
Hindawi Publishing Corporation
Journal of Probability and Statistics
Volume 2011, Article ID 290380, 20 pages
doi:10.1155/2011/290380

Research Article
Missing-Values Adjustment for Mixed-Type Data

Agostino Tarsitano and Marianna Falcone

Dipartimento di Economia e Statistica, Università della Calabria, Via Pietro Bucci, Cubo 1C,
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We propose a new method of single imputation, reconstruction, and estimation of nonreported,
incorrect, implausible, or excluded values in more than one field of the record. In particular,
we will be concerned with data sets involving a mixture of numeric, ordinal, binary, and
categorical variables. Our technique is a variation of the popular nearest neighbor hot deck
imputation (NNHDI)where “nearest” is defined in terms of a global distance obtained as a convex
combination of the distance matrices computed for the various types of variables. We address the
problem of proper weighting of the partial distance matrices in order to reflect their significance,
reliability, and statistical adequacy. Performance of several weighting schemes is compared under
a variety of settings in coordination with imputation of the least power mean of the Box-Cox
transformation applied to the values of the donors. Through analysis of simulated and actual
data sets, we will show that this approach is appropriate. Our main contribution has been to
demonstrate that mixed data may optimally be combined to allow the accurate reconstruction
of missing values in the target variable even when some data are absent from the other fields of
the record.

1. Introduction

Missing values are pieces of information which are omitted, lost, erroneous, inconsistent,
patently absurd, or otherwise not accessible for a statistical unit about which other useful
data are available. Failures in data collection are a matter of major concern both because they
reduce the number of valid cases for analysis which, in turn, may result in a potential loss
of valuable knowledge, and because, when there is a wide difference between complete and
incomplete records, they introduce bias into the estimation/prediction process.

The problems posed by observations that are truly missing or considered as such
can be handled by using different strategies. These include additional data collection;
application of likelihood-based procedures that allow modeling of incomplete data;
deductive reconstruction; the use of only part of the available data (listwise or pairwise
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deletion); weighting records; imputation, that is, revision of the data set in an attempt to
replace the missing data with plausible values. The present paper is centered on the latter
method.

Imputation techniques have been extensively studied over the last few decades, and a
number of approaches have been proposed. For an overview of themethods, see, for example,
Little and Rubin [1] and Kalton and Kasprzyk [2]. Some of these methods are nowadays
available in standard statistical software (or can easily be implemented) although there is
little consensus as to the most appropriate technique to use for a particular situation. It is
not our intention to provide an exhaustive review of data imputation methods; instead, we
discuss just the nearest neighbor hot deck imputation (NNHDI) which has been used for a
number of years and enjoys high prestige for its theoretical and computational characteristics.

The NNHDI method involves a nonrandom sample without replacement from the
current data set (this explains the term “hot deck” in the name of the method). More
specifically, the NNHDI looks for the nearest subset of records which are most similar to
the record with missing values, where nearness is specified according to the minimization of
the distances between the former and the latter. With this aim, a general distance measure for
the comparison of two records that share some, but not necessarily all, auxiliary variables has
to be derived. Actually, this is only a part of the problem. Another is the fact that real-world
data sets frequently involve a mixture of numerical, ordinal, binary, and nominal variables.

To deal with the simultaneous presence of variables with different measurement
scales, we take our point of departure from the computation of a distance matrix which is
restricted to nonmissing components for each type of variable. In this way, a compromise
distance can be achieved using a combination of all the partial distances (“partial” because
each of them is linked to a specific type of variable and not to the globality of the issues
reported in the data set). We address the problem of specifying differential weights for each
type of variable in order to reflect their significance, reliability, and statistical adequacy for
the NNHDI procedure.

The remainder of the paper is organized as follows. The next section gives a brief
overview of the NNHDI method. Here, we introduce an imputation technique in which the
missing value of the target variable is replaced with the least power mean of the Box-Cox
transformation applied to the observed values from selected donors. In Section 3, we give a
description of the methodology used to compute distances with an emphasis on the measure
of distance for mixed data. In Section 4, we devise a compromise distance between records.
In Section 5, an application of the various systems of weighting is given, followed by an
evaluation of our approach. Finally, in Section 6, we highlight some areas for future work.

2. Nearest Neighbor Hot Deck Imputation

Let Sn be a data set consisting of n records R1, R2, . . . , Rn in which an interval or ratio-scaled
variable y (the target variable or variable of interest) is recorded together with other m
auxiliary or matching variables (X1, X2, . . . , Xm). We assume that ν of the n records have a
valid observation for the target variable forming the set Sν of the first ν records of Sn. In
practical applications, many factors influence which value is missing and which is not, so
that lacunae in the data are usually not confined to particular fields but can be at any position
within the record. As a consequence, one ormore auxiliary variablesmay bemissing although
records which have a missing value for all the auxiliary variables are excluded from usable
data.
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For each receptor record Ri = (yi, xi,1, xi,2, . . . , xi,m), i > ν and yi missing, the NNHDI
selects a neighborhood or reference set Ji = {j1,i, j2,i, . . . , jk,i} ⊂ Sν of k similar records or
donors where k ≥ 1 is the fixed size of all the reference sets. To be a donor, the record must
have a valid value both for y and for at least one of the auxiliary variables fully present in the
receptor.

The donors provide a basis for determining imputed values. If the cardinality of the
ith reference set is |Ji| = 1, then the value ys of the nearest record Rs can simply be copied into
Ri, or a transformation from the auxiliary variables in Rs can be applied to the correspondent
data on Ri to determine the imputed value ŷi from ys. Bankier et al. [3, 4] pointed out that
the imputed values of a recipient record should come from a single record donor if possible
rather than from two or more donors. Welniak and Coder [5] noted that if k = 1, then all
missing information is imputed from the same donor so favoring the preservation of the
interrelationships between variables. However, when the attributes include a large number
of qualitative and quantitative variables at the same time orwhen there are auxiliary variables
with many distinct values, it is extremely difficult to find a single donor record that precisely
matches the recipient record.

