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Applying to the moment inequality of negatively dependent random variables the complete
convergence for weighted sums of sequences of negatively dependent random variables is
discussed. As a result, complete convergence theorems for negatively dependent sequences of
random variables are extended.

1. Introduction and Lemmas

Definition 1.1. Random variables X and Y are said to be negatively dependent (ND) if

P
(
X ≤ x, Y ≤ y

) ≤ P(X ≤ x)P
(
Y ≤ y

)
(1.1)

for all x, y ∈ R. A collection of random variables is said to be pairwise negatively dependent
(PND) if every pair of random variables in the collection satisfies (1.1).

It is important to note that (1.1) implies that

P
(
X > x, Y > y

) ≤ P(X > x)P
(
Y > y

)
(1.2)

for all x, y ∈ R. Moreover, it follows that (1.2) implies (1.1), and, hence, (1.1) and (1.2) are
equivalent. However, (1.1) and (1.2) are not equivalent for a collection of 3 or more random
variables. Consequently, the following definition is needed to define sequences of negatively
dependent random variables.
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Definition 1.2. The random variables X1, . . . , Xn are said to be negatively dependent (ND) if,
for all real x1, . . . , xn,

P

⎛

⎝
n⋂

j=1

(
Xj ≤ xj

)
⎞

⎠ ≤
n∏

j=1

P
(
Xj ≤ xj

)
,

P

⎛

⎝
n⋂

j=1

(
Xj > xj

)
⎞

⎠ ≤
n∏

j=1

P
(
Xj > xj

)
.

(1.3)

An infinite sequence of random variables {Xn;n ≥ 1} is said to be ND if every finite subset
X1, . . . , Xn is ND.

Definition 1.3. Random variables X1, X2, . . . , Xn, n ≥ 2, are said to be negatively associated
(NA) if, for every pair of disjoint subsets A1 and A2 of {1, 2, . . . , n},

cov
(
f1(Xi; i ∈ A1), f2

(
Xj ; j ∈ A2

)) ≤ 0, (1.4)

where f1 and f2 are increasing in every variable (or decreasing in every variable), provided
this covariance exists. A random variables sequence {Xn;n ≥ 1} is said to be NA if every
finite subfamily is NA.

The definition of PND is given by Lehmann [1], the concept of ND is given by
Bozorgnia et al. [2], and the definition of NA is introduced by Joag-Dev and Proschan [3].
These concepts of dependence random variables have been very useful in reliability theory
and applications.

First, note that by letting f1(X1, X2, . . . , Xn−1) = I(X1≤x1,X2≤x2,...,Xn−1≤xn−1), f2(Xn) = I(Xn≤xn)

and f1(X1, X2, . . . , Xn−1) = I(X1>x1,X2>x2,...,Xn−1>xn−1), f2(Xn) = I(Xn>xn), separately, it is easy to see
that NA implies (1.3). Hence, NA implies ND. But there are many examples which are ND
but are not NA. We list the following two examples.

Example 1.4. Let Xi be a binary random variable such that P(Xi = 1) = P(Xi = 0) = 0.5 for
i = 1, 2, 3. Let (X1, X2, X3) take the values (0, 0, 1), (0, 1, 0), (1, 0, 0), and (1, 1, 1), each with
probability 1/4.

It can be verified that all the ND conditions hold. However,

P(X1 +X3 ≤ 1, X2 ≤ 0) =
4
8

� P(X1 +X3 ≤ 1)P(X2 ≤ 0) =
3
8
. (1.5)

Hence, X1, X2, and X3 are not NA.

In the next example X = (X1, X2, X3, X4) possesses ND, but does not possess NA
obtained by Joag-Dev and Proschan [3].

Example 1.5. Let Xi be a binary random variable such that P(Xi = 1) = .5 for i = 1, 2, 3, 4. Let
(X1, X2) and (X3, X4) have the same bivariate distributions, and let X = (X1, X2, X3, X4) have
joint distribution as shown in Table 1.
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Table 1

(X1, X2)

(0, 0) (0, 1) (1, 0) (1, 1) Marginal

(0, 0) .0577 .0623 .0623 .0577 .24

(0, 1) .0623 .0677 .0677 .0623 .26

(X3, X4) (1, 0) .0623 .0677 .0677 .0623 .26

(1, 1) .0577 .0623 .0623 .0577 .24

marginal .24 .26 .26 .24

It can be verified that all the ND conditions hold. However,

P(Xi = 1, i = 1, 2, 3, 4) > P(X1 = X2 = 1)P(X3 = X4 = 1), (1.6)

violating NA.

