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The Bayes estimators of the shape parameter of exponentiated family of distributions have been
derived by considering extension of Jeffreys’ noninformative as well as conjugate priors under
different scale-invariant loss functions, namely, weighted quadratic loss function, squared-log
error loss function and general entropy loss function. The risk functions of these estimators have
been studied. We have also considered the highest posterior density (HPD) intervals for the
parameter and the equal-tail and HPD prediction intervals for future observation. Finally, we
analyze one data set for illustration.

1. Introduction

Let X be a random variable whose cumulative distribution function (cdf) and probability
density function (pdf) are given by

G(x;α, θ) = Fα(x; θ), (1.1)

g(x;α, θ) = αFα−1(x; θ)f(x; θ), (1.2)

respectively. Here F(·, θ) is the continuous baseline distribution functionwith the correspond-
ing probability density function f(x; θ), and θ may be vector valued, and α is the positive
shape parameter. Then, X is said to be belonging to the exponentiated family of distributions
(abbreviated as EFD) or the proportional reversed hazard family.

If the baseline distribution is exponential, then it is called the generalized exponential
(GE) distribution in the literature. In recent years, an impressive array of papers has been
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Figure 1: Exponentiated distributions for α = 0.5 and α = 2.

devoted to study the behavioral patterns of the parameters of the generalized exponential
distribution using both classical and Bayesian framework, and a very good summary of this
work can be found in Gupta and Kundu [1–4], Raqab [5], Raqab and Ahsanullah [6], Zheng
[7], Raqab and Madi [8], Alamm et al. [9], Singh et al. [10], Dey [11], and the references
cited there for some recent developments on GE distribution. If the baseline distribution is
Weibull, then it is called the exponentiated Weibull distribution. Mudholkar and Srivastava
[12], Nassar and Eissa [13], and Singh et al. [14] have studied this distribution.

In this paper, we assume that F(x, θ) = F(x) is known, but the shape parameter α is
unknown. Then, the cdf and pdf become

G(x;α) = Fα(x), (1.3)

g(x;α) = αFα−1(x)f(x), (1.4)

respectively. If F(x) is symmetric, then G(x;α) will be skewed distribution for different
values of α(/= 1). Hence α can be considered as a skewness parameter. Gupta and Gupta
[15] have shown that positively skewed data can be analyzed very well for normal baseline
distribution. Again α is the parameter of the proportional reversed hazard model in lifetime
data analysis. For its various important roles, we are interested to find out the Bayes
estimators and their performances under different loss functions using different priors. In
Figure 1, the shape of (i) exponentiated distribution with F(x) = 1 − e−x, (ii) exponentiated
Rayleigh, distribution with F(x) = 1 − e−x2 , and (iii) exponentiated lognormal distribution
with F(x) = Φ(lnx) has been shown for α = 0.5 and α = 2, respectively.

The paper is categorized into the following sections. Section 2 has a brief description of
the prior distributions and loss functions. The Bayes estimators and associated risk functions
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are provided in Sections 3 and 4, respectively. Section 5 presents the highest posterior density
(HPD) interval for α. Section 6 is devoted to finding out the predictive distributions and
equal-tail Bayesian predictive interval for the future observation. Section 7 deals with the
Bayes predictive estimator and HPD prediction interval for a future observation. Section 8
presents the data application based on a real life data set. The paper ends with a concluding
remark in Section 9.

2. Prior and Loss Functions

The Bayesian inference requires appropriate choice of prior(s) for the parameter(s). From the
Bayesian viewpoint, there is no clear cut way from which one can conclude that one prior is
better than the other. Nevertheless, very often priors are chosen according to one’s subjective
knowledge and beliefs. However, if one has adequate information about the parameter(s),
it is better to choose informative prior(s); otherwise, it is preferable to use noninformative
prior(s). In this paper we consider both type of priors: the extended Jeffreys’ prior and the
natural conjugate prior.

The extended Jeffreys’ prior proposed by Al-Kutubi [16] is given as

π2(α) ∝ 1
α2c1

, α > 0, c1 > 0. (2.1)

The conjugate prior in this case will be the gamma prior, and the probability density function
is taken as

π1(α) =
ba

Γ(a)
αa−1e−bα, α, a, b > 0. (2.2)

With the above priors, we use three different loss functions for the model (1.1).

