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The canonical correlations between subsets of OLS estimators are identified with design linkage
parameters between their regressors. Known collinearity indices are extended to encompass angles
between each regressor vector and remaining vectors. One such angle quantifies the collinearity of
regressors with the intercept, of concern in the corruption of all estimates due to ill-conditioning.
Matrix identities factorize a determinant in terms of principal subdeterminants and the canonical
Vector Alienation Coefficients between subset estimators—by duality, the Alienation Coefficients
between subsets of regressors. These identities figure in the study of D and Ds as determinant
efficiencies for estimators and their subsets, specifically, Ds-efficiencies for the constant, linear,
pure quadratic, and interactive coefficients in eight known small second-order designs. Studies on
D- and Ds-efficiencies confirm that designs are seldom efficient for both. Determinant identities
demonstrate the propensity for Ds-inefficient subsets to be masked through near collinearities in
overall D-efficient designs.

1. Introduction

Given {Y = Xβ+ε} of full rank with homogeneous, uncorrelated errors, theOLS estimators ̂β

are unbiased with second-moment matrix V (̂β) = σ2(X′X)−1. Such moment matrices pervade
experimental design, to include determinants as gauges of D- and Ds-efficiencies for
estimators and their subsets. Early references trace to [1–4], and more recently to [5–10]
and others. Finding Ds-efficient designs for polynomial models is considered in [11–20], for
example. Studies examining the Ds-efficiencies of D-efficient designs confirm that designs
are seldom efficient for both; see [13, 21–23]. From those beginnings, the study of D- and
Ds-efficiencies continues apace. To wit, a recent key-word search in the Current Index to
Statistics shows in excess of 60 listings from 2006 to 2010, and more than 100 from 2001 to
2010. Moreover, these ideas bear fruit in a widening diversity of applications as evidenced in
the following.
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To fix ideas, let D correspond to a polynomial Pc of degree c, namely, g(μ) =
∑c

i=0 βit
i.

In toxicology studies, a two-stage experiment is proffered in [24], seeking D-efficiency in
estimating k = c+1 overall parameters at the first stage, thenD1-efficiency at the second stage
in estimating a critical “threshold parameter,” using quasilikelihood in nonlinear models.
Coupled with this is the Dk−1-efficiency for the remaining k − 1 parameters at the second
stage. In related work [25], experiments with c chemicals in combination are to be examined
along fixed-ratio rays. When restricted to a specified ray, the fundamental hypothesis of
noninteracting factors can be rejectedwhen higher-order polynomial terms are required in the
total dose-response model g(μ) = β0 +β1t+

∑c
i=2 βit

i in the linear predictor t. HereD2 refers to
[β0, β1] and Dc−1 to Ds-efficiency in the critical estimation of [β2, . . . , βc], which vanish under
the conjectured additivity. Moreover, in [11, 12, 21] D refers to Pk+1, Dk to Pk, and D1 to
βk+1, the highest-order term in Pk+1, for example. In short, users often are properly concerned
with bothD- andDs-efficiencies, and connections between these basic criteria deserve further
study, to be undertaken here.

Ill-conditioning, as near-collinearity among the columns of X, “causes crucial elements
of X′X to be large and unstable,” “creating inflated variances,” and estimates that are “very
sensitive to small changes in X,” having “degraded numerical accuracy;” see [26–28], for
example. Diagnostics include the condition number c1(X′X), the ratio of largest to smallest
eigenvalues; and the Variance Inflation Factors {VIF(̂βj) = vjjwjj ; 1 ≤ j ≤ p} with W = X′X
and V = (X′X)−1, that is, ratios of actual (vjj) to “ideal” (1/wjj) variances had the columns
of X been orthogonal. In models with intercept, “collinearity with the intercept can quite
generally corrupt the estimates of all parameters in the model whether or not the intercept is
itself of interest and whether or not the data have been (mean) centered,” as noted in [29].

To the foregoing list of ills from ill-conditioning, we add that not only are designs
seldom efficient for both, but Ds-inefficient estimators may be masked in overall D-efficient
designs, and conversely. This maskingmay be quantified in terms of structural dependencies,
specifically, through determinant identities linking D- and Ds-efficiencies to various gages
of nonorthogonality of the data. The latter include nonvanishing inner products between
columns of regressors, Hotelling’s [30] canonical correlations amongOLS solutions, and VIFs.
An outline follows.

Section 2 contains supporting material. Details surrounding collinearity diagnostics
are topics in Section 3, to include duality of angles between subspaces of the design and
parameter spaces, and their connections to VIFs. Section 4 develops basic determinant
identities and inequalities of independent interest. Section 5 revisits eight small second-order
designs with regard to Ds-efficiencies in estimating the constant, linear, pure quadratic, and
interactive coefficients, to include the masking of inefficient estimators. Though in wide
usage, with no apparent accounting for collinearity, these designs are seen to exhibit varying
degrees of collinearity of regressors with the constant. Since computations proceed from the
design matrix itself, an advantage is that prospective designs can be evaluated beforehand in
regard to issues studied here, before committing to an actual experiment. Section 6 concludes
with a brief summary.