The idea of the NNHDI method is that each receptor record is not an isolated case but
belongs to a certain cluster and will therefore show a certain pattern. In fact, the NNHDI first
collects records that are similar to the receptor by making use of the auxiliary variables and
then integrates the data of alternative records into a consistent and logically related reference
set. Hence, several donors may be involved in completing a single deficient record. Sande
[6] observed that this may be a source of some concern, but such a worry diminishes if one
takes into account the fact that the best donor for a segment of the recipient record may be
different from the best donor for another segment when incompleteness also affects auxiliary
variables. For example, the perfect neighborhood obtained using nominal variables might
turn out to be an inadequate cluster for numerical variables. Wettschereck and Dietterich [7]
noted that, in noisy data sets, the k-nearest neighbor algorithm performs better than simple
nearest neighbor.

The possibility of reducing bias with the NNHDI may be reinforced if unreported
values are characterized by a missing at random (MAR) mechanism. In the phraseology of
this field, this means that missing values on the target variable follow a pattern that does not
depend on the unreported data in y, but only on observed data. Let ψ be a vector of indicator
variables for the ith record such that

ψi =

⎧

⎨

⎩

1 if yi is observed,

0 if yi is missing,
i = 1, 2, . . . , n. (2.1)

Under an MAR dynamic, the selection probabilities verify the following condition: Pr(ψ | yν,
yn−ν) = Pr(ψ | yν). This is equivalent to saying that, given the observed data, the inability
to observe a realization from y is not a consequence of the data that are not observed. The
missingness pattern, however, may depend on auxiliary variables that may be the reason
for missingness or are joint causes and can thus contribute to filling the voids. In fact,
the values observed for the auxiliary variables both for the donee and for the donors are
compared under the tacit assumption that if distances, however defined, are small for the
auxiliary variables, the records will also be close to one another for the target variable.
Consequently, the existence of strong relationships between target and auxiliary variables has
a positive impact on the ability of the NNHDI to determine more compact and homogeneous
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reference sets which, as a result, increase the quality of the imputed values. See Abbate [8].
Unfortunately, the validation of the MAR assumption is difficult because there is not usually
much information regarding the unobserved data. However, the more relevant and related
the auxiliary variables are to the target variable, the more likely the MAR hypothesis is.

2.1. Formation of the Reference Sets

The NNHDI method is implemented as a two-stage procedure. In the first stage, the data set
Sν is searched to form the neighborhood or reference set Ji for each receptor in Sn−ν. In the
next stage, the values of y observed in the reference set are used to compute the replacement
value. The reference set is built simultaneously forRν+1, Rν+2, . . . , Rn following the rule: record
Rs ∈ Sν is added to Ji if |Ji| < k or if

max
j∈Ji

δ
(

xi, xj
) ≤ δ(xi, xs); i = ν + 1, ν + 2, . . . , n; s = 1, 2, . . . , nν, (2.2)

where δ(·) is the distance between two records in terms of the auxiliary variables. At the end
of the process, the records corresponding to the first k distances become the neighborhood Ji
of Ri. The solutions Ji, i = ν+1, ν+2, . . . , n formmathematical (nonrandom) samples of fixed
size k. We admit that the Jis are artificial and that they may be nonrepresentative samples of
the target variable population because each Ji is a subset of a subset of the observed records
(to be precise, records similar to Ri with an effective value for y). It should be emphasized,
however, that imputation of missing values is one of those circumstances in which a biased
selection may be preferable to probability sampling. See Deming [9, pages 32-33].

A peculiar characteristic of k-NNHDI is the restriction to a predefined cardinality k
of Ji, i = ν + 1, ν + 2, . . . , n that cannot be changed later (see [10]). Such a constraint may
cause perplexity since a priori there can be no firm experimental evidence that each receptor
belongs to a compact and homogeneous cluster formed by at least k records which are to
be validly employed as donors; in addition, the fact that NNHDI inexorably finds k donors,
even if none of them is actually near to the receptor, increases the risk of irrelevant records in
the reference set.

Although there are some rules which link k to the size n of the data set, the cardinality
|Ji| remains somewhat arbitrary. The value of k should be kept small enough to improve the
speed of the algorithm and to bring process values derived by the most similar records into
the imputation. On the other hand, if k is very small and the donors are not found nearby due
to data sparseness, the imputed value tends to be very poor. The robustness of the NNHDI
to noisy data is expected to improve with the number of donors used for imputation, but
too many donors increase the computational cost and may enlarge the variability of imputed
values out of proportion. Moreover, as k increases, the mean distance between the receptor
and the donors becomes larger, especially if a significant proportion of the data is missing.
In the literature, only small k values, (3, 5, 10, 15, 20) have been tested. Wettschereck and
Dietterich [7] chose k on the basis of the performance of the imputation algorithm by trying
all possible k over a vast range and broking ties in favor of the smaller value of k. Friedman
et al. [11] found empirically that values ranging from k = 8 to k = 16 work well when
searching for a nearest neighbor. To determine k in our experiments, we have used Sturge’s
rule k = 1 + log2(n) discussed, for example, in Hyndman [12].

A computational drawback of the NNHDI is that the algorithm searches for donors
through the entire data set, and this limitation can be serious in the case of large databases. To
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form the neighborhoods Ji, i = nν+1, nν+2, . . . , n, the NNHDI considers nν×(n−nν) distances
(although only a minority of them have to be kept in memory) and compares δ(Xi,Xs),
s /∈ Ji with the most distant element in each neighborhood. With the vast improvement in
computers, NNHDI methods are not nearly as prohibitive as they used to be. Nevertheless, if
the data set is judged to be too large to be treated within an acceptable time limit, the search
for the donors can be confined to a subset of Sν. See, for example, Wilson and Martinez [13].