(1) The first loss function considered is called weighted quadratic loss function and is
given by

L1(α, δ) =
(
α − δ
α

)2

, (2.3)

where δ is a decision rule to estimate α. δ is to be chosen such that

∫∞

0

(
α − δ
α

)2

π
(
α | x)dα (2.4)

is minimum. This can be equivalently written as

∫∞

0
(α − δ)2q(α | x)dα, with q

(
α | x) =

(
1/α2

)
π
(
α | x)∫∞

0 (1/α2)π
(
α | x)dα (2.5)
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being minimum. Hence

α̃bq = δ = Eq
(
α | x). (2.6)

(2) The second one is the squared-log error loss function proposed by Brown [17] and
is defined as

L2(α, δ) = (ln δ − lnα)2 =
(
ln
δ

α

)2

. (2.7)

This loss function is balanced with lim L2(α, δ) → ∞ as δ → 0 or ∞. A balanced
loss function takes both error of estimation and goodness of fit into account,
but the unbalanced loss function only considers error of estimation. This loss
function is convex for δ/α ≤ e and concave otherwise, but its risk function has a
unique minimum with respect to δ. The Bayes estimator for the parameter α under
squared-log error loss function may be given as

α̃bsl = exp
[
E
(
lnα | x)], (2.8)

where E(·) denotes the posterior expectation.
(3) The third loss function is a particular type of asymmetric loss functions called the

general entropy loss function proposed by Calabria and Pulcini [18] (Podder and
Roy [19] called it the modified linear exponential (MLINEX) loss function) and is
given by

L3(α, δ) = w
[(

δ

α

)γ

− γ ln
(
δ

α

)
− 1

]
, γ /= 0, w > 0. (2.9)

If we replace δ−α in place of ln(δ/α), that is, ln δ−lnα, we get the linear exponential
(LINEX) loss function,w[eγ(δ−α)−γ(δ−α)−1]. Without loss of generality, we assume
that w = 1. If γ = 1, it is the entropy loss function. Under this general entropy loss
function, the Bayes estimator of α is obtained as follows:

α̃bge =
[
Eα

(
α−γ

)]−1/γ
. (2.10)

3. Estimation of Parameter

Let us consider a random sample x = (x1, x2, . . . , xn) of size n from the exponentiated family
of distributions. Then the likelihood function of α for the given sample observation is

L
(
α | x) = αn

n∏
i=1

Fα−1(xi)f(xi)

= αneα
∑n

i=1 lnF(xi)
n∏
i=1

f(xi)
F(xi)

.

(3.1)

Here, the maximum likelihood estimator (MLE) of α is α̂mle = n/T , with T = −∑n
i=1 lnF(xi).
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3.1. Estimation under the Assumption of Extended Jeffreys’ Prior

Combining the prior distribution in (2.1) and the likelihood function, the posterior density of
α is derived as follows:

π1
(
α | x) =

Tn−2c1+1

Γ(n − 2c1 + 1)
e−αTαn−2c1 , α > 0, (3.2)

which is a gamma distribution G(n − 2c1 + 1, T).
For differnt derivations in this section and subsequent sections, we use the expressions

Γ(p) =
∫∞
0 xp−1e−xdx, Γ′(p) =

∫∞
0 lnxxp−1e−xdx, Γ′′(p) =

∫∞
0 (lnx)2xp−1e−xdx, ψ(p) = d lnΓ(p)/

dp = Γ′(p)/Γ(p), the digamma function, and ψ ′(p) = d2 ln Γ(p)/dp2 = ((Γ′′(p)·Γ(p)−[Γ′(p)]2)/
Γ2(p)), the trigamma function.

Using extended Jeffreys’ prior of the form (2.1), the Bayes estimators of α under
weighted quadratic, squared-log error and general entropy loss functions are derived as
follows:

α̃Ebq =
n − 2c1 − 1

T
,

α̃Ebsl =
eψ(n−2c1+1)

T
,

α̃Ebge =

[
Γ(n − 2c1 + 1)

Γ
(
n − 2c1 + 1 − γ)

]1/γ

· 1
T

=
k

T
,

(3.3)

with k = [Γ(n − 2c1 + 1)/Γ(n − 2c1 + 1 − γ)]1/γ , respectively.

Remark 3.1. We get the Jeffreys’ noninformative prior for c1 = 1/2 and the Hartigan’s
noninformative prior for c1 = 3/2.