From the above examples, it is shown that ND does not imply NA and ND is
much weaker than NA. In the papers listed earlier, a number of well-known multivariate
distributions are shown to possess the ND properties, such as (a) multinomial, (b)
convolution of unlike multinomials, (c) multivariate hypergeometric, (d) dirichlet, (e)
dirichlet compound multinomial, and (f) multinomials having certain covariance matrices.
Because of the wide applications of ND random variables, the notions of ND random
variables have received more and more attention recently. A series of useful results have
been established (cf. Bozorgnia et al. [2], Amini [4], Fakoor and Azarnoosh [5], Nili Sani et al.
[6], Klesov et al. [7], and Wu and Jiang [8]). Hence, the extending of the limit properties of
independent or NA random variables to the case of ND random variables is highly desirable
and of considerable significance in the theory and application. In this paper we study and
obtain some probability inequalities and some complete convergence theorems for weighted
sums of sequences of negatively dependent random variables.

In the following, let an � bn (an � bn) denote that there exists a constant c > 0 such
that an ≤ cbn (an ≥ cbn) for sufficiently large n, and let an ≈ bn mean an � bn and an � bn.
Also, let log x denote ln(max(e, x)) and Sn=̂

∑n
j=1 Xj.

Lemma 1.6 (see [2]). Let X1, . . . , Xn be ND random variables and {fn;n ≥ 1} a sequence of Borel
functions all of which are monotone increasing (or all are monotone decreasing). Then {fn(Xn);n ≥ 1}
is still a sequence of ND r. v. ’s.

Lemma 1.7 (see [2]). Let X1, . . . , Xn be nonnegative r. v. ’s which are ND. Then

E

⎛

⎝
n∏

j=1

Xj

⎞

⎠ ≤
n∏

j=1

EXj. (1.7)
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In particular, letX1, . . . , Xn be ND, and let t1, . . . , tn be all nonnegative (or non-positive) real numbers.
Then

E

⎛

⎝exp

⎛

⎝
n∑

j=1

tjXj

⎞

⎠

⎞

⎠ ≤
n∏

j=1

E
(
exp

(
tjXj

))
. (1.8)

Lemma 1.8. Let {Xn;n ≥ 1} be an ND sequence with EXn = 0 and E|Xn|p < ∞, p ≥ 2. Then for
Bn =

∑n
i=1 EX

2
i ,

E|Sn|p ≤ cp

{
n∑

i=1

E|Xi|p + B
p/2
n

}

, (1.9)

E

(
max
1≤i≤n

|Si|p
)

≤ cplog
pn

{
n∑

i=1

E|Xi|p + B
p/2
n

}

, (1.10)

where cp > 0 depends only on p.

Remark 1.9. If {Xn;n ≥ 1} is a sequence of independent random variables, then (1.9) is
the classic Rosenthal inequality [9]. Therefore, (1.9) is a generalization of the Rosenthal
inequality.

Proof of Lemma 1.8. Let a > 0, X′
i = min(Xi, a), and S′

n =
∑n

i=1 X
′
i. It is easy to show that

{X′
i; i ≥ 1} is a negatively dependent sequence by Lemma 1.6. Noting that (ex − 1 − x)/x2

is a nondecreasing function of x on R and that EX′
i ≤ EXi = 0, tX′

i ≤ ta, we have

E
(
etX

′
i

)
= 1 + tEX′

i + E

(
etX

′
i − 1 − tX′

i

t2X
′2
i

t2X
′2
i

)

≤ 1 +
(
eta − 1 − ta

)
a−2EX

′2
i

≤ 1 +
(
eta − 1 − ta

)
a−2EX2

i

≤ exp
{(

eta − 1 − ta
)
a−2EX2

i

}
.

