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This paper presents a new nonparametric method for computing the conditional Value-at-Risk,
based on a local approximation of the conditional density function in a neighborhood of a
predetermined extreme value for univariate and multivariate series of portfolio returns. For
illustration, the method is applied to intraday VaR estimation on portfolios of two stocks traded on
the Toronto Stock Exchange. The performance of the new VaR computation method is compared
to the historical simulation, variance-covariance, and J. P. Morgan methods.

1. Introduction

The Value-at-Risk (VaR) is a measure of market risk exposure for portfolios of assets. It has
been introduced by the Basle Committee on Banking Supervision (BCBS) and implemented
in the financial sector worldwide in the late nineties. By definition, the VaR equals the Dollar
loss on a portfolio that will not be exceeded by the end of a holding time with a given
probability. Initially, the BCBS has recommended a 10-day holding time (and allowed for
computing the VaR at horizon 10 days by rescaling the VaR at a shorter horizon) and loss
probability 1%; (see, [1], page 3), Banks use the VaR to determine the required capital to
be put aside for coverage of potential losses. (The required capital reserve is defined as
RCt = Max[VaRt, (M +m)1/60

∑60
h=1 VaRt−h], (see, [1], page 14 and [2], page 2), where M is

a multiplier set equal to 3, and m takes a value between 0 and 1 depending on the predictive
quality of the internal model used by the bank.) The VaR is also used in portfolio management
and internal risk control. Therefore, some banks compute intradaily VaRs, at horizons of one
or two hours, and risk levels of 0.5%, or less.
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Formally, the conditional Value-at-Risk is the lower-tail conditional quantile and
satisfies the following expression:

Pt[xt+1 < −VaRt(α)] = α, (1.1)

where xt is the portfolio return between t − 1 and t, α denotes the loss probability, and
Pt represents the conditional distribution of xt+1 given the information available at time t.
Usually, the information set contains the lagged values xt, xt−1, . . . of portfolio returns. It can
also contain lagged returns on individual assets, or on the market portfolio.

While the definition of the VaR as a market risk measure is common to all banks,
the VaR computation method is not. In practice, there exist a variety of parametric,
semiparametric, and nonparametric methods, which differ with respect to the assumptions
on the dynamics of portfolio returns. They can be summarized as follows (see, e.g., [3]).

(a) Marginal VaR Estimation

The approach relies on the assumption of i.i.d. returns and comprises the following methods.

(1) Gaussian Approach

The VaR is the α-quantile, obtained by inverting the Gaussian cumulative distribution
function

VaR(α) = −Ext+1 −Φ−1(α)(Vxt+1)1/2, (1.2)

where Ext+1 is the expected return on a portfolio, Vxt+1 is the variance of portfolio returns,
and Φ−1(α) is the α-quantile of the standard normal distribution. This method assumes the
normality of returns and generally underestimates the VaR. The reason is that the tails of the
normal distribution are much thinner than the tails of an empirical marginal distribution of
portfolio returns.

(2) Historical Simulation (see [1])

VaR(α) is approximated from a sample quantile at probability α, obtained from historical
data collected over an observation period not shorter than one year. The advantage of this
method is that it relaxes the normality assumption. Its major drawback is that it provides poor
approximation of small quantiles at α’s such as 1%, for example, as extreme values are very
infrequent. Therefore, a very large sample is required to collect enough information about
the true shape of the tail. (According to the asymptotic properties of the empirical quantile,
at least 200–300 observations, that is, one year, approximately, are needed for α = 5% and at
least 1000, that is, 4 years are needed for α= 1%, both for a Gaussian tail. For fatter tails, even
more observations can be required (see, e.g., the discussion in [3]).

(3) Tail Model Building

The marginal quantile at a small risk level α is computed from a parametric model of the
tail and from the sample quantile(s) at a larger α. For example, McKinsey Inc. suggests to
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infer the 99th quantile from the 95th quantile by multiplying the latter one by 1.5, which is
the weight based on a zero-mean Gaussian model of the tail. This method is improved by
considering two tail quantiles. If a Gaussian model with mean μ and variance σ is assumed
to fit the tail for α < 10%, then the V̂aR(α), for any α < 10%, can be calculated as follows, Let
V̂aR(10%) and V̂aR(5%) denote the sample quantiles at risk levels 5% and 10%. From (1.2),
the estimated mean and variance in the tail arise as the solutions of the system

V̂aR(10%) = −m̂ −Φ−1(10%)σ̂,

V̂aR(5%) = −m̂ −Φ−1(5%)σ̂.
(1.3)

The marginal VaR at any loss probability α less than 10% is calculated as

V̂aR(α) = −m̂ −Φ−1(α)σ̂, (1.4)

where m̂, σ̂ are solutions of the above system. Equivalently, we get

V̂aR(α) − V̂aR(10%)

V̂aR(5%) − V̂aR(10%)
=

Φ−1(α) −Φ−1(10%)
Φ−1(5%) −Φ−1(10%)

. (1.5)

Thus, V̂aR(α) is a linear combination of sample quantiles V̂aR(10%) and V̂aR(5%) with the
weights determined by the Gaussian model of the tail.