The NNHDI does not necessarily produce distinct reference sets; |Jr ∩ Js| may be
greater than zero for r /= s. Moreover, it leaves unused records that do not fit into any
neighborhood. For this reason, one objection to the NNHDI is that data from some records
could be used many times as donors and other records are excluded from “donation,”
thus depriving the imputation of the benefits which might have been derived using more
information. According to Sande [6], this will increase the variance while possibly reducing
the bias of the estimate. Furthermore, it may imply inflating the size of certain subpopulations
in the data set. Kaiser [14] pointed out that the excessive use of a single donor leads to poor
estimates, and Schieber [15] recommended that each complete record was only allowed to be
a donor once. If repeated donations and omitted contributions are a problem to be alleviated,
one may apply the strategy proposed by Colledge et al. [16] or Giles [17].

2.2. Imputing for Missing Data

Let Ji be the reference set of Ri ∈ Sn−ν, i = nν + 1, nν + 2, . . . , n formed in the first stage.
The information on y contained in Ji has to be synthesized into an estimate ŷi for the missing
value. This operation should be carried out with care and control since imputed values will be
treated as actually observed values, and statistical analysis is carried out using the standard
procedures developed for data without any missing observations.

Since |Ji| > 1, then a synthesis of all the evidence acquired is needed. Many proposals
for estimating yi have been advanced. A common imputation technique is the use of a mean
ŷi of the values observed in the reference set. In this paper, attention is concentrated on the
least power mean estimator that minimizes

Sα
(

y
)

=

⎡

⎣

∑

j∈Ji

∣

∣yj − ŷi
∣

∣

α

⎤

⎦

1/α

α ≥ 0, (2.3)

with respect to ŷi. A classic choice is the simple mean imputation ŷi = E(y | j ∈ Ji) obtained
for α = 2. If we set α = 1, me = [(k + 1)/2], and me′ = k + 1 − me, we obtain the median
imputation. For α → ∞, (2.3) yields the midrange. In our procedure, α is not fixed but must
be optimized to fit the observed values of the target variable yj for j ∈ Ji. With this aim, we
have used the procedure developed by Mineo and Ruggieri [18] (see also [19]) centered on
the exponential power probability density function

f
(

y
)

=
exp

{−(∣∣y − μα
∣

∣

α
/ασαα

)}

2σαα1/αΓ(1 + 1/α)
, α > 0. (2.4)

The symbols μα, σα, and α denote, respectively, the location, scale, and shape parameters of
the density. If α ≥ 1, the curves generated by (2.4) are “bell” shaped. In an attempt to enhance
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the reliability of (2.4) for asymmetrical empirical distributions, we have applied the Box-Cox
power transformation in order to achieve distributional symmetry of the target variable

yj(λ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

yλj − 1

λ
if λ/= 0,

log
(

yj
)

if λ = 0,

yj > 0, j ∈ Ji. (2.5)

The value of λ has been estimated minimizing the standardized third central moment within
the compact interval −3 ≤ λ ≤ 5. See Taylor [20]. Once found the value of ̂λ, model (2.4) is
fitted to the target variable in the transformed scale yj(λ) taking into account the relationship
between α in (2.3) and the tail behavior of the exponential power distribution. See Mineo and
Ruggieri [18].

Missing values must be imputed on the original scale, while (2.5) provides a
replacement value in the Box-Cox scale so that the estimate must be transformed back to the
original. However, when transforming back, the least power mean undergoes a bias unless
λ = 1 (because the transformation is linear) or unless α = 1 because the median is invariant
under monotone transformation. Based on preliminary work, not reported here, a heuristic
bias-correction factor has been devised as follows:

yj = ỹj
(

GM
AM

)τ

, (2.6)

where GM and AM are the geometric and the arithmetic mean of the target variable in
the original scale and τ is a tuning constant. The factor in (2.6) is a monotone decreasing
function of its exponent: the larger τ , is the smaller the factor is, and, hence, the greater
the biascorrection is. In our experiments, we tried (2.6) with τ in a discrete interval (τ1, τ2)
and selected the one whose relative mean error of imputation in the first Sν records was the
smallest.

3. Distance Measurement for Mixed Data

Let X be an object-by-variable data matrix containing measurements of n objects of a mixture
of variables types. Without loss of generality, we may assume that m1 variables are interval
or ratio scaled; m2 are ordinal variables which rank records in terms of degree without
establishing the numeric difference between data points; m3 variables are binary symmetric
(0-0 and 1-1 matches are treated as equally indicative of similarity);m4 are binary asymmetric
(0-0 or 1-1 matches are not regarded as indicative of similarity since 1 is used to indicate the
presence of some feature and 0 its absence). It is important to distinguish between the two
situations: if two records have few copresences in a large number of binary variables which
are considered symmetric, then the similarity between them may be judged as quite large
even if they have very little in common. Conversely, if the variables are considered binary
asymmetric, then a large number of coabsences could be judged insignificant. Finally, m5

variables are nominal with three or more categories and a potentially different number of
states lh, h = 1, 2, . . . , m5. Of course, some of the groups may be empty, and some others may
be split into groups of variables of the same type. In each case,m = m1 + · · · +m5.
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Let p be the number of nonempty subsets of variables. The measurement of the
dissimilarity through a distance function that considers all types of variables can be achieved
in many ways. To begin with, it is possible to perform a separate analysis for each group and
then to compare and synthesize imputation results from alternative sources. A conflict may
occasionally emerge because of irreconcilable differences between the patterns discovered in
the different distance matrices. In real applications, it is unlikely that separate imputations
will generate compatible results; furthermore, the cost of repeated analysis of large data sets
may be too high.

The simplest way to deal with a mixture of variable types is to divide the variables into
types and confine the analysis to the dominant type. Even though it would be easy to judge
which type is “dominant,” this practice cannot be recommended because it discards data
that may be correct and relevant but is produced in the wrong scale. When simultaneously
handling nominal, ordinal, binary, and so forth characteristics, one may be tempted to ignore
their differences and use a distance measure which is suitable for quantitative variables but
is inappropriate for other types. Naturally, this is an absurd solution, but in practice, it often
works.