(1.11)

Here the last inequality follows from 1 + x ≤ ex, for all x ∈ R.
Note that Bn =

∑n
i=1 EX

2
i and {X′

i; i ≥ 1} is ND, we conclude from the above inequality
and Lemma 1.7 that, for any x > 0 and h > 0, we get

e−hxE
(
ehS

′
n

)
= e−hxE

(
n∏

i=1

ehX
′
i

)

≤ e−hx
n∏

i=1

E
(
ehX

′
i

)

≤ exp
{
−hx +

(
eha − 1 − ha

)
a−2Bn

}
.

(1.12)
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Letting h = ln((xa)/Bn + 1)/a > 0, we get

(
eha − 1 − ha

)
a−2Bn =

x

a
− Bn

a2
ln
(
xa

Bn
+ 1
)

≤ x

a
. (1.13)

Putting this one into (1.12), we get furthermore

e−hxE
(
ehS

′
n

)
≤ exp

{
x

a
− x

a
ln
(
xa

Bn
+ 1
)}

. (1.14)

Putting x/a = t into the above inequality, we get

P(Sn ≥ x) ≤
n∑

i=1

P(Xi > a) + P
(
S′
n ≥ x

)

≤
n∑

i=1

P(Xi > a) + e−hxEehS
′
n

≤
n∑

i=1

P
(
Xi >

x

t

)
+ exp

{

t − t ln

(
x2

tBn
+ 1

)}

=
n∑

i=1

P
(
Xi >

x

t

)
+ et

(

1 +
x2

tBn

)−t
.

(1.15)

Letting −Xi take the place of Xi in the above inequality, we can get

P(−Sn ≥ x) = P(Sn ≤ −x) ≤
n∑

i=1

P
(
−Xi >

x

t

)
+ et

(

1 +
x2

tBn

)−t

=
n∑

i=1

P

(
Xi <

−x
t

)
+ et

(

1 +
x2

tBn

)−t
.

(1.16)

Thus

P(|Sn| ≥ x) = P(Sn ≥ x) + P(Sn ≤ −x) ≤
n∑

i=1

P
(
|Xi| < x

t

)
+ 2et

(

1 +
x2

tBn

)−t
. (1.17)

Multiplying (1.17) by pxp−1, letting t = p, and integrating over 0 < x < +∞, according
to

E|X|p = p

∫+∞

0
xp−1P(|X| ≥ x)dx, (1.18)
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we obtain

E|Sn|p = p

∫+∞

0
xp−1P(|Sn| ≥ x)dx

≤ p
n∑

i=1

∫+∞

0
xp−1P

(
|Xi| ≥ x

p

)
dx + 2pep

∫+∞

0
xp−1

(

1 +
x2

pBn

)−p
dx

= pp+1
n∑

i=1

E|Xi|p + pep
(
pBn

)p/2
∫+∞

0

up/2−1

(1 + u)p
du

= pp+1
n∑

i=1

E|Xi|p + pp/2+1epB
(p
2
,
p

2

)
B
p/2
n ,

(1.19)

where B(α, β) =
∫1
0 x

α−1(1 − x)β−1dx =
∫+∞
0 xα−1(1 + x)−(α+β)dx, α, β > 0 is Beta function. Letting

cp = max(pp+1, p1+p/2epB(p/2, p/2)), we can deduce (1.9) from (1.19). From (1.9), we can
prove (1.10) by a similar way of Stout’s paper [10, Theorem 2.3.1].

Lemma 1.10. Let {Xn;n ≥ 1} be a sequence of ND random variables. Then there exists a positive
constant c such that, for any x ≥ 0 and all n ≥ 1,

(
1 − P

(
max
1≤k≤n

|Xk| > x

))2 n∑

k=1

P(|Xk| > x) ≤ cP

(
max
1≤k≤n

|Xk| > x

)
. (1.20)

Proof. Let Ak = (|Xk| > x) and αn = 1 − P(
⋃n

k=1 Ak) = 1 − P(max1≤k≤n|Xk| > x). Without loss of
generality, assume that αn > 0. Note that {I(Xk>x)−EI(Xk>x); k ≥ 1} and {I(Xk<−x)−EI(Xk<−x); k ≥
1} are still ND by Lemma 1.6. Using (1.9), we get

E

(
n∑

k=1

(IAk − EIAk)

)2

= E

(
n∑

k=1

(
I(Xk>x) − EI(Xk>x)

)
+
(
I(Xk<−x) − EI(Xk<−x)

)
)2

≤ 2E

(
n∑

k=1

(
I(Xk>x) − EI(Xk>x)

)
)2

+ 2E

(
n∑

k=1

(
I(Xk<−x) − EI(Xk<−x)

)
)2

≤ c
n∑

k=1

P(Ak).