This method is parametric as far as the tail is concerned and nonparametric for the
central part of the distribution, which is left unspecified.

The marginal VaR estimation methods discussed so far do not account for serial
dependence in financial returns, evidenced in the literature. (These methods are often applied
by rolling, that is, by averaging observations over a window of fixed length, which implicitly
assumes independent returns, with time dependent distributions.)

(b) Conditional VaR Estimation

These methods accommodate serial dependence in financial returns.

(1) J. P. Morgan

The VaR at 5% is computed by inverting a Gaussian distribution with conditional mean zero
and variance equal to an estimated conditional variance of returns. The conditional variance
is estimated from a conditionally Gaussian IGARCH-type model of volatility σ2

t , called the
Exponentially Weighted Moving Average, where σ2

t = θσ2
t−1 + (1 − θ)x2

t−1, and parameter θ is
arbitrarily fixed at 0.94 for any portfolio [4].

(2) CaViar [5]

The CaViar model is an autoregressive specification of the conditional quantile. The model is
estimated independently for each value of α, and is nonparametric in that respect.
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Table 1: Computation of the VaR.

Parametric Semi-parametric Nonparametric
i.i.d. Gaussian tail model building historical simulation

approach (advisory firms) (regulators)
Serial IGARCH by J. P. Morgan CaViar
Dependence DAQ

(3) Dynamic Additive Quantile (DAQ) [6]

This is a parametric, dynamic factor model of the conditional quantile function.
Table 1 summarizes all the aforementioned methods.
This paper is intended to fill in the empty cell in Table 1 by extending the tail model

building method to the conditional Value-at-Risk. To do that, we introduce a parametric
pseudomodel of the conditional portfolio return distribution that is assumed valid in a
neighbourhood of the VaR of interest. Next, we estimate locally the pseudodensity, and use
this result for calculating the conditional VaRs in the tail.

The local nonparametric approach appears preferable to the fully parametric
approaches for two reasons. First, the nonparametric methods are too sensitive to
specification errors. Second, even if the theoretical rate of convergence appears to be smaller
than that of a fully parametric method (under the assumption of no specification error in
the latter one), the estimator proposed in this paper is based on a local approximation of
the density in a neighborhood where more observations are available than at the quantile of
interest.

The paper is organized as follows. Section 2 presents the local estimation of a
probability density function from a misspecified parametric model. By applying this
technique to a Gaussian pseudomodel, we derive the local drift and local volatility, which
can be used as inputs in expression (1.2). In Section 3, the new method is used to compute
the intraday conditional Value-at-Risk for portfolios of two stocks traded on the Toronto Stock
Exchange. Next, the performance of the new method of VaR computation is compared to
other methods, such as the historical simulation, Gaussian variance-covariance method, J. P.
Morgan IGARCH, and ARCH-based VaR estimation in Monte Carlo experiments. Section 4
discusses the asymptotic properties of the new nonparametric estimator of the log-density
derivatives. Section 5 concludes the paper. The proofs are gathered in Appendices.

2. Local Analysis of the Marginal Density Function

The local analysis of a marginal density function is based on a family of pseudodensities.
Among these, we define the pseudodensity, which is locally the closest to the true density.
Next, we define the estimators of the local pseudodensity, and show the specific results
obtained for a Gaussian family of pseudodensities.

2.1. Local Pseudodensity

Let us consider a univariate or multivariate random variable Y , with unknown density f0,
and a parametric multivariate family of densities F = {f(y, θ), θ ∈ Θ}, called the family of
pseudodensities where the parameter set Θ ⊂ R

p. This family is generally misspecified. Our
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method consists in finding the pseudodensity f(y; θ∗0), which is locally the closest to the true
density. To do that we look for the local pseudo-true value of parameter θ.

In the first step, let us assume that variable Y is univariate and consider an
approximation on an interval A = [c − h, c + h], centered at some value c of variable Y .
The pseudodensity is derived by optimizing the Kullback-Leibler criterion evaluated from
the pseudo and true densities truncated over A. The pseudo-true value of θ is

θ̃c,h = Argmax
θ

[
E0
[
1c−h<Y<c+h log f(Y ; θ)

]

−E0[1c−h<Y<c+h] log
∫

1c−h<y<c+h f
(
y; θ
)
dy

]

= Argmax
θ

E0

[
1

2h
1c−h<Y<c+h log f(Y ; θ)

]

− E0

[
1

2h
1c−h<Y<c+h

]

log
∫

1
2h

1c−h<y<c+h f
(
y; θ
)
dy,

(2.1)

where E0 denotes the expectation taken with respect to the true probability density function
(pdf, henceforth) f0. The pseudo-true value depends on the pseudofamily, the true pdf, the
bandwidth, and the location c. The above formula can be equivalently rewritten in terms of
the uniform kernel K(u) = (1/2)1[−1,1](u). This leads to the following extended definition of
the pseudo-true value of the parameter which is valid for vector Y of any dimension d, kernel
K, bandwidth h, and location c:

θ̃c,h = Argmax
θ

E0

[
1
hd
K

(
Y − c
h

)

log f(Y ; θ)
]

− E0

[
1
hd
K

(
Y − c
h

)]

log
∫

1
hd
K

(
y − c
h

)

f
(
y; θ
)
dy.