Another approach is to convert one type of variable to another, while retaining as
much of the original information as possible, and, then, to use a distance function suitable
for the selected type. Anderberg [21, page 94] argued that the primary question to be faced
is which variable type should be chosen. For instance, nominal variables can be transformed
into classes which are codedwith 1s and 0s thus treating them as asymmetric binary variables
along with the original binary variables; subsequently, the records which now only consist of
numerical variables can be compared using traditional distance functions for quantitative
variables (see [22, page 92]). An evident drawback is the use of a large number of binary
variables that are highly interdependent because they imply a choice between mutually
exclusive possibilities. Alternatively, quantitative variables could be dichotomized at a fixed
level so that the new values can be treated using distance functions that are devised for binary
variables. A consequence is that a large number of records will be considered alike, thus
reducing the influence of the quantitative variables. In any event, conversion between scales
involves a loss of information and knowledge.

3.1. General Distance Coefficient

The performance of the NNHDI method depends critically on the distance used to form
the reference sets. A particularly promising approach consists of processing all the variables
together and performing a single imputation procedure based on a coefficient of dissimilarity
explicitly designed for mixed data. In this work, we have adopted the following measure of
global distance:

δi,j =
p
∑

t=1

[

h
(t)
i,j +

(

1 + h(t)i,j
)

δ
(t)
i,j

]

, (3.1)

with

h
(t)
i,j =

∑Mt

s=Mt−1
hs,i,j

mt
, Mt =

t
∑

s=1

ms, M0 = 0, (3.2)
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where δ(t)i,j is the tth partial distance between the records Ri and Rj . Usually, the distances are
scaled to vary in the unit interval

0 ≤ δ(t)i,j ≤ 1, t = 1, 2, . . . , p, (3.3)

where zero is achieved only when the two records are identical in all nonempty fields, and
one is achieved when the two records differ maximally in all of the fields validly compared.
Condition (3.3) is necessary, otherwise a combined representation of the distances would
copy the structure of the indicator with the greatest distances.

Since donors may have missing values themselves, distances are, necessarily, com-
puted for variables which have complete information for both records, while values
contained in one record but missing from the other are ignored. The indicator hs,i,j in the
expression (3.1) is zero if the comparison of Ri and Rj is valid with respect to the sth variable,
whereas hs,i,j = 1 if either of the fields is empty. Conventionally, we set δ(t)i,j = 1 if h(t)i,j = 1. If

h
(t)
i,j = 0, t = 1, 2, . . . , p, then (3.1) becomes the all-purpose measure of dissimilarity proposed

by Gower [23]. See also Kaufman and Rousseeuw [24, page 19], Di Ciaccio [25], Murthy et
al. [26], and Seber [27, pages 357-358].

Imputation will fail if there is not at least one donor with a valid datum regarding
at least one variable which is not missing in the receptor. In passing, we note that missing
values in the auxiliary variables can reduce the neighborhood of donors to the point where
imputation becomes impossible, at least for a subset of cases. See Enders [28, page 50]. In this
situation, the receptor should perhaps be excluded from the set of usable records and treated
using a different method.

The global distance (3.1) is in line with the principle that the reliability of a distance
decreases with the reduction of meaningful comparisons. Consequently, records having less
valid fields are penalized in order to compensate for their lower usability. This choice has in
addition the desirable effect of deterring the selection of donors that share too few features
with the receptor.

A limitation of (3.1) is that variables can substitute each other, that is, a higher distance
in one variable can compensate for a lower value in another. The influence of Xs can be
increased or decreased by rescaling its contribution proportionally to ws and grading it in
the range [0, ws]. If the number of variables is high, however, a very complex process is
needed to amalgamate all the partial distance matrices into a global matrix of distance. To
keep computations to a manageable level, we decided to assign distinct weights to the groups
of the variables, but not to each single variable

D =
p
∑

t=1

wtDt with wt ≥ 0;
p
∑

t=1

wt = 1, (3.4)

where Dt = Ht + (U + Ht) 
 Δt, Δt = δ
(t)
i,j . Here, U is a matrix of 1s, and 
 indicates the

Hadamard product between two matrices. The choice of (3.4) reduces the flexibility of the
general dissimilarity coefficient, but the search for an optimal weighting system is simplified.
It is important to emphasize here that if the partial distance matrices have a similar structure,
they generate overlapping reference sets, and no advantage can be gained by combining them
as (3.4).
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Gower [23] requires that each d
(t)
i,j is a dissimilarity coefficient which generates a

Euclidean distance matrix Δt. Pavoine et al. [29] show that if the Dts are Euclidean, then
D is also Euclidean. Nonetheless, the status of being a Euclidean matrix could be modified by
(3.1). If Dt is not Euclidean, it is possible to determine constants φ1 such that a matrix with
elements d(j)

r,s + φ1, r /= s, is Euclidean. See Gower and Legendere [30, Theorem 7].

3.2. Distances Involved in the General Coefficient

In general, it is not possible to design a coefficient that can be recommended given a particular
type of variable because, besides the intrinsic properties of the coefficients, the number and
the values of auxiliary variables have a determinant role. For the present paper, we have
selected some commonly used distance functions which have a range of [0, 1], irrespective of
the number of variables so that distances are unaffected by the number of fields.

(1) Ratio and Interval Scale. Euclidean distance

d
(1)
i,j =

√

√

√

√

√

√

(m1)−1
∑

hs,i,j=0,
s∈[M0,M1]

(

xi,s − xj,s
rs

)2

, (3.5)

where rs is the observed range of the sth variable.

(2) Ordinal Scale. Linear disagreement index

d
(2)
i,j =

√

√

√

√

√

√

(m2)−1
∑

hs,i,j=0,
s∈[M1+1,M2]

[

xi,s − xj,s
rs − 1

]2

, (3.6)

where rh = max{Xh}. The values of the hth ordinal variables are integers in [1, rh].