2. Preliminaries

2.1. Notation

Spaces of note include R
k as Euclidean k-space; R

k
+ as its positive orthant; Fn×k as the

real matrices of order (n × k); Sk as the (k × k) real symmetric matrices; and S
+
k
as their
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positive definite varieties. The transpose, inverse, trace, and determinant of A ∈ S
+
k are

A′,A−1, tr(A), and |A|; and A1/2 is its spectral square root. Special arrays include the unit
vector 1′n = [1, 1, . . . , 1] ∈ R

n, the identity In of order (n × n), the block-diagonal matrix
Diag(A1,A2) ∈ Sk, the idempotent form Bn = (In − n−11n1′n), and O(k) as the real orthogonal
group of (k × k) matrices. For X(n × p) of rank p ≤ n, designate a pseudoinverse as X†, its
ordered singular values as σ(X) = {ξ1 ≥ ξ2 ≥ · · · ≥ ξp > 0}, and by Sp(X) ⊂ R

n, the linear span
of columns of X. Its condition number is c2(X) = ξ1/ξp, specifically, c2(X) = [c1(X′X)]1/2.

The mean, dispersion matrix, and generalized variance for a random U ∈ R
k are

designated as E(U) = μ ∈ R
k,V (U) = Σ ∈ S

+
k
, and GV (U) = |Σ|, respectively. To account for

dimension, consider G(U) = [GV (U)]1/k = |Σ|1/k as a function homogeneous of unit degree.
The class M0 : {Y = β01n + Xβ + ε}, comprising models with intercept and dispersion V (ε) =
σ2In, is our principal focus. Unless stated otherwise, we take σ2 = 1.0, since variance ratios are
scale-invariant. A distinction is drawn between centered and uncentered VIFs, namely, VIFcs
and VI Fus, the former from columns of X centered to their means. The latter, designated
as {VIFu(̂βj); j = 0, 1, . . . , k}, are diagonal elements of (X′

0X0)
−1 divided by reciprocals

of diagonals of X′
0X0 itself. These are of subsequent interest. Special distributions on R

1
+

include the Snedecor-Fisher distribution F(·; ν1, ν2, λ) having (ν1, ν2) degrees of freedom and
noncentrality λ.

3. Collinearity Diagnostics

Ill-conditioned models {Y = Xβ+ ε}, burdened with difficulties as cited, trace to nonorthogo-
nality among columns of X. To examine aspects of near collinearity, we first establish duality
between design linkage parameters among columns of X, and collinearity among the OLS
solutions as quantified by Hotelling’s [30] canonical correlations.

3.1. Duality Results

Partition a generic X ∈ Fn×p as X = [X1,X2]with {X,X1,X2} of orders {(n × p), (n × r), (n × s)},
respectively, having ranks {p, r, s} such that r ≤ s and r + s = p < n. Accordingly, write {Y =
X1β1+X2β2+ε}, taking β′ = [β′

1,β
′
2], and denoting by Sp(X1) and Sp(X2), the subspaces of R

n

spanned by columns of X1 and X2. We seek a canonical form preserving these subspaces and
linkage between (X1,X2), a geometric concept independent of bases for representing Sp(X1)
and Sp(X2). Accordingly, let G1 = (X′

1X1)
−1/2P and G2 = (X′

2X2)
−1/2Q, with P ∈ O(r) and

Q ∈ O(s) to be stipulated. The original model becomes {Y = Z1α1+Z2α2+ε}with Z = [Z1,Z2]
and α′ = [α′

1,α
′
2], such that Z1 = X1G1, Z2 = X2G2, α1 = G−1

1 β1, and α2 = G−1
2 β2.

Following [31], cosines of angles between Sp(X1) and Sp(X2) are found as singular
values generated by (X1,X2), to be designated as design linkage parameters {δ1, . . . , δr}. To these
ends, observe that X′X in partitioned form transitions into Z′Z through

X′X =

[

X′
1X1 X′

1X2

X′
2X1 X′

2X2

]

−→
[

G′
1X

′
1X1G1 G′

1X
′
1X2G2

G′
2X

′
2X1G1 G′

2X
′
2X2G2

]

=

[

Ir P′RQ

Q′R′P Is

]

=

[

Ir D

D′ Is

]

= Z′Z.

(3.1)

Here R = (X′
1X1)

−1/2X′
1X2(X′

2X2)
−1/2; its singular decomposition is R = PDQ′, where D =

[Dδ, 0]; and elements ofDδ = Diag(δ1, . . . , δr) comprise the singular values ofR. In particular,
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{φj = arccos(δj); 1 ≤ j ≤ r} defines the design linkage angles between Sp(X1) and Sp(X2) as
subspaces of R

n.

To continue, partition V (̂β) = Σ = [Σij] conformably with β′ = [β′
1,β

′
2], β1 ∈ R

r ,
β2 ∈ R

s; designate their inner product space as (Rr ⊕R
s, (·, ·)Σ), where R

r ⊕R
s is the direct sum

and (·, ·)Σ their inner product, as in Eaton [32, page 409]. Denote by {ρ1, . . . , ρr} Hotelling’s
[30] canonical correlations. Then by Proposition 10.2 of [32], {ρ1, . . . , ρr} are cosines of angles
between (Rr ,Rs) as subspaces of (Rr ⊕ R

s, (·, ·)Σ). In keeping with earlier usage, identify
{Sp(β1),Sp(β2)} with {Rr ,Rs}. As Hotelling’s canonical correlations are invariant under
affine transformations {β1 → Aβ1 + c1, β2 → Bβ2 + c2}, parameters may be redefined
linearly, preserving subspaces, thus leaving the canonical correlations invariant. Retracing
steps leading to the canonical design model embodied in (3.1), but now to preserve
{Sp(β1),Sp(β2)}, it thus suffices to begin with the canonical model {Y = Z1α1 + Z2α2 + ε},
where V (α̂) = σ2(Z′Z)−1 with Z′Z as the rightmost matrix of (3.1).

We next establish connections between the design linkage parameters Dδ from (3.1),
and the corresponding canonical correlations Dρ = Diag(ρ1, . . . , ρr), as derived eventually
from Σ = (X′X)−1. A critical duality result is encoded in the following.