(1.21)

Combining with the Cauchy-Schwarz inequality, we obtain

n∑

k=1

P(Ak) =
n∑

k=1

P

⎛

⎝Ak,
n⋃

j=1

Aj

⎞

⎠ =
n∑

k=1

E
(
IAkI

⋃n
j=1 Aj

)

= E

(
n∑

k=1

(IAk − EIAk)

)

I⋃n
j=1 Aj

+
n∑

k=1

P(Ak)P

⎛

⎝
n⋃

j=1

Aj

⎞

⎠
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≤
⎛

⎝E

(
n∑

k=1

(IAk − EIAk)

)2

EI⋃n
j=1 Aj

⎞

⎠

1/2

+ (1 − αn)
n∑

k=1

P(Ak)

≤
(

c(1 − αn)
αn

αn

n∑

k=1

P(Ak)

)1/2

+ (1 − αn)
n∑

k=1

P(Ak)

≤ 1
2

(
c(1 − αn)

αn
+ αn

n∑

k=1

P(Ak)

)

+ (1 − αn)
n∑

k=1

P(Ak).

(1.22)

Thus

α2
n

n∑

k=1

P(Ak) ≤ c(1 − αn), (1.23)

that is,

(
1 − P

(
max
1≤k≤n

|Xk| > x

))2 n∑

k=1

P(|Xk| > x) ≤ cP

(
max
1≤k≤n

|Xk| > x

)
. (1.24)

2. Main Results and the Proofs

The concept of complete convergence of a sequence of random variables was introduced by
Hsu and Robbins [11] as follows. A sequence {Yn;n ≥ 1} of random variables converges
completely to the constant c if

∑∞
n=1 P(|Xn − c| > ε) < ∞, for all ε > 0. In view of the Borel-

Cantelli lemma, this implies that Yn → 0 almost surely. Therefore, complete convergence is
one of the most important problems in probability theory. Hsu and Robbins [11] proved that
the sequence of arithmetic means of independent and identically distributed (i.i.d.) random
variables converges completely to the expected value if the variance of the summands is
finite. Baum andKatz [12] proved that if {X,Xn;n ≥ 1} is a sequence of i.i.d. random variables
with mean zero, then E|X|p(t+2) < ∞(1 ≤ p < 2, t ≥ −1) is equivalent to the condition that∑∞

n=1 n
tP(
∑n

1=1 |Xi|/n1/p > ε) < ∞, for all ε > 0. Recent results of the complete convergence
can be found in Li et al. [13], Liang and Su [14], Wu [15, 16], and Sung [17].

In this paper we study the complete convergence for negatively dependent random
variables. As a result, we extend some complete convergence theorems for independent
random variables to the negatively dependent random variables without necessarily
imposing any extra conditions.

Theorem 2.1. Let {X,Xn; n ≥ 1} be a sequence of identically distributed ND random variables and
{ank; 1 ≤ k ≤ n, n ≥ 1} an array of real numbers, and let r > 1, p > 2. If, for some 2 ≤ q < p,

N(n,m + 1)=̂�
{
k ≥ 1; |ank| ≥ (m + 1)−1/p

}
≈ mq(r−1)/p, n,m ≥ 1, (2.1)

EX = 0 for 1 ≤ q(r − 1), (2.2)
n∑

k=1

a2
nk � nδ for 2 ≤ q(r − 1) and some 0 < δ <

2
p
, (2.3)
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then, for r ≥ 2,

E|X|p(r−1) < ∞ (2.4)

if and only if

∞∑

n=1

nr−2P

(

max
1≤k≤n

∣
∣
∣
∣
∣

k∑

i=1

aniXi

∣
∣
∣
∣
∣
> εn1/p

)

< ∞, ∀ε > 0. (2.5)

For 1 < r < 2, (2.4) implies (2.5), conversely, and (2.5) and nr−2P(max1≤k≤n|ankXk| > n1/p)
decreasing on n imply (2.4).