(3) Binary Symmetric. Number of such variables in which records have different values
divided by the total number of binary symmetric variables:

d
(3)
i,j =

√

√

√

√

√

∑

hs,i,j=0,
s∈[M2+1,M3]

δ
(

xi,s, xj,s
)

m3
, δ

(

xi,s, xj,s
)

=

⎧

⎨

⎩

1 if xi,s /=xj,s,

0 otherwise.
(3.7)

(4) Binary Asymmetric. Number of binary asymmetrical variables in which both rec-
ords have a positive value to the total number of these variables

d
(4)
i,j =

√

√

√

√

√

∑

hs,i,j=0,
s∈[M3+1,M4]

δ
(

xi,s, xj,s
)

m4
, δ

(

xi,s, xj,s
)

= 1 −min
{

xi,s, xj,s
}

. (3.8)
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(5) Nominal. Number of states of the polytomies in which the two records under com-
parison have the same state, divided by the total number of states across all the
politomies

d
(5)
i,j =

√

√

√

√

√

∑

hs,i,j=0,
s∈[M4+1,M5]

δ
(

xi,s, xj,s
)

m5
, δ

(

xi,s, xj,s
)

=

⎧

⎪

⎨

⎪

⎩

ls
λ5

if xi,s /=xj,s,

0 otherwise,
(3.9)

where λ5 =
∑M5

s=M4+1
ls. Each comparison can be scored as λ5 different dichotomies

by setting ls of these to 1 when Ri and Rj coincide on the sth politomy or to 0 when
Ri and Rj are different.

All the proposed indices generate a Euclidean distance matrix.

4. Combining Distances

To use the combined distance function (3.4), a user must supply proper weights for the
various types of variables. Bankier et al. [31] hypothesized that weights should be smaller for
variables when it is considered less important that they match or variables considered more
likely to be in error or to be affected by missingness. Istat [32] determined, with respect to the
MAR dynamic of missing values, the weights according to the degree of association between
the target and the auxiliary variables in complete records. For the moment, we ignore these
weighting schemes although they should be considered seriously in future research.

4.1. Equal and Proportional Weighting

The weights wt, t = 1, 2, . . . , p could be determined on the basis of an a priori judgment of
what is important andwhat should be prioritized with regard to the partial distance matrices.
In other words, investigators give weights to types based on an intuitive understanding
of the data, but if they do not know the context well, the assessment may be inadequate
and introduce bias. Chiodi [33] found equal weighting to be more valuable for his data:
wt = 1/p, t = 1, 2, . . . , p. This formula regards all the types of variables to be equally effective
when determining the global distance matrix. Such a solution may be perfectly acceptable
given that we rarely know a priori if some types are more helpful than others. In fact,
equal weighting appears to be a valid practice when there are no theoretical or empirical
grounds for choosing a different scheme. However, it is inadvisable to equate the weight of
the variables without further studying their contribution to the variability of the data set as a
whole.

Romesburg [34] based the weights on the proportion of each type of variable: wt =
mt/m, t = 1, 2, . . . , p. If all the auxiliary variables were assumed to have equal efficacy,
independently of the scale on which they are measured, then this option would be the right
choice. An obvious example is when all the auxiliary variables are strongly associated with
the target variables. The original version of the Gower’s coefficient is a weighted average of
three different measures of dissimilarity where the weights are the proportions of each type
of variable.
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4.2. Equalizing Standard Deviations of Partial Distances

The significance of a type of variable in determining the global distance depends, among
other things, on the variability of d(t)

i,j , t = 1, 2, . . . , p so that types leading to a high variance of
pairwise distances will, thus, be more likely to have great influence into the global distance.
To ensure the respect for this principle, we can use the reciprocal of a measure of “variability
for the partial distances.” For example,

wt =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪
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])
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[
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(
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[
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(t)
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])] if σ
[

d
(t)
i,j

]

> 0,

0 otherwise,

t = 1, 2, . . . , p, (4.1)

where σ[d(t)
i,j ] is the standard deviation of the distances in the strictly lower triangular part of

Dt. Ifw is based on (4.1), then the elements of the lower triangular part ofDt are normalized
to have a standard deviation of one.

4.3. Equalizing Mean of Partial Distances

Clear-cut variables such as binary and categorical variables tend to have more of an impact
on the calculation of the global distance. Kagie et al. [35] observe that there is no reason to
assume, without reference to specific aspects of the problem at hand, that nominal variables
are more important than quantitative ones. Therefore, an adaptation is necessary. Following
Kagie et al. [35] and Lee et al. [36], the distances in the strictly lower triangular part ofDt can
be normalized to have an average value of one

wt =
1/

(

μ
[

d
(t)
i,j

])

∑p

r=1

[

1/
(

μ
[

d
(t)
i,j

])] , t = 1, 2, . . . , p, (4.2)

where μ[d(t)
i,j ] is the average distance in the strictly lower triangular part of the tth partial

distance matrix.

4.4. Distatis Weighting

To obtain an optimal system of weights, we need an expression for how much a certain type
of variable affects the global distance. This can be derived from the total sum of the squares
of the elements in the partial distance matrices Dt, t = 1, 2, . . . , p choosing the weights so as
to maximize the variance of the elements in the global distance matrixDwhich, in turn, leads
to the Distatis procedure as developed by Abdi et al. [37] (see also [38]).

In the first step of Distatis, each Dt is transformed into the cross-product matrix St
which has the same information content as Dt but is more suitable to the eigen-decomposi-
tion. Let un be an n × 1 vector of 1s, and let In be the identity matrix of order n. A normalized
cross-product matrix for Dt is

Bt =
(

1
λ1,t

)

St, St = −0.5CD2
tC

t, C = In − n−1unutn, (4.3)
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where D2
t is the matrix whose (i, j)th element is the square of d(t)

i,j , and λ1,t > 0 indicates
the largest eigenvalue of St. It is well known (see, e.g., [39]) that St is symmetric, positive
semidefinite and has zero row sums.

Let βt = Vec(Bt), t = 1, 2, . . . , p be the column vector obtained by stacking the column
of Bt on top of one another and organizing them into an n2 × p matrix Z = [β1,β2, . . . ,βp].