Theorem 3.1. Consider the design linkage parameters Dδ between {Sp(X1),Sp(X2)} as subspaces
of R

n and Hotelling’s [30] canonical correlations Dρ between {Sp(β1),Sp(β2)} as subspaces of
(Rr ⊕ R

s, (·, ·)Σ). Then Dδ and Dρ coincide.

Proof. In view of invariance of {ρ1, . . . , ρr} under nonsingular linear transformations of β1 ∈
R

r and of β2 ∈ R
s, canonical correlations between (̂β1,

̂β2) proceed as in expression (3.1), but
beginning instead on the left with V (α̂) = (Z′Z)−1 in lieu of X′X. Specifically, withD = [Dδ, 0],
and using rules for block-partitioned inverses, we have

(

Z′Z
)−1 =

[

Ir [Dδ, 0]

[Dδ, 0]′ Is

]−1

=

⎡

⎣

(

Ir −D2
δ

)−1 −D(Is −D0)−1

−D′(Ir −D2
δ

)−1 (Is −D0)−1

⎤

⎦ −→
[

Ir [Dδ, 0]

[Dδ, 0]′ Is

]

,

(3.2)

where equality at the first step follows using DD′ = D2
δ and D′D = Diag(D2

δ, 0) = D0. The
succeeding step utilizes the factors (Ir −D2

δ
)1/2 and (Is −D0)

1/2, taking the principal diagonal
blocks of (Z′Z)−1 into (Ir , Is) as in the rightmost matrix of (3.2), and its off-diagonal block
from

(

Ir −D2
δ

)1/2
[Dδ, 0](Is −D0)−1(Is −D0)1/2 = [Dδ, 0], (3.3)

since diagonal matrices commute. But the off-diagonal block is precisely [Dρ, 0], the canonical
correlations between (̂β1,

̂β2), to complete our proof.

For subsequent reference, designate δ(X1 : X2) = (δ1, . . . , δr) and ρ(̂β1 : ̂β2) = (ρ1, . . . ,
ρr). Moreover, the foregoing analysis applies for models X0 = [1n,X] in M0, where r = 1 and
s = k as partitioned. In short, we have the following equivalences.
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Corollary 3.2. (i) Consider the design linkage parameters {cos(φj) = δj ; 1 ≤ j ≤ r}, gaging
collinearity between {Sp(X1),Sp(X2)} as subspaces of R

n and the canonical correlations {cos(φj) =
ρj ; 1 ≤ j ≤ r}, between {Sp(β1),Sp(β2)} as subspaces of (Rr ⊕R

s, (·, ·)Σ). Then angles between these
pairs of subspaces correspond one-to-one, that is, {φj = arccos(ffij) = arccos(æj); 1 ≤ j ≤ r}.

(ii) For models X0 = [1n,X] in M0, the element δ(1n : X) = δ1 generates the angle cos(φ1) =
δ1 between the regressor vectors and the constant vector. Equivalently, this is given by cos(φ1) = ρ1 =
ρ(̂β0 : ̂β) from duality.

3.2. Collinearity Indices

Stewart [33] reexamined numerical aspects of ill-conditioning, to the following effects for
X0 = [1n,X]. Taking X†

0 = (X′
0X0)

−1X′
0 as the pseudoinverse of note, and letting x†j be its jth

row, each collinearity index in the collection

{

κj =
∥

∥xj
∥

∥ ·
∥

∥

∥x†j
∥

∥

∥; j = 0, 1, . . . , k
}

(3.4)

is constructed to be scale-invariant. Clearly ‖x†j ‖2 is found along the principal diagonal of

[(X†
0)(X

†
0)

′
] = (X′

0X0)
−1. In addition, the conventional VIFus are squares of the collinearity

indices, that is, {VIFu(̂βj) = κ2
j ; j = 0, 1, . . . , k}. In particular, since x0 = 1n in X0, we have

κ2
0 = n‖x†0‖2.

Transcending Stewart’s analysis, we connect his collinearity indices to angles between
subspaces as follows. Choose a typical xj in X0; rearrange X0 as [xj ,X[j]] and similarly β′ as
[βj ,β′

[j]]; and seek elements of

⎧

⎪

⎨

⎪

⎩

Q′
j

(

X′
0X0

)−1Qj =

⎡

⎣

x′jxj x′jX[j]

X′
[j]xj X′

[j]X[j]

⎤

⎦

−1

; j = 0, 1, . . . , k

⎫

⎪

⎬

⎪

⎭

(3.5)

as reordered by each permutation matrix Qj . From the clockwise rule, the (1, 1) element of
each inverse is

{

[

x′j
(

In − Pj

)

xj
]−1

=
[

x′jxj − x′jPjxj
]−1

=
∥

∥

∥x†j
∥

∥

∥

2
; j = 0, 1, . . . , k

}

, (3.6)

where Pj = X[j][X′
[j]X[j]]

−1X′
[j] is the projection operator onto the subspace Sp(X[j]) ⊂ R

n.

These relationships in turn enable us to connect {κ2
j ; j = 0, 1, . . . , k} to the geometry of ill-

conditioning as follows.

Theorem 3.3. For models in M0, let {VIFu(̂βj) = κ2
j ; j = 0, 1, . . . , k} be conventional VIFus in

terms of Stewart’s collinearity indices. These in turn quantify collinearities between subspaces through
angles (in deg) as follows.