3.2. Estimation under the Assumption of Conjugate Prior

Combining the prior distribution in (2.2) and the likelihood function, the posterior density of
α is derived as follows:

π2
(
α | x) =

Tn+a
b

Γ(n + a)
e−αTbαn+a−1, α > 0, (3.4)

which is a gamma distribution G(n + a, Tb) with Tb = T + b.
Using a conjugate prior of the form (2.2), the Bayes estimators under weighted

quadratic, squared-log error and general entropy loss functions are derived as follows:

α̃cbq =
n − 2 + a

Tb
, (3.5)

α̃cbsl =
eψ(n+a)

Tb
, (3.6)

α̃cbge =

[
Γ(n + a)

Γ
(
n + a − γ)

]1/γ

· 1
Tb
, (3.7)
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respectively. It is to be noted that Bayes’ estimators given in (3.5), (3.6), and (3.7) depend on a
and bwhich are the parameters of the prior distribution of α. These parameters, that is, a and
b could be estimated by means of empirical Bayes’ procedure (see Lindley [20] and Awad
and Gharraf [21]). Given the random sample x = (x1, x2, . . . , xn), the likelihood function of
α is gamma density with parameter (n + 1, T). Hence it is proposed to estimate the prior
parameters a and b from the sample by n + 1 and T , respectively. Therefore, (3.5), (3.6), and
(3.7) will become

α̃cbq =
2n − 1
2T

, (3.8)

α̃cbsl =
eψ(2n+1)

2T
, (3.9)

α̃cbge =

[
Γ(2n + 1)

Γ
(
2n + 1 − γ)

]1/γ

· 1
2T

=
K1

2T
, where K1 =

[
Γ(2n + 1)

Γ
(
2n + 1 − γ)

]1/γ

, (3.10)

respectively.

4. Risks of the Bayes Estimators

Since X follows the exponentiated family of distributions with parameter α, then T =
−∑n

i=1 lnF(xi) is distributed as G(n, α). Then the probability density function of T is

hT (t) =
αn

Γ(n)
e−αttn−1, t > 0. (4.1)

Therefore,

Eh
(
T−γ) =

∫∞

0
t−γhT (t)dt =

αn

Γ(n)

∫∞

0
e−αttn−γ−1dt =

Γ
(
n − γ)
Γ(n)

αγ . (4.2)

The risk function of α̃Ebq is

R
(
α̃Ebq

)
= Eh

[
L
(
α̃Ebq, δ

)]

=
1
α2

[
α2 − 2α(n − 2c1 − 1)Eh

(
1
T

)
+ (n − 2c1 − 1)2Eh

(
1
T2

)]

=
1
α2

[
α2 − 2α(n − 2c1 − 1)

α

n − 1
+ (n − 2c1 − 1)2

α2

(n − 1)(n − 2)

]

=

[
1 − 2(n − 2c1 − 1)

n − 1
+

(n − 2c1 − 1)2

(n − 1)(n − 2)

]
.

(4.3)
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Similarly, the risk functions of α̃Ebsl and α̃
E
bge under squared-log error loss and general entropy

loss functions are

R
(
α̃Ebsl

)
= ψ ′(n) +

[
ψ(n − 2c1 + 1) − ψ(n)]2, (4.4)

R
(
α̃Ebge

)
= kγ

Γ
(
n − γ)
Γ(n)

+ γ
[
ψ(n) − ln k

] − 1, (4.5)

respectively. The risk functions of α̃cbq, α̃
c
bsl, and α̃

c
bge, assuming conjugate prior are

R
(
α̃cbq

)
=

[
1 − 2n − 1

n − 1
+

(2n − 1)2

4(n − 1)(n − 2)

]
, (4.6)

R
(
α̃cbsl

)
= ψ ′(n) +

[
ψ(2n + 1) − ψ(n) − ln 2

]2
, (4.7)

R
(
α̃cbge

)
= kγ1

Γ
(
n − γ)
Γ(n)

+ γ
[
ψ(n) − ln k1 + ln 2

] − 1, (4.8)

respectively.
The risk functions of α̂mle under weighted quadratic, squared-log error and general

entropy loss functions are

Rq(α̂mle) =

[
1 − 2n

n − 1
+

n2

(n − 1)(n − 2)

]
, (4.9)

Rsl(α̂mle) = ψ ′(n) +
[
ψ(n) − lnn

]2
, (4.10)

Rge(α̂mle) = nγ
Γ
(
n − γ)
Γ(n)