The central step of Distatis is to create the matrix A = (N−0.5Z)t(ZN−0.5), where N−0.5 is a
diagonal matrix whose elements are the square roots of the reciprocal values in the diagonal
of (ZtZ). The generic element ar,s of A is the vectorial correlation coefficient [40] between the
cross-product matrix derived from the partial distance matrices Dr and Ds, r, s = 1, 2, . . . , p,

ar,s =
βtrβs

∥

∥βr
∥

∥

∥

∥βs
∥

∥

. (4.4)

Naturally, ar,s = as,r and ar,r = 1, r = 1, 2, . . . , p. Since (4.4) verifies the relationship βtrβs =
Trace(BtrBs) and since Br and Bs are symmetric and positive semidefinite, then Trace(BtrBs) ≥
λn,rTrace(Bs), where λn,r is the smallest eigenvalue of Br (see [41]); it follows that 0 ≤ ar,s ≤ 1.

The scope of Distatis is to find a convex linear combination β = Vec(D) of the vectors
in Z that explains the maximum amount of variance of Z possible. In this sense, Distatis is
simply the principal component analysis of A, that is, A = QΛQt with QtQ = Ip. Since A
is positive or, at least, nonnegative irreducible, then the Perron-Frobenius theorem (see, e.g.,
[42]) ensures that there is a single eigenvalue, say θ1, that is, positive and greater than or
equal to all other eigenvalues in modulus and that there is a strictly positive eigenvector q
corresponding to θ1. The global cross-product matrix can now be found using

B =
p
∑

t=1

wtBt, where w =
(

utpq
)−1

q. (4.5)

The weights w are such that the types of variables which are more similar to the others get
higher weights than those which disagree with most of the rest of the variables. The related
global distance matrix is

D =
p
∑

t=1

wtDt. (4.6)

Distatis weights are demanding from a computational point of view because they involve
an eigenanalysis of potentially very large matrices. (Only if P = 2 are the weights (4.6) easy
to compute: 0.5 and 0.5). However, the computational task can be simplified by performing
the one-time determination of the weighs on a sufficiently large random sample of complete
records.

5. Experimental Results

In this section, we present results of a numerical experiment to test how well the NNHDI
reconstructs missing values. More specifically, we examine the five different weighting
methods discussed in Section 4 to obtain a global distance matrix in connection with the
imputing of the least power mean of donors. It is of particular interest to determine which
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weighting scheme for partial matrices would have the smallest detrimental effect on the
accuracy of data when using imputed values. In this sense, we have used data sets with
variables which are completely known for all units (where necessary, we have removed
incomplete records). We then simulated missing values according to a MAR mechanism to
evaluate the bias of our NNHDI algorithm. All simulations were performed using R [43].

5.1. Description of Data Sets Used in the Experiments

Our experiments were carried out using ten data sets to represent different sized files that are
commonly encountered. These data sets are interesting because they exhibit a wide variety
of characteristics and have a good mix of attributes: continuous, binary, and nominal. In our
study, we have employed actual data sets because of their realism and the ease with which
they could be adapted to the experimental setting. In some cases, we have not used the entire
data set, but a subset obtained by drawing without replacement a random sample from the
data set.

(a) Heart Disease Cleveland Database (UC-Irvine Repository) Frank and Asuncion [44]. The
publicly available Cleveland heart-disease database was used to test the kernel
methods. It consists of 303 cases where the disorder is one of four types of heart-
disease or its absence. This database contains 76 attributes, but all published
experiments refer to using a subset of 14 of them. Experiments with the Cleveland
database have concentrated on simply attempting to distinguish presence from
absence of disease. The variables summarizing the medical symptoms considered
as important indicators of a patient’s condition were classified as metric: (1, 2, 8, 10),
ordinal: (11, 12), binary symmetric: (2, 6), binary asymmetric: (9, 14), and nominal:
(3, 11, 12). The “goal” field or outcome refers to the presence of heart disease in
the patient. The problem is to predict the outcome given the other 13 values of
the characteristics. To make things more apt to our purposes, we changed the
problem slightly and used the serum cholesterol in mg/dL as the target variable.
The original data set contains 270 complete records, but we have analyzed a random
subset of n = 30 records.

(b) Car Data Set (Package MASS of R). Data from n = 93 cars on sale in the USA in
1993. Cars were selected at random from among 1993 passenger car models that
were listed in both the consumer reports issue and the PACE buying guide. Pickup
trucks and sport/utility vehicles were eliminated due to incomplete information in
the consumer reports source. Duplicate models (e.g., Dodge Shadow and Plymouth
Sundance) were listed at most once. The variables have been classified as metric:
(4, 6 : 8, 12 : 15, 17, 19 : 23), ordinal: (9, 11, 18), binary symmetric: (16), binary
asymmetric: (24), and nominal: (1 : 3, 10, 25); the target variable is y = maximum
price. Further description can be found in Lock [45].

(c) Demand for Medical Care (NMES 1988, Package AER of R). Cross-section data
originating from the US National Medical Expenditure Survey (NMES) conducted
in 1987 and 1988 to provide a comprehensive picture of how Americans use
and pay for health services. The NMES is based upon a representative, national
probability sample of the civilian population and individuals admitted to long-
term care facilities during 1987. The data refer to individuals of ages 66 and over,
all of whom are covered by Medicare (a public insurance program providing
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substantial protection against healthcare cost). These data were verified by cross-
checking information provided by survey respondents with providers of health-
care services. In addition to healthcare data, NMES provides information on health
status, employment, sociodemographic characteristics, and economic status. The
version of the data set used in our experiment contains m = 19 variables which we
have classified as follows: metric: (1 : 6, 11, 15), ordinal: (7, 8), binary symmetric:
(9, 13, 14), binary asymmetric: (12, 17 : 19), and nominal: (7, 8). The income of the
individual was chosen as the target variable y. To keep the volume of data within
reasonable limits, we have randomly selected n = 150 records. Details are given by
Cameron and Trivedi [46].