(i) Angles between [xj ,X[j]] are given by φj = arccos[(1 − 1/κ2
j )

1/2], in succession for {j =
0, 1, . . . , k}.
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(ii) Equivalently, {κ2
j = 1/[1 − δ2(xj : X[j])] = 1/[1 − ρ2(̂βj : ̂β[j])]; j = 0, 1, . . . , k}.

(iii) In particular, φ0 = arccos[(1 − 1/κ2
0)

1/2] quantifies the degree of collinearity between the
regressor vectors and the constant vector.

Proof. From the geometry of the right triangle formed by (xj ,Pjxj), the squared lengths satisfy
‖xj‖2 = ‖Pjxj‖2 + RSj , where RSj = ‖xj − Pjxj‖2 is the residual sum of squares from the
projection. Accordingly, the principal angle between (xj ,Pjxj) is given by

cos
(

φj

)

=
x′jPjxj

∥

∥xj
∥

∥ · ∥∥Pjxj
∥

∥

=

∥

∥Pjxj
∥

∥

∥

∥xj
∥

∥

=

(

1 − RSj
∥

∥xj
∥

∥

2

)1/2

=

(

1 − 1
κ2
j

)1/2

(3.7)

for {j = 0, 1, . . . , k}, to give conclusion (i) and conclusion (ii) by duality. Conclusion (iii)
follows on specializing (x0,P0x0)with x0 = 1n and P0 = X(X′X)−1X′, to complete our proof.

Remark 3.4. The foregoing developments specialize from Section 3.1 in that the partition
[xj ,X[j]] always has r = 1 and s = k, giving a single angle φj . Rules-of-thumb in common use
for problematic VIFs include those exceeding 10, as in [34], or even 4 as in [35], for example.
In angular measure, these correspond respectively to φj < 18.435deg and φj < 30.0deg.

3.3. Case Study 1

Consider the model M0 : {Yi = β0 + β1X1 + β2X2 + εi}, the design X0 = [15,X1,X2] of order
(5 × 3), and X′

0X0 and its inverse as in

X′
0 =

⎡

⎢

⎢

⎣

1 1 1 1 1

1 0.5 0.5 1 0

−1 1 1 0 0

⎤

⎥

⎥

⎦

, X′
0X0 =

⎡

⎢

⎢

⎣

5 3 1

3 2.5 0

1 0 3

⎤

⎥

⎥

⎦

,

(

X′
0X0

)−1 =

⎡

⎢

⎢

⎣

0.9375 −1.1250 −0.3125
−1.1250 1.7500 0.3750

−0.3125 0.3750 0.4375

⎤

⎥

⎥

⎦

.

(3.8)

Note first that VIFu(̂β0) = κ2
0 = 0.9375 × 5 = 4.6875. Next apply first principles to find

δ2(15 : [X1,X2]) = (5)−1
[

3 1
]

[

2.5 0

0 3

]−1[
3

1

]

= 0.786666,

ρ2
(

̂β0 :
[

̂β1, ̂β2
])

= (0.9375)−1
[−1.1250 −0.3125]

[

1.7500 0.3750

0.3750 0.4375

]−1[−1.1250
−0.3125

]

= 0.786666,

(3.9)
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both equal to 1 − (1/κ2
0) as in Theorem 3.3(ii). The remaining VIFus are found directly as

VIFu(̂β1) = 1.7500 × 2.5 = 4.3750 and VIFu(̂β2) = 0.4375 × 3 = 1.3125. Using duality and earlier
findings, we further compute

δ2(X1 : [15,X2]) = ρ2
(

̂β1 :
[

̂β0, ̂β2
])

= 1 −
(

1
κ2
1

)

= 1 − 1
4.3750

= 0.771429,

δ2(X2 : [15,X1]) = ρ2
(

̂β2 :
[

̂β0, ̂β1
])

= 1 −
(

1
κ2
2

)

= 1 − 1
1.3125

= 0.238095,

(3.10)

thereby preempting the need to undertake singular decompositions as required heretofore.

4. Determinant Identities

4.1. Background

The generalized variance, as a design criterion for {Y = Xβ + ε}, rests in part on the geometry
of ellipsoids of the type

R(β) =
{

β ∈ R
k :

(

̂β − β
)′
X′X

(

̂β − β
)

≤ c2
}

. (4.1)

Choices for c2 in common usage give first (i) a confidence region for β, whose normal-theory
confidence coefficient is 1 − α on taking c2 = S2c2α, with S2 as the residual mean square
and c2α the 100(1 − α) percentage point of F(·; k, n − k); and otherwise admitting a lower
Chebychev bound as in [36, page 92]. The alternative choice c2 = k + 2 gives (ii) Cramér’s
[37] ellipsoid of concentration for ̂β, that is, the measure uniform over R(β) having the same
mean and dispersion matrix as ̂β. The generalized varianceGV (̂β) = |V (̂β)| is proportional to
the squared volumes of these ellipsoids, smaller volumes reflecting tighter concentrations.

4.2. Factorizations

To continue, let some T(Y) = ̂θ ∈ R
k be random having E(̂θ) = θ and V (̂θ) = Σ ∈ S

+
k ; partition

θ′ = [θ′
1,θ

′
2] and Σ = [Σij] conformably, with θ1 ∈ R

r and θ2 ∈ R
s such that r ≤ s and r+s = k;

and let G(̂θ) = |Σ|1/k. The canonical correlations [30], as singular values of Σ −1/2
11 Σ12Σ

−1/2
22 ,

are now to be designated as ρ(1 : 2) = [ρ1, . . . , ρr], in lieu of ρ(̂β1 : ̂β2), and to be ordered as
{ρ1 ≥ ρ2 ≥ · · · ≥ ρr ≥ 0}. Moreover, the quantity γ(1 : 2) = Πr

i=1(1 − ρ2i ) is the Vector Alienation
Coefficient of Hotelling [30]. The factorization |Σ| = |Σ11||Σ22| for Σ = Diag(Σ11,Σ22) extends
directly as an upper bound for any Σ = [Σij], with further ramifications as follows.