For p = 2, q = 2, we have the following theorem.

Theorem 2.2. Let {X,Xn; n ≥ 1} be a sequence of identically distributed ND random variables and
{ank; 1 ≤ k ≤ n, n ≥ 1} an array of real numbers, and let r > 1. If

N(n,m + 1)=̂�
{
k; |ank| ≥ (m + 1)−1/2

}
≈ mr−1, n,m ≥ 1, (2.6)

EX = 0, 1 ≤ 2(r − 1),

n∑

k=1

|ank|2(r−1) = O(1),
(2.7)

then, for r ≥ 2,

E|X|2(r−1) log|X| < ∞ (2.8)

if and only if

∞∑

n=1

nr−2P

(

max
1≤k≤n

∣∣∣∣∣

k∑

i=1

aniXi

∣∣∣∣∣
> εn1/2

)

< ∞, ∀ε > 0. (2.9)

For 1 < r < 2, (2.8) implies (2.9), conversely, and (2.9) and nr−2P(max1≤k≤n|ankXk| > n1/2)
decreasing on n imply (2.8).

Remark 2.3. Since NA random variables are a special case of ND r. v. ’s, Theorems 2.1 and 2.2
extend the work of Liang and Su [14, Theorem 2.1].

Remark 2.4. Since, for some 2 ≤ q ≤ p,
∑

k∈N |ank|q(r−1) � 1 as n → ∞ implies that

N(n,m + 1)=̂�
{
k ≥ 1; |ank| ≥ (m + 1)−1/p

}
� mq(r−1)/p as n −→ ∞, (2.10)
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taking r = 2, then conditions (2.1) and (2.6) are weaker than conditions (2.13) and (2.9) in
Li et al. [13]. Therefore, Theorems 2.1 and 2.2 not only promote and improve the work of
Li et al. [13, Theorem 2.2] for i.i.d. random variables to an ND setting but also obtain their
necessities and relax the range of r.

Proof of Theorem 2.1. Equation (2.4)⇒(2.5). To prove (2.5) it suffices to show that

∞∑

n=1

nr−2P

(

max
1≤k≤n

∣
∣
∣
∣
∣

k∑

i=1

a±
niXi

∣
∣
∣
∣
∣
> εn1/p

)

< ∞, ∀ε > 0, (2.11)

where a+
ni = max(ani, 0) and a−

ni = max(−ani, 0). Thus, without loss of generality, we can
assume that ani > 0 for all n ≥ 1, i ≤ n. For 0 < α < 1/p small enough and sufficiently large
integer K, which will be determined later, let

X
(1)
ni = −nαI(aniXi<−nα) + aniXiI(ani|Xi|≤nα) + nαI(aniXi>nα),

X
(2)
ni = (aniXi − nα)I(nα<aniXi<εn1/p/K),

X
(3)
ni = (aniXi + nα)I(−εn1/p/K<aniXi<−nα),

X
(4)
ni = aniXni −X

(1)
ni −X

(2)
ni −X

(3)
ni

= (aniXi + nα)I(aniXi≤−εn1/p/K) + (aniXi − nα)I(aniXi≥εn1/p/K),

S
(j)
nk =

k∑

i=1

X
(j)
ni , j = 1, 2, 3, 4 ; 1 ≤ k ≤ n, n ≥ 1.

(2.12)

Thus Snk=̂
∑k

i=1 aniXi =
∑4

j=1 S
(j)
nk
. Note that

(
max
1≤k≤n

|Snk| > 4εn1/p
)

⊆
4⋃

j=1

(
max
1≤k≤n

∣∣∣S
(j)
nk

∣∣∣ > εn1/p
)
. (2.13)

So, to prove (2.5) it suffices to show that

Ij =̂
∞∑

n=1

nr−2P
(
max
1≤k≤n

∣∣∣S
(j)
nk

∣∣∣ > εn1/p
)

< ∞, j = 1, 2, 3, 4. (2.14)
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For any q′ > q,

n∑

i=1

a
q′(r−1)
ni =

∞∑

j=1

∑

(j+1)−1≤apni<j−1
a
q′(r−1)
ni ≤

∞∑

j=1

∑

(j+1)−1≤apni<j−1
j−q

′(r−1)/p

�
∞∑

j=1

(
N
(
n, j + 1

) −N
(
n, j
))
j−q

′(r−1)/p

�
∞∑

j=1

N
(
n, j
)(

j−q
′(r−1)/p − (j + 1

)−q′(r−1)/p)

�
∞∑

j=1

j−1−(q
′−q)(r−1)/p < ∞.