+ γ
[
ψ(n) − lnn

] − 1, (4.11)

respectively.
The estimators, developed in Section 3, are studied here on the basis of their risks

obtained under three different loss functions, namely, (a) weighted quadratic loss, (b)
squared-log error loss, (c) general entropy loss for γ = 0.5, (d) general entropy loss for γ = 1,
and (e) general entropy loss for γ = 1.5. Risk functions of the proposed estimators are shown
in Figures 2–5. The thick lines in each figure show the risk of the Bayes estimators under
extended Jeffreys’ prior and conjugate prior, and dotted lines show the risk of MLE under
different loss functions. In Figure 2, risk functions have been plotted for all the loss functions
under extended Jeffreys’ prior for different values of c1 and for n = 30. It is observed that risks
are increasing with the increase in c1. Risks under general entropy loss for γ < 1 are ordinarily
less than those of weighted quadratic and squared-log error losses. For small values of c1,
risks of Bayes estimators are lower than those of maximum likelihood estimators for each
loss function considered. The Bayes estimators perform better for some values of c1 and
loss functions under consideration; for example, in the figure, risk of α̃Ebq is less for c1 < 1.5

(approximately)whereas that of α̃Ebsl is less for c1 < 0.8 (approximately). Figures 3 and 4 show
the risks for different values of n for c1 = 0.5 and 2, respectively. We find that the risks are
decreasing with the increase in n for all values of c1.
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Figure 2: Risk function of estimators under the extended Jeffreys’ prior for different values of c1 with
n = 30.
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Figure 3: Risk function of estimators under the extended Jeffreys’ prior for different values of n with c1 =
0.5.

When we consider conjugate prior, we see that risks are less for the squared-log error
and weighted quadratic losses than the general entropy loss, and only for these two losses,
the Bayes estimators are less than the MLE for small n (Figure 5). The risks under conjugate
prior are generally higher than those under Jeffreys’ prior.
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Figure 4: Risk function of estimators under the extended Jeffreys’ prior for different n with c1 = 2.
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Figure 5: Risk function of estimators under conjugate prior for different n.

5. Highest Posterior Density Intervals for α

In this section our objective is to provide a highest posterior density (HPD) interval for the
unknown parameter α of the model (1.2). HPD interval is one of the most useful tools to
measure posterior uncertainty. This interval is such that it includes more probable values
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of the parameter and excludes the less probable ones. Since the posterior density (3.2) is
unimodal, the 100(1 − η)%HPD interval [HE

1 ,H
E
2 ] for αmust satisfy

∫HE
2

HE
1

π1
(
α | x)dα = 1 − η, (5.1)

that is

Γ
(
n − 2c1 + 1,HE

2 T
)
− Γ

(
n − 2c1 + 1,HE

1 T
)
= 1 − η, (5.2)

π1

(
HE

1 | x
)
= π1

(
HE

2 | x
)
, (5.3)

that is

[
HE

1

HE
2

]n−2c1
= eT(H

E
1 −HE

2 ), (5.4)

simultaneously. The HPD interval [HE
1 ,H

E
2 ] is the simultaneous solution of (5.2) and (5.4).

Similarly, the posterior density (3.4) is unimodal, and the 100(1 − η)% HPD interval
[Hc

1 ,H
c
2] for αmust satisfy

∫Hc
2

Hc
1

π2(α | Ta)dα = 1 − η, (5.5)

that is

Γ
(
n + b,Hc

2Ta
) − Γ

(
n + b,Hc

1Ta
)
= 1 − η, (5.6)

π2
(
Hc

1 | Ta
)
= π2

(
Hc

2 | Ta
)
, (5.7)

that is

[
Hc

1

Hc
2

]n+b−1
= eTa(H

c
1−Hc

2 ), (5.8)

simultaneously. Therefore, the HPD interval [Hc
1 ,H

c
2] is the simultaneous solution of (5.6)

and (5.8). If a and b are not known, then substituting the empirical Bayes estimate of a and
b, we get the equations as follows:

Γ
(
2n + 1, 2Hc

2T
) − Γ

(
2n + 1, 2Hc

1T
)
= 1 − η, (5.9)

[
Hc

1

Hc
2

]2n
= e2T(H

c
1−Hc

2 ), (5.10)

respectively.
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6. Predictive Distribution

In this section our objective is to obtain the posterior predictive density of future observation,
based on current observations. Another objective is to attain equal-tail Bayesian prediction
interval for the future observation and then compare this interval with frequentist predictive
interval. The posterior predictive distribution for y = xn+1 given x = (x1, x2, . . . , xn) under
(3.2) is defined by

ξE
(
y | x) =

∫∞

0
π1

(
α | x)g(y;α)dα

=
n − 2c1 + 1

T

1[
1 − (

lnF(y)/T
)]n−2c1+2

f
(
y
)

F
(
y
) .