Theorem 4.1. Consider ̂θ
′
= [̂θ

′
1, ̂θ

′
2] ∈ R

k having E(̂θ
′
) = [θ′

1,θ
′
2] and V (̂θ) = [Σij], such that

θ1 ∈ R
r and θ2 ∈ R

s with r ≤ s and r + s = k.

(i) The determinant of Σ = [Σij] admits the factorization

|Σ| = |Σ11||Σ22|γ(1 : 2) (4.2)

such that |Σ| ≤ |Σ11||Σ22| and γ(1 : 2) = Πr
i=1(1 − ρ2i ) ≤ 1.
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(ii) If Σ = Diag(Σ11,Σ22), then G(̂θ) is the geometric mean G(̂θ) = [G(̂θ1)]
r/k[G(̂θ2)]

s/k of
the quantities G(̂θ1) and G(̂θ2).

(iii) Generally, for any Σ, the quantity G(̂θ) becomes

G
(

̂θ
)

=
[

G
(

̂θ1

)]r/k[

G
(

̂θ2

)]s/k
[γ(1 : 2)]1/k (4.3)

in terms of {G(̂θ1), G(̂θ2), γ(1 : 2)}.
(iv) If ̂θ = [̂θ

′
1, ̂θ

′
2, ̂θ3]

′
and Σ = [Σij ; 1 ≤ i, j ≤ 3] are partitioned conformably, with ̂θ1 ∈

R
r , ̂θ2 ∈ R

s, and ̂θ3 ∈ R
t, such that r + s + t = k, then G(̂θ) admits the factorization

G
(

̂θ
)

=
[

G
(

̂θ1

)]r/k[

G
(

̂θ2

)]s/k[

G
(

̂θ3

)]t/k
[γ(1 : 23)γ(2 : 3)]1/k, (4.4)

with γ(1 : 23) and γ(2 : 3) as the Vector Alienation Coefficients between {̂θ1, [̂θ2, ̂θ3]}
and between {̂θ2, ̂θ3}, respectively.

Proof. As in Section 3.1 with R = Σ −1/2
11 Σ12Σ

−1/2
22 = PDQ′ and D = [Dρ, 0], we have

[

Σ11 Σ12

Σ21 Σ22

]

=

[

W1 0

0 W2

][

Ir D

D′ Is

][

W′
1 0

0 W′
2

]

(4.5)

withW1 = Σ1/2
11 P andW2 = Σ1/2

22 Q. The middle factor on the right has determinant |Ir −DD′| =
Πr

i=1(1 − ρ2i ) from the clockwise rule, so that |Σ| = |Σ11||Σ22|Πr
i=1(1 − ρ2i ) to give conclusion (i).

Conclusion (ii) follows directly from G(̂θ) = [GV (̂θ)]1/k, and conclusion (iii) on combining
(i) and (ii). Conclusion (iv) now follows on applying (iii) twice, first on partitioning ̂θ into
{̂θ1, [̂θ2, ̂θ3]}, whose canonical correlations are ρ(1 : 23), then [̂θ2, ̂θ3] into {̂θ2, ̂θ3} having
canonical correlations ρ(2 : 3), to complete our proof.

Remark 4.2. In short, Theorem 4.1 links determinants and principal subdeterminants precisely
through angles between subspaces. Moreover, arguments leading to conclusion (iv) may be
iterated recursively to achieve a hierarchical decomposition for four or more factors, as in the
following with k = r + s + t + v, namely,

G
(

̂θ
)

=
[

G
(

̂θ1

)]r/k[

G
(

̂θ2

)]s/k[

G
(

̂θ3

)]t/k[

G
(

̂θ4

)]v/k
[γ(1 : 234)γ(2 : 34)γ(3 : 4)]1/k.

(4.6)

Remark 4.3. Hotelling’s [30]Vector Alienation Coefficient γ(1 : 2) = Πr
i=1(1−ρ2i ) is a composite

index of linkage between {Sp(β1),Sp(β2)} as subspaces of (Rr ⊕R
s, (·, ·)Σ), decreasing in each

{ρ2i ; 1 ≤ i ≤ r}. Equivalently, duality asserts that γ(1 : 2) = Πr
i=1(1 − δ2

i ) is the identical
composite index of linkage between {Sp(X1),Sp(X2)} as subspaces of R

n.

Theorem 4.1 anticipates that Ds-inefficient subset estimators may be masked in
a design exhibiting good overall D-efficiency. Conversely, a Ds-inefficient subset may
contraindicate, incorrectly, the overall D-efficiency of a design. Details are provided in case
studies to follow.
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5. Case Studies

5.1. The Setting

Our tools are informative in input-output studies. In particular, specify {Y = X0β + ε} as a
second-order model Y (x1, x2, x3) in three regressors and p = 10 parameters, namely,

{

Yi = β0 + β1xi1 + β2xi2 + β3xi3 + β11x
2
i1 + β22x

2
i2 + β33x

2
i3

+β12xi1xi2 + β13xi1xi3 + β23xi2xi3 + εi; i = 1, 2, . . . , n
}

.