(d) Fatalities, in Package AER of R. US traffic fatalities panel data annually from 1982
to 1988 for the 48 contiguous states (excluding Alaska, Hawaii, and the District
of Columbia). Researchers using this data set investigate the impact of beer taxes
and a variety of alcohol-control policies on motor vehicle fatality rates. Special
attention is paid to bias resulting from failing to adequately control for grassroots
efforts to reduce drunk driving, the enactment of other laws which simultaneously
operate to reduce highway fatalities, and the economic conditions existing at the
time the legislation is passed. Among the most interesting characteristics of traffic
fatalities found in the data set are the drinking age variable, a factor indicating
whether the legal drinking age is 18, 19, or 20; two binary punishment variables
which describe the state’s minimum sentencing requirements for an initial drunk
driving conviction; per capita death rates from accidents occurring at night and for
18 to 20 year olds. The data set comprises 336 observations on m = 34 variables.
However, record 28 has been excluded because of a lack of valid observations in
two fields. All in all n = 335 records without missing values are considered. The
classification of the variables is metric: (3 : 9, 11 : 13, 17 : 25, 27 : 34), ordinal:
(10, 32, 33), binary symmetric: (2, 11, 13), binary asymmetric: (14 : 16), and nominal:
(1, 2). The number of alcohol-involved vehicle fatalities is used as target variable.
See Stock and Watson [47] for more details.

(e) Australian Credit Data Set (UC-Irvine Repository) Frank and Asuncion [44]. This file
concerns credit card applications. Each case concerns an application for credit card
facilities described by 16 attributes. Metric: (3, 8, 11, 14, 15), ordinal: (2, 9, 10), binary
symmetric: (1, 16), binary asymmetric: (9, 10, 12), and nominal: (4 : 7, 13). The
first metric variable was selected as the target variable. The data frame contains
690 observations but 37 cases (5%) have one or more missing values, and they
were consequently removed from further analysis. Hence, the effective number of
records is n = 653. This data set is considered both scanty and noisy and, probably
because of this, has become very popular in the testing algorithms for building
classification trees. From our point of view, this dataset is interesting because there
is a good mix of attributes: continuous, nominal with small numbers of values, and
nominal with larger numbers of values. There are also a few missing values. More
information can be found in Quinlan [48].

5.2. Experiment: Random Percentage of Missing Values in All the Variables

In a first phase, we omitted a fraction πxj ∈ {10, 20}, j = 1, 2, . . . , m ensuring that no row
x contains more than (m − 2) incomplete fields. The πxj records in which the value of the
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auxiliary variables has to be removed were chosen by drawing a simple random sample
without replacement from the first �n/2� records, once the data set had been sorted in
ascending order of y. This step was repeated for each auxiliary variable. In this way, a mild
association could be observed between y and X because the largest half of y could rely on a
richer source of information in terms of auxiliary variables. In the second phase, we omitted
a proportion πy ∈ {15, 25, 40} of the target variable, after randomly permuting the auxiliary
variables. Records were resorted in ascending order of X1 allocating the missing values of X1

in the last positions. Records with a missing y were chosen to be a random sample without
replacement of size �nπy/m� + bj , where

bj =

⎧

⎨

⎩

1 if
⌊

nπy
⌋

mod m/= 0,

0 otherwise,
j = 1, 2, . . . , m. (5.1)

The omission continued until the total number of missing values is reached. The sample
of y was drawn with the Midzuno’s method. The factors of proportionality were i−1, i =
1, 2, . . . , n which are inversely related to the order of appearance of the records in the current
arrangement of the data set. Consequently, the values of the target variable are more likely
to be missing for cases with low values of the auxiliary variable. The above process is
iterated for a number of auxiliary variables X2, X3, . . ., sufficient to complete the number
of missing values to be injected into the target variable. By operating in this manner, the
missing values in y have a probabilistic link with the maximum possible number of auxiliary
variables. Furthermore, the simultaneous presence of missing values in y and X is deterred.
The double relationship between y and x makes the existence of an MAR mechanism in the
simulated patterns of missingness plausible. Each combination of πy × πxi has been repeated
N = 100 times to reduce irregular variations. The efficiency of the reconstruction process of
the NNHDI algorithms is measured by the mean relative error (MRE)
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for yi /= 0, q = 1, 2, . . . , 5, (5.2)

where ŷ(q)
i is the value obtained from one of the five NNHDI procedures in which the value

of the target variable was considered missing. The index E
(q)
2 is related to the size of the

discrepancies between predicted and observed values. Clearly, a small value ofE(q)
2 represents

a successful method. The results are reported in Table 1.
No strong evidence has been found in the experiment in favor of or against one of the

five weighting systems of the partial matrices discussed in Section 4 when both the target
and the auxiliary variables are affected by missingness. This implies that practices of using
aprioristic system of weights to combine the partial distance matrices do not, apparently,
penalize the accuracy of imputed values too greatly, especially for larger data sets. One
potential reason for this finding is that the impact of each single variable on the global
distance is rather small compared with the effect of the other variables in the same category
or with the effect of a dominant group. In these cases, the flexibility in the choice of weights
is not very helpful in comparing two records, and Monte Carlo experiments confirm that no
algorithm is significantly more efficient than others under these data conditions. However,
in measuring the overall quality of missing value estimates produced by a given NNHDI
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Table 1:Missing values in all the variables: mean relative error.

Data set τ Weights T15A10 T25A10 T40A10 T15A20 T25A20 T40A20

Hearts 8

Distatis 14.98 15.91 16.26 13.87 16.05 17.66
Proportional 14.85 17.12 16.66 13.40 17.13 17.81
Uniform 14.23 16.37 15.38 14.75 16.47 18.41
Eq. μ 15.50 17.28 16.20 13.62 17.12 17.75
Eq. σ 14.14 14.82 15.98 11.52 14.31 16.14

Cars 12

Distatis 24.20 24.69 26.27 39.70 37.31 37.40
Proportional 24.84 24.40 25.45 31.63 33.61 33.03
Uniform 23.28 25.59 25.86 39.84 37.46 37.12
Eq. μ 25.53 24.86 26.78 38.40 37.19 36.82
Eq. σ 38.41 36.55 37.03 39.51 40.00 37.22

Medicare 7

Distatis 64.95 71.32 71.75 71.15 69.09 71.53
Proportional 65.23 68.03 70.44 66.74 65.20 66.27
Uniform 68.23 72.10 74.59 71.63 70.11 75.81
Eq. μ 66.71 71.98 74.24 71.81 69.40 75.24
Eq. σ 68.60 71.67 73.25 73.22 69.22 69.97

