.35)

and note that

E

(
WnW

T
n

)
=

n∑

k=1

⎛

⎜
⎝

E

(
Yk,nY

T
k,n

)
E(Yk,nZk,n)

E

(
YT
k,nZk,n

)
E

(
Z2

k,n

)

⎞

⎟
⎠. (3.36)
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Now, for any s, t ∈ {1, . . . , d}, we have

E

[
∂K

∂xs

(
θ −Xk

hk

)
∂K

∂xt

(
θ −Xk

hk

)]
=
∫

Rd

∂K

∂xs

(
θ − y

hk

)
∂K

∂xt

(
θ − y

hk

)
f
(
y
)
dy

= hd
kf(θ)Gs,t + o

(
hd
k

)
,

(3.37)

and since E[(∂K/∂xs)(θ −Xk/hk)] = O(hd
k
), we deduce that

E

([
∇K

(
θ −Xk

hk

)
− E

(
∇K

(
θ −Xk

hk

))][
∇K

(
θ −Xk

hk

)
− E

(
∇K

(
θ −Xk

hk

))]T)

= f(θ)Ghd
k[1 + o(1)],

(3.38)

which implies that limn→∞
∑n

k=1 E(Yk,nY
T
k,n

) = f(θ)[1+a(d+2)]−1G. In the same way, we have

E

⎛

⎝
[

K

(
θ −Xk

h̃k

)

− E

(

K

(
θ −Xk

h̃k

))]2⎞

⎠ = h̃d
kf(θ)

∫

Rd

K2(z)dz[1 + o(1)], (3.39)

and thus limn→∞
∑n

k=1 E(Z2
k,n

) = f(θ)[1 + ãd]−1
∫
Rd K

2(z)dz. Moreover, set h∗
n = min(hn, h̃n);

we have

E

[

∇K

(
θ −Xk

hk

)
K

(
θ −Xk

h̃k

)]

= h∗d
k

∫

Rd

∇K

(
h∗
k

hk
z

)

K

(
h∗
k

h̃k

z

)

f
(
θ − h∗

kz
)
dz. (3.40)

Noting that f(θ − h∗
kz) = f(θ) + h∗

kRk(θ, z)with |Rk(θ, z)| ≤ ‖∇f‖∞‖z‖, we get

E

[

∇K

(
θ −Xk

hk

)
K

(
θ −Xk

h̃k

)]

= h∗d
k

[

f(θ)
∫

Rd

∇K

(
h∗
k

hk
z

)

K

(
h∗
k

h̃k

z

)

dz + h∗
k

∫

Rd

∇K

(
h∗
k

hk
z

)

K

(
h∗
k

h̃k

z

)

Rk(θ, z)dz

]

.

(3.41)

Since the function z 	→ [∇K(z)]K (z is odd (in each coordinate), the first right-handed
integral is zero, and since h∗

k
equals either hk or h̃k, we get

∥∥∥∥∥
E

[

∇K

(
θ −Xk

hk

)
K

(
θ −Xk

h̃k

)]∥∥∥∥∥

≤ h
∗(d+1)
k

∥∥∇f
∥∥
∞

[
‖K‖∞

∫

Rd

‖z‖‖∇K(z)‖dz + ‖∇K‖∞
∫

Rd

‖z‖|K(z)|dz
]
= O

(
h
∗(d+1)
k

)
.

(3.42)
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We then deduce that

E

([
∇K

(
θ −Xk

hk

)
− E

(
∇K

(
θ −Xk

hk

))][

K

(
θ −Xk

h̃k

)

− E

(

K

(
θ −Xk

h̃k

))])

= O

([
min

(
hk, h̃k

)]d+1)
+O

(
hd
kh̃

d
k

)
= O

(
h
(d+1)/2
k

h̃
(d+1)/2
k

)
,

(3.43)

and thus, in view of (3.1),

n∑

k=1

E(Yk,nZk,n) = O

⎛

⎜⎜
⎝

1
√(

nh−d−2
n

)(
nh̃−d

n

)

n∑

k=1

h
−(d+1)/2
k

h̃
(1−d)/2
k

⎞

⎟⎟
⎠ = o(1), (3.44)

which concludes the proof of (3.34). Let us now check that (Wn) satisfies the Lyapounov’s
condition. Set p > 2. SinceK and∇K are bounded and integrable, we have