(5.1)

Next partition β′ = [β0,β′
L,β

′
Q,β

′
I] with β′

L = [β1, β2, β3] as slopes; β′
Q = [β11, β22, β33] as

pure quadratic terms reflecting diminishing (−) or increasing (+) returns to inputs; and
β′
I = [β12, β13, β23] as interactive terms reflecting synergistic (+) or antagonistic (−) effects for

pairs of regressors in combination. Further let β′
M = [β′

L,β
′
Q,β

′
I] exclusive of β0, the latter

a base line for Y (0, 0, 0). We proceed under conventional homogeneous and uncorrelated
errors, the minimizing solution ̂β = (X′

0X0)
−1X′

0Y being unbiased with V (̂β) = σ2(X′
0X0)

−1.
We take σ2, although unknown, to reflect natural variability in experimental materials and
protocol, and thus applicable in a given setting independently of the choice of design.
Accordingly, for present purposes we may standardize to σ2 = 1.0 for reasons cited earlier.

5.2. The Designs

Early polynomial response designs made use of factorial experiments, setting levels as
needed to meet the required degree. For example, the second-order model (5.1) in three
regressors would require 33 = 27 runs. However, in the early 1950s such designs were seen
to be excessive, in carrying redundant interactions beyond the pairs required in the model
(5.1). In industrial and other settings where parsimony is desired, several small second-order
designs have evolved, often on appending a few additional runs to two-level factorials or
fractions thereof.

Eight such small designs of note here are the hybrids (H310,H311B) of [38],
the small composite SCD [39], the BBD [40], the central composite rotatable design
CCD [41], and designs ND [42], HD [43], and BDD [44]. The designs [H310,H311B,
SCD,BBD,CCD,ND,HD,BDD] have numbers of runs as [11, 11, 11, 13, 15, 11, 11, 11], respec-
tively. These follow on adding a center run to all but design ND, rendering all as unsaturated
having at least one degree of freedom for error. Specifically, the design ND of [42] already
has 11 runs and is unsaturated. All designs have been scaled to span the same range for
each regressor; and none strictly dominates another under the positive definite dispersion
ordering. All determinants as listed derive from the respective V (̂β) = (X′

0X0)
−1 and its

submatrices. Subset efficiencies for {βL,βQ,βI} were examined in [45] for selected designs
using criteria other thanD- andDs-efficiencies. Our usage here, as elsewhere in the literature,
considersGV (̂β) andG(̂β) to be efficiency indices for ̂β specific to a particular design, to include
subsets {̂βi; i ∈ I}, and smaller values reflect greater efficiencies through smaller volumes
of concentration ellipsoids. On the other hand, the comparative efficiencies of two designs for
estimating β or {βi; i ∈ I} are found as ratios of these quantities.
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5.3. Numerical Studies

Details for these designs are listed in the accompanying tables. Table 1 gives values G(·) =
[GV (·)]1/dim for ̂β and selected subsets, with dim as the order of the determinant. Also listed
are angles φ(1n : X)deg between regressors and the constant, to be noted subsequently.
Table 2 displays the squared canonical correlations ρ2(̂βi : ̂βj) between designated subsets,

and Table 3 the corresponding Vector Alienation Coefficient γ(̂βi : ̂βj) = Πr
i=1(1 − ρ2i ), for

specified pairs. Here {0L,QI} refers to the pair {[̂β0, ̂βL], [̂βQ,
̂βI]}, for example. Moreover,

values of the composite indices γ(̂βi : ̂βj) = γ(Xi : Xj), if much less than unity, serve to alert
the user as to potential problems with ill-conditioning.

5.3.1. An Overview

To fix ideas, observe for the CCD that G(̂βQ,
̂βI) = 1.13633, G(̂βQ) = 1.03300, and G(̂βI) =

1.25000 from Table 1. These not only are comparable in magnitude, but are commensurate,
in having been adjusted for dimensions and thus homogeneous of unit degree, as are all
entries in Table 1. Moreover, since (̂βQ,

̂βI) are uncorrelated and γ(̂βQ,
̂βI) = 1.0 for the

CCD from Table 3, G(̂βQ,
̂βI) is the geometric mean 1.13633 = (1.03300)3/6(1.25000)3/6 from

Theorem 4.1(ii). A further rough spot check of Table 1 may be summarized as follows.

Summary Properties

(P1) Compared with G(̂β), values for G(̂β0) appear excessive throughout.

(P2) Values for G(̂βL) are roughly comparable across designs.

(P3) The eight designs sort essentially into two groups.

(P4) Designs {H310,H311B, SCD,BBD,CCD} overall are comparatively D- and Ds-
efficient, with the noted exception being G(̂βI) = 4.16667 for the SCD.

(P5) The designs {ND,HD,BDD} are considerably less D-efficient, with their general-
ized variances GV (̂β) being {1192.09, 4768.37, 2886.03}, respectively, in comparison
with {57.342,11.852,74.422, 2.722, 0.523} for the remaining designs; and each of
the former is burdened by unequivocal Ds-inefficiency for βQ, to be treated
subsequently.

5.3.2. Further Details

We next examine Hartley’s [39] SCD in some detail, first in terms of generalized variances.
Values for GV (̂β), GV (̂β0), and GV (̂βM) appear in the first row of Table 4, along with γ(̂β0 :
̂βM) = (1.0 − 0.909090) = 0.090909 using ρ2(0 : M) = 0.909090 from Table 2. Theorem 4.1
(i) now asserts that GV (̂β) = GV (̂β0)GV (̂βM)γ(̂β0 : ̂βM), as verified numerically through
74.4216 = 10.00(81.8638)(0.090909). In a similar manner, ̂βM partitions into {̂βL, [̂βQ,

̂βI]},
where GV (̂βL) = 4.6296 and GV ([̂βQ,

̂βI]) = 81.8638 from Table 4. The squared canonical

correlations between {̂βL, [̂βQ,
̂βI]} are ρ2(L : QI) = [0.4000, 0.4000, 0.4000]′ from Table 2, so

that γ(L : QI) = 0.21600 as in Table 3. Theorem 4.1 (i) again recovers GV (̂βM) as 81.8638 =
4.6926(81.8638)(0.21600) sinceG(̂βL) and γ(L : QI) are reciprocals in this instance. Moreover,
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Table 1: Roots G(̂β) and G(̂βi) of generalized variances for ̂β and subset estimators {̂βi ∈ R
t}, and angles

φ(1n : X)deg between regressors and the constant, against reference values φ∗∗ < 18.44 and φ∗ < 30.00, in
eight small second-order designs.