(6.1)

A 100(1 − η)% equal-tail prediction interval [yE1 , y
E
2 ] is the solution of

∫yE1

0
ξE
(
y | x)dy =

∫∞

yE2

ξE
(
y | x)dy =

η

2
. (6.2)

Using (6.1), we get (after simplification)

yE1 = F−1
[
eT{1−(1−(η/2))

−1/(n−2c1+1)}
]
,

yE2 = F−1
[
eT{1−(η/2)

−1/(n−2c1+1)}
]
.

(6.3)

The posterior predictive distribution for y = xn+1 given x = (x1, x2, . . . , xn) under (3.4) is
defined by

ξc
(
y | x) =

∫∞

0
π2

(
α | x)g(y;α)dα

=
n + b
Ta

1[
1 − (

lnF(y)/Ta
)]n+b+1

f
(
y
)

F
(
y
) .

(6.4)

A 100(1 − η)% equal-tail prediction interval [yc1, y
c
2] is the solution of

∫yc1

0
ξc
(
y | x)dy =

∫∞

yc2

ξc
(
y | x)dy =

η

2
. (6.5)

Using (6.4), we get (after simplification)

yc1 = F
−1
[
eTa{1−(1−(η/2))

−1/(n+b)}
]
,

yc2 = F
−1
[
eTa{1−(η/2)

−1/(n+b)}
]
.

(6.6)
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If a and b are not known, then substituting the empirical Bayes estimate of a and b, we get
the prediction limits as follows:

yc1 = F
−1
[
e2T{1−(1−(η/2))

−1/(2n+1)}
]
,

yc2 = F
−1
[
e2T{1−(η/2)

−1/2n+1}
]
.

(6.7)

For deriving classical intervals, we notice that Z = − lnF(y)/T is distributed as a beta-variate
of the second kind with parameters 1 and n. The pdf of Z has the following form:

h(z) =
1

B(1, n)
1

(1 + z)n+1
, z > 0. (6.8)

Solving for (z1, z2) in

∫z1

0
h(z)dz =

∫∞

z2

h(z)dz =
η

2
, (6.9)

and using (6.8), we get (after simplification)

z1 = F−1
[
eT{1−(1−(η/2))

−1/n}
]
,

z2 = F−1
[
eT{1−(η/2)

−1/n}
]
.

(6.10)

It is to be noted that if we take c1 = 0.5 in (6.3), we get classical 100(1 − η)% equal-tail
prediction interval.

7. Bayes Predictive Estimator and HPD Prediction Interval for
a Future Observation

In this section, we introduce the Bayes predictive estimator for different priors under the
above-mentioned loss functions, and later we obtain HPD predictive intervals for the future
observation. The Bayes predictive estimators of y under a weighted quadratic error loss
function assuming the extended Jeffreys’ prior and the conjugate prior are

y∗E
1 =

∫∞
0 y · (1/y2)ξE(y | x)dy∫∞

0

(
1/y2

)
ξE
(
y | x)dy , (7.1)

y∗c
1 =

∫∞
0 y · (1/y2)ξc(y | x)dy∫∞

0

(
1/y2

)
ξc
(
y | x)dy , (7.2)
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respectively. The Bayes predictive estimators of y under the squared-log error loss function
assuming the extended Jeffreys’ prior and the conjugate prior are

y∗E
2 = exp

[
E
(
lnY | x)], with E

(
lnY | x) =

∫∞

0
lny · ξE(y | x)dy, (7.3)

y∗c
2 = exp

[
E
(
lnY | x)], with E

(
lnY | x) =

∫∞

0
lny · ξc(y | x)dy, (7.4)

respectively. The Bayes predictive estimators of y under the general entropy loss function
assuming the extended Jeffreys’ prior and the conjugate prior are

y∗E
3 =

[
JEg

]−1/γ
with JEg =

∫∞

0
y−γ ξE

(
y | x)dy, (7.5)

y∗c
3 =

[
Jcg

]−1/γ
with Jcg =

∫∞

0
y−γ ξc

(
y | x)dy, (7.6)

respectively. The closed form expressions of (7.1)–(7.6) seem to be intractable, and
calculations are to be made using numerical method.