(2.15)

Now, we prove that

n−1/pmax
1≤k≤n

∣∣∣ES(1)
nk

∣∣∣ −→ 0, n −→ ∞. (2.16)

(i) For 0 < q(r − 1) < 1, taking q < q′ < p such that 0 < q′(r − 1) < 1, by (2.4) and (2.15),
we get

n−1/pmax
1≤k≤n

∣∣∣ES(1)
nk

∣∣∣

≤ n−1/p
n∑

i=1

(
E|aniXi|I(|aniXi|≤nα) + nαP(|aniXi| > nα)

)

≤ n−1/p
(

n∑

i=1

E|aniXi|q
′(r−1)|aniXi|1−q

′(r−1)I(|aniXi|≤nα) + nα−αq′(r−1)
n∑

i=1

E|aniXi|q
′(r−1)

)

� n−1/p+α−αq′(r−1) −→ 0, n −→ ∞.

(2.17)

(ii) For 1 ≤ q(r − 1), letting q < q′ < p, by (2.2), (2.4), and (2.15), we get

n−1/pmax
1≤k≤n

∣∣∣ES(1)
nk

∣∣∣

≤ n−1/p
n∑

i=1

(
E|aniXi|I(|aniXi|>nα) + nαP(|aniXi| > nα)

)

≤ n−1/p
n∑

i=1

(

E|aniXi|
( |aniXi|

nα

)q′(r−1)−1
I(|aniXi|≤nα) + nα−αq′(r−1)E|aniXi|q

′(r−1)
)

� n−1/p+α−αq′(r−1) −→ 0.

(2.18)
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Hence, (2.16) holds. Therefore, to prove I1 < ∞ it suffices to prove that

Ĩ1=̂
∞∑

n=1

nr−2P
(
max
1≤k≤n

∣
∣
∣S(1)

nk − ES
(1)
nk

∣
∣
∣ > εn1/p

)
< ∞, ∀ε > 0. (2.19)

Note that {X(1)
ni ; 1 ≤ i ≤ n, n ≥ 1} is still ND by the definition ofX(1)

ni and Lemma 1.6. Using the
Markov inequality and Lemma 1.8, we get for a suitably large M, which will be determined
later,

Ĩ1 �
∞∑

n=1

nr−2−M/pE

(
max
1≤k≤n

∣
∣
∣S(1)

nk − ES
(1)
nk

∣
∣
∣
)M

�
∞∑

n=1

nr−2−M/plogMn

⎡

⎣
n∑

i=1

E
∣∣∣X(1)

ni

∣∣∣
M

+

(
n∑

i=1

E
(
X

(1)
ni

)2
)M/2

⎤

⎦

=̂Ĩ11 + Ĩ12.

(2.20)

TakingM > max(2, p(r − 1)(1 − αq′)/(1 − αp)), then r − 2 −M/p + αM − αq′(r − 1) < −1, and,
by (2.15), we get

Ĩ11 ≤
∞∑

n=1

nr−2−M/plogMn
n∑

i=1

(
E|aniXi|MI(|aniXi|≤nα) + nMαP(|aniXi| > nα)

)

≤
∞∑

n=1

nr−2−M/plogMn
n∑

i=1

(
E|aniXi|q

′(r−1)nα(M−q′(r−1)) + nα(M−q′(r−1))E|aniXi|q
′(r−1)

)

�
∞∑

n=1

nr−2−M/p+αM−αq′(r−1)logMn

< ∞.