Design G(̂β) G(̂β0) G(̂βL) G(̂βQ) G(̂βI) G(̂βQ,
̂βI) G(̂βM) φ(1n : X)

H310 1.49916 5.0477 1.18821 2.08026 1.61045 1.83034 1.58484 25.11∗

H311B 1.28050 10.0000 1.0000 1.17680 1.99997 1.53413 1.33017 17.55∗∗

SCD 1.53876 10.0000 1.66667 1.04210 4.16667 2.08376 1.63142 17.55∗∗

BBD 1.10533 10.0000 0.83333 1.64583 1.11111 1.35229 1.15077 16.10∗∗

CCD 0.93725 10.0000 0.71429 1.03300 1.25000 1.13633 0.97341 14.96∗∗

ND 2.03063 8.7500 1.25000 7.80031 1.25000 3.12256 2.22030 18.80∗

HD 2.33258 5.0000 1.91189 6.61313 1.95275 3.57444 2.59004 25.24∗

BDD 2.21835 4.6477 1.58809 4.96625 2.25752 3.22673 2.44950 26.25∗

Table 2: Squared canonical correlations between designated subsets (̂βi,
̂βj) of estimators for eight small

second-order designs.

Subsets H310 H311B SCD BBD CCD ND HD BDD
{0L,QI} 0.81990 0.90909 0.90909 0.92308 0.93333 0.89333 0.79476 0.81304

0.40000 0.11111 0.54261 0.11721
0.40000 0.11111 0.11111 0.11721
0.40000 0.11111 0.03524

{L,Q} 0.11111 0.11111 0.06461
0.11111 0.11111 0.01413
0.08333 0.00631 0.01413

{L,QI} 0.40000 0.11111 0.54456 0.11721
0.40000 0.11111 0.11111 0.11721
0.40000 0.08333 0.11111 0.09890

{Q, I} 0.03153 0.10418
0.10418
0.00196

{0,L} 0.10714 0.11790 0.02281
{0,Q} 0.81990 0.90909 0.90909 0.92308 0.93333 0.89286 0.64103 0.79815
{0, I} 0.04918 0.00220
{0,LQI} 0.81990 0.90909 0.90909 0.92308 0.93333 0.89610 0.81818 0.80440

Table 3: Vector Alienation Coefficients γ(̂βi : ̂βj) between subsets (̂βi,
̂βj) of estimators, and the factor

abc = [γ(0 : LQI)γ(L : QI)γ(Q : I)]1/10, for each of eight small second-order designs.

Subsets H310 H311B SCD BBD CCD ND HD BDD
{0L,QI} 0.18010 0.09091 0.01964 0.07692 0.06667 0.08428 0.07417 0.14057
{L,Q} 1.00000 1.00000 1.00000 1.00000 1.00000 0.72428 0.78514 0.90914
{L,QI} 1.00000 1.00000 0.21600 1.00000 1.00000 0.72428 0.35986 0.70225
{Q, I} 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.96847 0.80092
{0,L} 1.00000 1.00000 1.00000 1.00000 1.00000 0.89286 0.88210 0.97719
{0,Q} 0.18010 0.09091 0.09091 0.07692 0.06667 0.10714 0.35897 0.20185
{0, I} 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 0.95082 0.99780
{0,LQI} 0.18010 0.09091 0.09091 0.07692 0.06667 0.10390 0.18182 0.19566
abc 0.84246 0.78679 0.67500 0.77376 0.76277 0.77206 0.75890 0.80197
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Table 4:Generalized variances andVector Alienation Coefficients between designated subsets for Hartley’s
[39] SCD in k = 3 regressors.

GV (̂β) GV (̂β0) GV (̂βM) γ(0 : LQI)) = (1 − ρ21)
74.4216 10.0000 81.8638 0.090909
GV (̂βM) GV (̂βL) GV (̂βQ,

̂βI) γ(L : QI) = Πr
i=1(1 − ρ2i )

81.8638 4.6296 81.8638 0.216000
GV (̂βQ,

̂βI) GV (̂βQ) GV (̂βI) γ(Q : I) = Πr
i=1(1 − ρ2i )

81.8638 1.1317 72.3379 1.000000

GV (̂βQ,
̂βI) = GV (̂βQ)GV (̂βI)γ(Q : I) translates into 81.8638 = 1.1317(72.3379)(1.0), where

γ(Q : I) = 1.0 since elements of {̂βQ,
̂βI} are mutually uncorrelated from Table 2. In summary,

the value G(̂β) for the SCD admits the factorization of (4.6), on identifying {̂θ1, ̂θ2, ̂θ3, ̂θ4}
with {̂β0, ̂βL,

̂βQ,
̂βI}, respectively, given numerically from Tables 1 and 3 as

1.53876 = (10.00)1/10(1.66667)3/10(1.04210)3/10(4.16667)3/10[(0.090909)(0.21600)(1.0)]1/10.
(5.2)

Corresponding factorizations proceed similarly for other designs. Details are left to
the reader, but values for [γ(0 : LQI)γ(L : QI)γ(Q : I)]1/10, the rightmost factor of (5.2),
are supplied for each design as the final row of Table 3. Although the tables, together with
Theorem 4.1, support other factorizations, the one featured here seems most natural in terms
of the parameters {β0,βL,βQ,βI}, together with their central roles in identifying noteworthy
treatment effects in second-order models.