∫
Rd ‖∇K(z)‖pdz <

∞ and
∫
Rd |K(z)|pdz < ∞. It follows that

n∑

k=1

E
(‖Yk,n‖p

)
= O

⎛

⎜
⎝

1
(
nh−d−2

n

)p/2

n∑

k=1

h
(−d−1)p
k

∫

Rd

∥∥∥∥∇K

(
θ − y

hk

)∥∥∥∥

p

f
(
y
)
dy

⎞

⎟
⎠

= O

⎛

⎜
⎝

1
(
nh−d−2

n

)p/2

n∑

k=1

h
(−d−1)p
k

hd
k

⎞

⎟
⎠ = o(1),

n∑

k=1

E
(|Zk,n|p

)
= O

⎛

⎜
⎝

1
(
nh̃−d

n

)p/2

n∑

k=1

h̃
−dp
k

∫

Rd

∣∣∣∣∣
K

(
θ − y

h̃k

)∣∣∣∣∣

p

f
(
y
)
dy

⎞

⎟
⎠

= O

⎛

⎜
⎝

1
(
nh̃−d

n

)p/2

n∑

k=1

h̃
−dp
k h̃d

k

⎞

⎟
⎠ = o(1),

(3.45)

which concludes the proof of Lemma 3.3.
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3.6.3. Proof of Lemma 3.4

We only prove the third part of Lemma 3.4: the proofs of its first two parts can be easily
deduced. Set

Γ = f(θ)

⎛

⎜
⎝

G 0

0
∫

Rd

K2(z)dz

⎞

⎟
⎠, Δn =

⎛

⎜
⎜
⎜
⎜
⎝

1
√
nh−d−2

n

Id 0

0
1

√
nh̃−d

n

⎞

⎟
⎟
⎟
⎟
⎠

,

Qn =

⎛

⎜
⎝

√
h−d−2
n Id 0

0
√
h̃−d
n

⎞

⎟
⎠,

(3.46)

let (εn) be a sequence of R
d+1-valued, independent, and N(0,Γ)-distributed random vectors,

and set Sn =
∑n

k=1 Qkεk and Bn = E(SnS
T
n). We clearly have limn→+∞ΔnBnΔn = Σa,ã.

Moreover, all the eigenvalues ρ(i)n (1 ≤ i ≤ d+1) of Bn satisfy limn→+∞ log log ρ(i)n / log logn = 1.
The application of Theorem 1 in Mokkadem and Pelletier [30] then ensures that, with
probability one, the sequence

⎛

⎜
⎝

ΔnSn√
2 log logn

⎞

⎟
⎠ (3.47)

is relatively compact, and its limit set is the ellipsoid {ν ∈ R
d+1 such that νTΣ−1

a,ã
ν ≤ 1}. Now,

set

Ṽk =

⎛

⎜⎜⎜⎜
⎝

h−d/2
k

[
∇K

(
θ −Xk

hk

)
− E

(
∇K

(
θ −Xk

hk

))]

h̃−d/2
k

[

K

(
θ −Xk

h̃k

)

− E

(

K

(
θ −Xk

h̃k

))]

⎞

⎟⎟⎟⎟
⎠

(3.48)

and Γk = E(ṼkṼ
T
k ). In view of (3.38), (3.39), and (3.43), we have limk→∞Γk = Γ. It follows that

∃k0 ≥ 1 such that for all k ≥ k0, Γk is inversible; without loss of generality, we assume k0 = 1,
and set Ũk = Γ−1/2

k
Ṽk. Set p ∈]2, 4[ and let L be a slowly varying function; we have
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E

(∥∥
∥Ũk

∥
∥
∥
p)

(
k log log k

)p/2 = O

⎛

⎝
h
−dp/2
k E

[‖∇K((θ −Xk)/hk)‖p
]
+ h̃

−dp/2
k E

[|K((θ −Xk)/hk)|p
]

(
k log log k

)p/2

⎞

⎠

= O

⎛

⎝
h
d−dp/2
k

+ h̃
d−dp/2
k

(
k log log k

)p/2

⎞

⎠

= O
(
L(k)

[
k−[1+((p/2)−1)(1−ad)] + k−[1+((p/2)−1)(1−ãd)]

])

(3.49)

so that
∑

k(k log log k)
−p/2

E(‖Ũk‖p) < ∞. By application of Theorem 2 of Einmahl [31],

we deduce that
∑n

k=1 Ũk − ∑n
k=1 ηk = o(

√
n log logn) a.s., where ηk are independent and

N(0, Id+1)-distributed random vectors. It follows that

n∑

k=1

Γ1/2Γ−1/2k Ṽk −
n∑

k=1

εk = o

(√
n log logn

)
a.s. (3.50)