For the unimodal predictive density (6.1), the HPD-predictive interval [hE1 , h
E
2 ] with

probability 1 − η for y is the simultaneous solution of the following:

P
(
hE1 < Y < hE2

)
= 1 − η, (7.7)

that is

1[
1 − (

lnF(hE2 )/T
)]n−2c1+1 − 1[

1 − (
lnF(hE1 )/T

)]n−2c1+1 = 1 − η, (7.8)

ξE
(
hE1 | x

)
= ξE

(
hE2 | x

)
, (7.9)

that is

[
1 − (

lnF(hE2 )/T
)

1 − (
lnF(hE1 )/T

)
]n−2c1+2

=
f
(
hE2

)
F
(
hE2

) · F
(
hE1

)
f
(
hE1

) . (7.10)

Similarly, for the unimodal predictive density (6.4), the HPD-predictive interval [hc1, h
c
2]with

probability 1 − η for y is the simultaneous solution of the following:

P
(
hc1 < Y < hc2

)
= 1 − η, (7.11)
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that is

1[
1 − (

lnF(hc2)/Ta
)]n+b − 1[

1 − (
lnF(hc1)/Ta

)]n+b = 1 − η, (7.12)

ξc
(
hc1 | x

)
= ξc

(
hc2 | x

)
, (7.13)

that is

[
1 − (

lnF(hc2)/Ta
)

1 − (
lnF(hc1)/Ta

)
]n+b+1

=
f
(
hc2
)

F
(
hc2
) · F

(
hc1
)

f
(
hc1
) . (7.14)

If a and b are not known, then substituting the empirical Bayes estimate of a and b, we get
the HPD-prediction limits for future observation as follows:

1[
1 − (

lnF(hc2)/2T
)]2n+1 − 1[

1 − (
lnF(hc1)/2T

)]2n+1 = 1 − η,

[
1 − (

lnF
(
hc2
)
/2T

)
1 − (

lnF
(
hc1
)
/2T

)
]2n+2

=
f
(
hc2
)

F
(
hc2
) .F

(
hc1
)

f
(
hc1
) .

(7.15)

8. Data Analysis

Consider the following data which arose in tests on endurance of deep grove ball bearings
(Lawless [22, page 228]). The data are the number of million revolutions before failure for
each of the 23 ball bearings in the life test:

17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.80, 51.84, 51.96, 54.12, 55.56, 67.80,

68.64, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.40.
(8.1)

To study the goodness of fit of the exponentiated exponential model, Gupta and Kundu [2]
computed the χ2 statistic as 0.783 with the corresponding P value being 0.376. The estimate
of α, the shape parameter, is 5.2589 and that of θ, the rate of the exponential distribution, is
0.0314. Here our aim is to obtain the Bayes estimates of α for this data set under three different
loss functions and for two priors by assuming that the base line distribution is exponential
with θ = 0.0314. At the same time, we are interested in studying the HPD intervals for the
parameter α. Further, our intention is to obtain the future observation based on a given set of
observations and the HPD predictive intervals for the future observation based on the current
observations. Figure 6 shows the estimated predictive distribution.

Tables 1–4 summarize the result from the data analysis. Tables 1(a) and 1(b) represents
the Bayes estimates of α and corresponding risks under the extended Jeffreys’ prior the
conjugate prior, respectively. It is evident from Table 1(a) that Bayes estimates under general
entropy loss (γ = 0.5 and γ = 1) give better estimates than all other estimates. It is also
evident from Table 1(a) that the estimates decrease and the corresponding risks increase
with the increase in c1. In case of conjugate prior (Table 1(b)), the estimates under weighted
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Figure 6: Estimate of the predictive distribution for the given data set for extended Jeffreys’ prior and
conjugate prior.