5.4. Masking

The D-efficiency index of the SCD, at GV (̂β) = 74.4216, is larger but roughly comparable to
that of H310 atGV (̂β) = 57.3418. What cannot be anticipated from these facts alone, however,
is that the (3 × 3) determinant GV (̂βI) = 72.3379 for the SCD is comparable to its (10 × 10)
determinant GV (̂β) = 74.4216, despite their disparate dimensions. Adjusting for dimensions
gives G(̂β) = (74.4216)1/10 = 1.53876 and G(̂βI) = (72.3379)1/3 = 4.16667 for the SCD. This
illustrates the masking of a remarkably inefficient estimator for βI , despite the value G(̂β) =
1.53876 in estimating all parameters. This masking stems from the nonorthogonality of subset
estimators as reflected in their canonical correlations and Vector Alienation Coefficients. In
contrast are the corresponding commensurate values for the H310 design, namely, G(̂β) =
(57.3418)1/10 = 1.49916 and G(̂βI) = (4.1768)1/3 = 1.61045. It may be noted that the condition
number c1(X′

0X0) is 21.59 for H310, with the somewhat larger value 54.01 for the SCD.
We next examine the Ds-inefficiencies of ND and HD for βQ as noted earlier,

with G(̂βQ) taking values 7.80031 and 6.61313, respectively. Our reference for masking is

G(̂βL,
̂βQ). These values are not listed in Table 1, but may be recovered from Tables 2 and

3 as follows. Specifically, for ND we have

[

GV
(

̂βL

)

GV
(

̂βQ

)

γ(L : Q)
]1/6

=
[

GV
(

̂βL,
̂βQ

)]1/6
= G

(

̂βL,
̂βQ

)

,

(1.25000)3/6(7.80031)3/6(0.72428)1/6 = 2.95912,
(5.3)
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where neither G(̂βL) = 1.25000 nor G(̂βL,
̂βQ) = 2.95912 appears excessive. In consequence,

that G(̂βQ) = 7.80031 is excessive would be masked on examining G(̂βL) and G(̂βL,
̂βQ) only.

Parallel steps for HD give the factorization (1.91189)3/6(6.61313)3/6(0.78514)1/6 = 3.41528,
with similar conclusions in regard to masking.

5.5. Collinearity with the Constant

Advocates for these and other small designs have focused on D, Ds, and other efficiency
criteria, as well as the parsimony of small designs and their advantage in industrial
experiments. To the knowledge of this observer, none has considered prospects for ill-
conditioning and its consequences, despite the fact that columns of X are necessarily
inter-linked as a consequence of second-order from first-order effects. Nonetheless, from
Section 3.1 and Corollary 3.2, we may compute angles between the constant vector and the
span of the regressors using duality together with the information at hand. This may prove
to be critical in view of the admonition [29] that “collinearity with the intercept can quite
generally corrupt the estimates of all parameters in the model.” As noted in Remark 3.4,
rules-of-thumb for problematic VIFs include those exceeding 10 or 4 or, in angular measure,
φ∗∗ < 18.435deg and φ∗ < 30.00deg. From the last row of Table 2, the angles φ(1n : X) have
been computed for each of the eight designs, as listed in the final column of Table 1. For
example, arccos(

√
0.81990) = 25.1116deg for H310. It is seen that all designs are flagged

as potentially problematic using rules-of-thumb as cited. This adds yet another layer of
concerns, heretofore unrecognized, in seeking further to implement these designs already
in wide usage.

6. Conclusions

Duality of (i) Hotelling’s [30] canonical correlations {ρ1, . . . , ρr} between the OLS estimators
{̂β1,

̂β2} and (ii) the design linkage parameters {δ1, . . . , δr} between {X1,X2} is established
at the outset. Stewart’s [33] collinearity indices are then extended to encompass angles
{φ0, φ1, . . . , φk} between each column of X0 = [1n,X1, . . . ,Xk] and remaining columns. In
particular, φ0 quantifies numerically the collinearity of regressors with the intercept, of
concern in the prospective corruption of all estimates due to ill-conditioning.

Matrix identities factorize a determinant in terms of principal subdeterminants and
the Vector Alienation Coefficients of [30] between {̂β1,

̂β2}. By duality, the latter also are
Alienation Coefficients between {X1,X2}. These identities in turn are applied in the study of
Ds-efficiencies for the parameters {β0,βL,βQ,βI} in eight small second-order designs from
the literature. Studies on Ds- and D-efficiencies, as cited in our opening paragraph, confirm
that designs are seldom efficient for both. Our determinant identities support a rational
explanation. In particular, these identities unmask the propensity for Ds-inefficient subset
estimators to be masked through near collinearities in overall D-efficient designs.

Finally, the evidence suggests that all eight designs are vulnerable, to varying
degrees, to the corruption of all estimates due to ill-conditioning. In short, we have
exposed quantitatively the structural origins of masking through Hotelling’s [30] canonical
correlations, and their equivalent design linkage parameters. This analysis in turn proceeds
from the design matrix itself rather than empirical estimates, so that any design can be
evaluated beforehand with regard to masking and possible subset inefficiencies, rather than
retrospectively after having committed to a given design in a particular experiment.
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