Now,

Δn

[
n∑

k=1

QkΓ1/2Γ
−1/2
k Ṽk −

n∑

k=1

Qkεk

]

= Δn

n∑

k=1

Qk

[
Γ1/2Γ−1/2k Ṽk − εk

]

= Δn

n∑

k=1

Qk

⎛

⎝
k∑

j=1

[
Γ1/2Γ−1/2j Ṽj − εj

]
−

k−1∑

j=1

[
Γ1/2Γ−1/2j Ṽj − εj

]
⎞

⎠

⎛

⎝with
0∑

j=1

= 0

⎞

⎠

= Δn

n−1∑

k=1

(Qk −Qk+1)

⎛

⎝
k∑

j=1

(
Γ1/2Γ−1/2j Ṽj − εj

)
⎞

⎠ + ΔnQn

n∑

j=1

(
Γ1/2Γ−1/2j Ṽj − εj

)

= Δn

n−1∑

k=1

(Qk −Qk+1)
[
o

(√
k log log k

)]
+ ΔnQn

[
o

(√
n log logn

)]
a.s.

(3.51)

Moreover,

Δn

n−1∑

k=1

(Qk −Qk+1)
[
o

(√
k log log k

)]

=

⎛

⎜⎜⎜⎜⎜
⎝

√
hd+2
n

n

n−1∑

k=1

(
h
−(d+2)/2
k

− h
−(d+2)/2
k+1

)
o
(√

k log log k
)

0

0

√
h̃d
n

n

n−1∑

k=1

(
h̃−d/2
k

− h̃−d/2
k+1

)

⎞

⎟⎟⎟⎟⎟
⎠
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=

⎛

⎜
⎜
⎜
⎜
⎝

o

(√
hd+2
n log logn

)n−1∑

k=1

(
h
−(d+2)/2
k − h

−(d+2)/2
k+1

)
0

0 o

(√
h̃d
n log logn

)n−1∑

k=1

(
h̃−d/2
k

− h̃−d/2
k+1

)

⎞

⎟
⎟
⎟
⎟
⎠

.

(3.52)

Set φ(s) = [h(s)]−(d+2)/2 and φ̃(s) = [h̃(s)]
−d/2

, and let uk ∈ [k, k + 1]; since φ′ and φ̃′ vary
regularly with exponent (a(d + 2)/2 − 1) and (ãd/2 − 1), respectively, we have

n−1∑

k=1

(
h
−(d+2)/2
k − h

−(d+2)/2
k+1

)
= O

(
n−1∑

k=1

φ′(uk)

)

= O

(∫n

1
φ′(s)ds

)
= O

(
h
−(d+2)/2
n

)
,

n−1∑

k=1

(
h̃−d/2
k

− h̃−d/2
k+1

)
= O

(
n−1∑

k=1

φ̃′(uk)

)

= O

(∫n

1
φ̃′(s)ds

)
= O

(
h̃−d/2
n

)
(3.53)

so that

Δn

n−1∑

k=1

(Qk −Qk+1)
[
o

(√
k log log k

)]
= o

(√
log logn

)
. (3.54)

Since ΔnQn[o(
√
n log logn)] = o(

√
log logn), we deduce that

Δn
∑n

k=1 QkΓ1/2Γ
−1/2
k

Ṽk
√
2 log logn

− Δn
∑n

k=1 Qkεk
√
2 log logn

= o(1) a.s. (3.55)

The application of (3.47) then ensures that, with probability one, the sequence

⎛

⎜
⎝

Δn
∑n

k=1 QkΓ1/2Γ
−1/2
k Ṽk

√
2 log logn

⎞

⎟
⎠ (3.56)

is relatively compact, and its limit set is E = {ν ∈ R
d+1 such that νTΣ−1

a,ã
ν ≤ 1}. Since

Δn
∑n

k=1 QkṼk
√
2 log logn

=
Δn
∑n

k=1 QkΓ1/2Γ
−1/2
k Ṽk

√
2 log logn

+
Δn
∑n

k=1 Qk

(
Id+1 − Γ1/2Γ−1/2

k

)
Ṽk

√
2 log logn

(3.57)

with limk→∞(Id+1 − Γ1/2Γ−1/2
k

) = 0, Lemma 3.4 follows.
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