Table 1

(a) The Bayes estimates of the shape parameter under extended prior and the corresponding risk function under three
different loss functions for the data set

c1 α̃Ebq R(α̃Ebq) α̃Ebsl R(α̃Ebsl)
γ = 0.5 γ = 1.0 γ = 1.5

α̃Ebge R(α̃Ebge) α̃Ebge R(α̃Ebge) α̃Ebge R(α̃Ebge)

0.5 4.607 0.0454 4.936 0.0444 4.881 0.0055 4.826 0.0225 4.771 0.0511
1.0 4.387 0.0476 4.717 0.0465 4.662 0.0058 4.607 0.0236 4.551 0.0535
1.5 4.168 0.0541 4.498 0.0531 4.443 0.0066 4.387 0.0269 4.332 0.0611
2.0 3.949 0.0649 4.278 0.0649 4.223 0.0081 4.168 0.0327 4.113 0.0741
5.0 2.632 0.2207 2.962 0.3052 2.907 0.0364 2.852 0.1395 2.796 0.3012

(b) The Bayes estimates of the shape parameter under conjugate prior and the corresponding risk function under three
different loss functions for the data set

α̃cbq R(α̃cbq) α̃cbsl R(α̃cbsl)
γ = 0.5 γ = 1.0 γ = 1.5

α̃cbge R(α̃cbge) α̃cbge R(α̃cbge) α̃cbge R(α̃cbge)

4.936 0.0503 5.101 0.0455 5.073 0.4281 5.046 1.0691 5.018 2.0264

quadratic and squared-log error loss functions seem to be better. In Table 2, the HPD intervals
under conjugate prior appear to be slightly better than the extended Jeffreys’ with respect
to minimum length. Table 3 presents the estimates of future observation based on the data
set. It is observed from the last column of the table that the general entropy loss function at
γ = 1.5 gives a quite reasonable estimate. Table 4 shows the Bayesian predictive and HPD
predictive intervals for future observation of the data set. The first row in each cell represents
the Bayesian predictive intervals, and the second row represents the HPD intervals for future
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Table 2: HPD intervals of the shape parameter for the data set.

c1
(HE

1 ,H
E
2 )

η = 0.01 η = 0.05 η = 0.10
0.5 (2.631, 7.997) (2.999, 7.079) (3.019, 6.531)
1.0 (2.472, 7.718) (2.902, 6.878) (2.999, 6.361)
1.5 (2.314, 7.437) (2.729, 6.612) (2.961, 6.214)
2.0 (2.158, 7.154) (2.558, 6.344) (2.782, 5.954)
5.0 (2.061, 7.052) (2.365, 6.131) (2.532, 5.691)
(Hc

1 ,H
c
2) (2.108, 7.065) (2.236, 6.452) (2.871, 6.141)

Table 3: Estimated future observation for the data set under three different loss functions.

c1 y∗
1 y∗

2
y∗
3

γ = 0.5 γ = 1.0 γ = 1.5
0.5 33.359 62.788 57.977 53.098 48.026
1.0 30.572 61.338 56.432 51.431 46.169
1.5 26.726 59.822 54.812 49.673 44.173
2.0 24.755 58.233 53.111 47.813 42.017
5.0 18.285 46.701 40.504 33.421 27.315
conjugate prior 55.329 13.047 320.483 315.724 190.144

Table 4: Bayesian predictive and HPD predictive intervals for future observation of the data set.

η Conjugate prior c1 = 0.5 c1 = 1.0 c1 = 1.5 c1 = 2.0 c1 = 5.0

0.01 (0.015, 17.32) (0.031, 37.61) (0.033, 39.53) (0.034, 41.66) (0.036, 44.03) (0.051, 66.78)
(7.819, 220.83) (5.966, 199.82) (5.257, 198.29) (4.552, 196.67) (3.856, 194.97) (0.398, 182.53)

0.05 (0.078, 11.85) (0.159, 25.25) (0.167, 26.49) (0.175, 27.87) (0.183, 29.41) (0.262, 43.76)
(16.206, 168.96) (10.712, 148.26) (10.217, 147.45) (9.654, 146.41) (8.671, 144.69) (2.635, 131.90)

0.10 (0.158, 9.55) (0.324, 20.19) (0.338, 21.17) (0.354, 22.25) (0.372, 23.45) (0.532, 34.63)
(26.138, 146.11) (14.176, 124.48) (13.812, 123.37) (12.103, 122.28) (10.916, 121.24) (4.939, 110.22)

observation. It is apparent that the HPD intervals for future observation with respect to
conjugate prior are reasonably good.

9. Concluding Remark

In this paper, we have derived the Bayes estimators of the shape parameter of the
exponentiated family of distributions under the extended Jeffreys’ prior as well as conjugate
prior using three different loss functions. Though the extended Jeffreys’ prior gives the
opportunity of covering wide spectrum of priors, yet at times the conjugate prior also gives
better Bayes estimates and HPD intervals of the parameter and of future observations.
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