(2.21)

(i) For q(r−1) < 2, taking q < q′ < p such that q′(r−1) < 2 and takingM > max(2, 2p(r−
1)/(2 − 2αp + αpq′(r − 1))), from (2.15) and r − 2 −M/p + αM −Mαq′(r − 1)/2 < −1, we have

Ĩ12 ≤
∞∑

n=1

nr−2−M/plogMn

[
n∑

i=1

E|aniXi|q
′(r−1)nα(2−q′(r−1))I(|aniXi|≤nα)

+n2α−αq′(r−1)E|aniXi|q
′(r−1)

]M/2

�
∞∑

n=1

n−r−2−M/p+αM−Mαq′(r−1)/2logMn

< ∞.

(2.22)
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(ii) For q(r − 1) ≥ 2, taking q < q′ < p and M > max(2, 2p(r − 1)/(2 − pδ)), where δ is
defined by (2.3), we get, from (2.3), (2.4), (2.15), and r − 2 −M/p + δM/2 < −1,

Ĩ12 �
∞∑

n=1

nr−2−M/plogMn

[
n∑

i=1

a2
ni + n2α−αq′(r−1)E|aniXi|q

′(r−1)
]M/2

�
∞∑

n=1

nr−2−M/p+δM/2logMn

< ∞.

(2.23)

Since

(
n∑

i=1

X
(2)
ni > εn1/p

)

=

(
n∑

i=1

(aniXi − nα)I(nα<aniXi<εn1/p/K) > εn1/p

)

⊆ (there at least exist K indices k such that ankXk > nα),

(2.24)

we have

P

(
n∑

i=1

X
(2)
ni > εn1/p

)

≤
∑

1≤i1<i2<···<iK≤n
P(ani1Xi1 > nα, ani2Xi2 > nα, . . . , aniKXiK > nα).

(2.25)

By Lemma 1.6, {aniXi; 1 ≤ i ≤ n, n ≥ 1} is still ND. Hence, for q < q′ < p we conclude
that

P

(
n∑

i=1

X
(2)
ni > εn1/p

)

≤
∑

1≤i1<i2<···<iK≤n

K∏

j=1

P
(
anijXij > nα

)

≤
(

n∑

i=1

P(|aniXi| > nα)

)K

≤
(

n∑

i=1

n−αq′(r−1)E|aniXi|q
′(r−1)

)K

� n−αq′(r−1)K,

(2.26)

via (2.4) and (2.15). X(2)
ni > 0 from the definition of X(2)

ni . Hence by (2.26) and by taking α > 0
and K such that r − 2 − αKq′(r − 1) < −1, we have

I2 =
∞∑

n=1

nr−2P

(
n∑

i=1

X
(2)
ni > εn1/p

)

�
∞∑

n=1

nr−2−αq′(r−1)K < ∞. (2.27)

Similarly, we have X(3)
ni < 0 and I3 < ∞.
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Last, we prove that I4 < ∞. Let Y = KX/ε. By the definition of X(4)
ni and (2.1), we have

P

(
max
1≤k≤n

∣
∣
∣S(4)

nk

∣
∣
∣ > εn1/p

)
≤ P

(
n∑

i=1

∣
∣
∣X(4)

ni

∣
∣
∣ > εn1/p

)

≤ P

(
n⋃

i=1

(

ani|Xi| > εn1/p

K

))

≤
n∑

i=1

P

(

ani|Xi| > εn1/p

K

)

=
∞∑

j=1

∑

(j+1)−1≤apni<j−1
P
(
|Y | > (nj)1/p

)

=
∞∑

j=1

(
N
(
n, j + 1

) −N
(
n, j
)) ∞∑

l=nj

P
(
l ≤ |Y |p < l + 1

)

=
∞∑

l=n

[l/n]∑

j=1

(
N
(
n, j + 1

) −N
(
n, j
))
P
(
l ≤ |Y |p < l + 1

)

≈
∞∑

l=n

(
l

n

)q(r−1)/p
P
(
l ≤ |Y |p < l + 1

)
.

(2.28)

Combining with (2.15),

I4 ≈
∞∑

n=1

nr−2
∞∑

l=n

(
l

n

)q(r−1)/p
P
(
l ≤ |Y |p < l + 1

)

=
∞∑

l=1

l∑

n=1

nr−2−q(r−1)/plq(r−1)/pP
(
l ≤ |Y |p < l + 1

)

≈
∞∑

l=1

lr−1P
(
l ≤ |Y |p < l + 1

)

≈ E|Y |p(r−1) ≈ E|X|p(r−1) < ∞.