Fatalities 20

Distatis 108.02 123.86 122.08 145.22 142.89 128.83
Proportional 161.37 170.39 156.02 171.66 168.77 152.75
Uniform 122.32 133.57 131.89 151.60 144.03 132.22
Eq. μ 133.87 145.28 139.10 153.47 148.96 136.95
Eq. σ 87.40 83.19 80.90 95.88 94.80 91.38

Credit appr. 5

Distatis 25.42 25.96 26.38 23.5 23.63 24.59
Proportional 26.36 26.62 27.08 23.19 23.87 24.39
Uniform 25.46 25.82 26.26 23.27 23.65 24.68
Eq. μ 25.68 25.96 26.25 23.18 23.57 24.65
Eq. σ 25.76 25.78 26.28 23.39 23.81 24.78

variation, the weighting proportional to the number of variables in the groups and the
equalization of the mean partial distance performed slightly better than the other NNHDI
algorithms.

In general, one would expect that with the increase in the proportion of incomplete
records, or in the number of missing values in a record, or both, the quality of estimates
would diminish due to the reduction of potentially useful information. Indeed, this seems to
be confirmed by the high values of E(q)

2 . Nonetheless, the values of the index for experiments
in which the percentage of missing values in the x is 20% are not much higher, and in many
cases are lower, than for experiments in which the percentage is 10%.

Table 2 shows the average of E(q)
2 over all weighting systems for the nine combinations

ofmissing percentages in the target and in the auxiliary variables. The trends of the total mean
relative error are not in line with what would be a logical response to the reduced quantity
of information, that is, effectively handled. This can be explained in a number of ways. It is
plausible that the impact of the missing values in the auxiliary variables is reduced because
they are less present in records with a missing value in y. It is also plausible that the y, x
interactions have a solid MAR mechanism so that the increase in the percentage of missing
values in x has moderate detrimental effects on the accuracy of the reconstruction process;
on the other hand, high percentages of missing values in y and x may even strengthen the
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Table 2:Missing values in all the variables: mean relative error across the weightings.

Data set T15A00 T15A10 T15A20 T25A00 T25A10 T25A20 T40A00 T40A10 T40A20
Hearts 8.57 14.74 13.43 8.42 16.30 16.22 8.47 16.10 17.55
Cars 15.65 27.25 37.82 16.22 27.22 37.11 19.26 28.28 36.32
Medicare 72.53 66.74 70.91 71.78 71.02 68.60 70.83 72.85 71.76
Fatalities 36.84 122.60 143.57 39.61 131.26 139.89 53.17 126.00 128.43
Credit approvals 25.77 25.74 23.31 25.82 26.03 23.71 26.44 26.45 24.62

cohesion of the available values in the records concerned. In the light of our experiment, the
proportion of missing data does not appear to be the major determinant of imputation errors.

6. Conclusions and Suggestions for Future Research

Missing values often occur in real-world applications and represent a significant challenge
in the field of data quality, particularly when the data set variables have mixed types. In this
paper, we have conducted an extensive study of the nearest neighbor hot deck imputation
(NNHDI) methodology where, for each recipient record with incomplete data for the target
variables, a set of donors is selected so that the donors are similar to their recipient with
regards to the auxiliary variable. The known values of the donors are then used to derive a
value for the missing data by computing the least power mean (together with the Box-Cox
transformation) of the target variable in the set of donors.

The particular focus of this paper is on “problematic” data sets containing missing
values both in the target and the auxiliary variables and involving a mixture of numeric,
ordinal, binary, and nominal variables. It has become increasingly apparent that efficacy
and effectiveness of the NNHDI hinges crucially on how the distance between records is
measured and different ways of measuring distances lead to different solutions. In this work,
we have devised a new global distance function based on the partial distance matrices
obtained from the various types of variables appearing in (or missing from) the records of
the data set. The separate distance matrices are combined as a weighted average, and the
resulting global distancematrix is then used in the search for donors. The contribution of each
group of variables to the global distance is scaled with a weight which contracts/expands the
influence of the group. In this study, we have compared the performance of five weighting
schemes.

To judge the accuracy of the reconstruction process, we have considered a performance
indicator which is related to the size of the discrepancies between predicted and observed
values. More specifically, the relative absolute mean error was calculated for each method
based on five real data sets in three different experiments: leaving one out, incompleteness in
the target variables, and incompleteness in all variables. The missing values in the last two
experiments were inserted according to an MAR mechanism.

The empirical findings suggest that data-driven weights for the partial distance
matrices are moderately preferable to aprioristic weights although the reasons are more
theoretical than objective, as the experiments presented in this work give little evidence
in support of a specific weighting system. This is mostly due to the strong relationships
among the variables of the tested data sets; also, the low variability showed by the least
power mean used for imputing missing values might have given a nonmarginal contribution
to the insufficient degree of discernability of the weighting systems. On the other hand,
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the investigations carried out using the NNHDI demonstrate the ability of this method to
compensate for missing values when several type of variables occur in the same data set,
even if some of the records have lacunae in the auxiliary variables. The key benefit of the
NNHDI combined with the new global distance and the least power mean estimator is that
the good results achievable in terms of low reconstruction error should not be compensated
by strong distributional assumptions or sophisticated modeling.

Our results have also shown that the choice of weights does not significantly affect the
quality of imputed values, but we cannot exclude that alternative weights might achieve a
superior performance. Perhaps, it is not insignificant that the highest impact of the missing
values was in data sets where the metric variables were overrepresented. We plan to study
weighting systems based on the degree of interdependency between the target and the
auxiliary variables, so we can understand better the implications of such differences for
diverse NNHDI algorithms.

The quality of the results of the NNHDI is closely related to the specific observations
to be analyzed. Therefore, instead of using a fixed value of k over the entire data set, a
locally adaptive choice of the cardinality of the reference sets may be more useful in practice.
Alternatively, the value of k can be determined by performing a preliminary analysis of some
subsets of the data set at hand. An evaluation of alternative strategies of constructing the
reference sets might offer a promising line for further research into the NNHDI.
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