(2.29)

Now we prove (2.5)⇒(2.4). Since

max
1≤j≤n

∣∣anjXj

∣∣ ≤ max
1≤j≤n

∣∣∣∣∣

j∑

i=1

aniXi

∣∣∣∣∣
+max

1≤j≤n

∣∣∣∣∣

j−1∑

i=1

aniXi

∣∣∣∣∣
, (2.30)

then from (2.5) we have

∞∑

n=1

nr−2P
(
max
1≤j≤n

∣∣anjXj

∣∣ > n1/p
)

< ∞. (2.31)
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Combining with the hypotheses of Theorem 2.1,

P

(
max
1≤j≤n

∣
∣anjXj

∣
∣ > n1/p

)
−→ 0, n −→ ∞. (2.32)

Thus, for sufficiently large n,

P

(
max
1≤j≤n

∣
∣anjXj

∣
∣ > n1/p

)
<

1
2
. (2.33)

By Lemma 1.6, {anjXj ; 1 ≤ j ≤ n, n ≥ 1} is still ND. By applying Lemma 1.10 and (2.1), we
obtain

n∑

k=1

P
(
|ankXk| > n1/p

)
≤ 4CP

(
max
1≤k≤n

|ankXk| > n1/p
)
. (2.34)

Substituting the above inequality in (2.5), we get

∞∑

n=1

nr−2
n∑

k=1

P
(
|ankXk| > n1/p

)
< ∞. (2.35)

So, by the process of proof of I4 < ∞,

E|X|p(r−1) ≈
∞∑

n=1

nr−2
n∑

k=1

P
(
|ankXk| > n1/p

)
< ∞. (2.36)

Proof of Theorem 2.2. Let p = 2, α < 1/p = 1/2, and K > 1/(2α). Using the same notations and
method of Theorem 2.1, we need only to give the different parts.

Letting (2.7) take the place of (2.15), similarly to the proof of (2.19) and (2.26), we
obtain

n−1/2max
1≤k≤n

∣∣∣ES(1)
nk

∣∣∣� n−1/2+α−2α(r−1) −→ 0, n −→ ∞. (2.37)

Taking M > max(2, 2(r − 1)), we have

Ĩ11 �
∞∑

n=1

n−1−(1−2α)(M/2−(r−1)) logMn < ∞. (2.38)

For r − 1 ≤ 1, taking M > max(2, 2(r − 1)/(1 − 2α + 2α(r − 1))) , we get

Ĩ12 �
∞∑

n=1

n−1−(1−2α(r−1)−2α)M/2+(r−1)logMn < ∞. (2.39)
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For r − 1 > 1, EX2
ni < ∞ from (2.8). Letting M > 2(r − 1)2, by the Hölder inequality,

Ĩ12 �
∞∑

n=1

nr−2−M/2logMn

[
n∑

i=1

a2
ni + n2α−2α(r−1)E(aniXi)2(r−1)

]M/2

�
∞∑

n=1

nr−2−M/2logMn

⎡

⎣

(
n∑

i=1

a
2(r−1)
ni

)1/(r−1) ( n∑

i=1

1

)r−2/(r−1)⎤

⎦

M/2

�
∞∑

n=1

n−1−M/2(r−1)+(r−1)logMn < ∞.

(2.40)

By the definition of K,

I2 �
∞∑

n=1

n−1−(r−1)(2αK−1) < ∞. (2.41)

Similarly to the proof (2.31), we have

I4 �
∞∑

l=1

l∑

n=1

n−1lr−1P
(
l ≤ |Y |2 < l + 1

)

=
∞∑

l=1

lr−1 log lP
(
l ≤ |Y |2 < l + 1

)

≈ E
(
|Y |2(r−1) log|Y |

)

≈ E
(
|X|2(r−1) log|X|

)

< ∞.

(2.42)

Equation (2.9)⇒(2.8) Using the same method of the necessary part of Theorem 2.1, we can
easily get

E
(
|X|2(r−1) log|X|

)
≈

∞∑

n=1

nr−2
n∑

k=1

P
(
|ankXk| > n1/2

)
< ∞. (2.43)
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