(2.2)

Let us examine the behavior of the pseudo-true value when the bandwidth tends to zero.

Definition 2.1. (i) The local parameter function (l.p.f.) is the limit of θ̃c,h when h tends to zero,
given by

θ̃
(
c, f0
)
= lim

h→ 0
θ̃c,h, (2.3)

when this limit exists.

(ii) The local pseudodensity is f[y; θ̃(c, f0)].

The local parameter function provides the set of local pseudo-true values indexed by
c, while the local pseudodensity approximates the true pdf in a neighborhood of c. Let us
now discuss some properties of the l.p.f.



6 Journal of Probability and Statistics

Proposition 2.2. Let one assume the following:

(A.1) There exists a unique solution to the objective function maximized in (2.2) for any h, and
the limit θ̃(c, f0) exists.

(A.2) The kernel K is continuous on R
d, of order 2, such that

∫
K(u)du = 1,

∫
uK(u)du =

0,
∫
uu′K(u)du = η2, positive definite.

(A.3) The density functions f(y, θ) and f0(y) are positive and third-order differentiable with
respect to y.

(A.4) dim θ = p ≥ d, and, for any c in the support of f0,

{
∂ log f(c; θ)

∂y
, θ ∈ Θ

}

= R
d. (2.4)

(A.5) For h small and any c, the following integrals exist:
∫
K(u) log f(c + uh; θ) f0(c + uh)du,∫

K(u)f0(c+uh)du,
∫
K(u)f(c+uh; θ)du, and are twice differentiable under the integral

sign with respect to h.

Then, the local parameter function is a solution of the following system of equations:

∂ log f
[
c; θ̃
(
c; f0
)]

∂y
=
∂ log f0(c)

∂y
, ∀c. (2.5)

Proof . See Appendix A.

The first-order conditions in Proposition 2.2 show that functions f[y, θ̃(c, f0)] and
f0(c) have the same derivatives at c. When p is strictly larger than d, the first-order conditions
are not sufficient to characterize the l.p.f.

Assumption (A.1) is a local identification condition of parameter θ. As shown in
the application given later in the text, it is verified to hold for standard pseudofamilies of
densities such as the Gaussian, where θ̃(c, f0) has a closed form. (The existence of a limit
θ̃(c, f0) is assumed for expository purpose. However, the main result concerning the first-
order conditions is easily extended to the case when θ̃c,h exists, with a compact parameter
set Θ. The proof in Appendix A shows that, even if the limh→ 0θ̃(c, f0) does not exist, we get
limh→ 0(∂ log f[c, θ̃c,h]/∂y) = ∂ log f0(c)/∂y, ∀c. This condition would be sufficient to define
a local approximation to the log-derivative of the density.)

It is known that a distribution is characterized by the log-derivative of its density due
to the unit mass restriction. This implies the following corollary.

Corollary 2.3. The local parameter function characterizes the true distribution.

2.2. Estimation of the Local Parameter Function and
of the Log-Density Derivative

Suppose that y1, . . . , yT are observations on a strictly stationary process (Yt) of dimension d.
Let us denote by f0 the true marginal density of Yt and by {f(y : θ), θ ∈ Θ} a (misspecified)
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pseudoparametric family used to approximate f0. We now consider the l.p.f. characterization
of f0, and introduce nonparametric estimators of the l.p.f. and of the marginal density.

The estimator of the l.p.f. is obtained from formula (2.2), where the theoretical
expectations are replaced by their empirical counterparts:

θ̃T (c) = Argmax
θ

[
T∑

t=1

1
hd
K

(
yt − c
h

)

log f
(
yt; θ
)

−
T∑

t=1

1
hd
K

(
yt − c
h

)

log
∫

1
hd
K

(
y − c
h

)

f
(
y; θ
)
dy

]

.

(2.6)

The above estimator depends on the selected kernel and bandwidth. This estimator allows us
to derive from Proposition 2.2 a new nonparametric consistent estimator of the log-density
derivative defined as

∂ log f̂T (c)
∂y

=
∂ log f

[
c; θ̃T (c)

]

∂y
. (2.7)

The asymptotic properties of the estimators of the l.p.f. and log-density derivatives are
discussed in Section 4, for the exactly identified case p = d. In that case, θ̃T (c) is characterized
by the system of first-order conditions (2.7).

The quantity f[c, θ̃T (c)] is generally a nonconsistent estimator of the density f0(c)
at c (see, e.g., [7] for a discussion of such a bias in an analogous framework ). However,
a consistent estimator of the log-density (and thus of the density itself, obtained as the
exponential function of the log-density) is derived directly by integrating the estimated log-
density derivatives under the unit mass restriction. This offers a correction for the bias, and
is an alternative to including additional terms in the objective function (see, e.g., [7, 8]).

2.3. Gaussian Pseudomodel

A Gaussian family is a natural choice of pseudomodel for local analysis, as the true density
is locally characterized by a local mean and a local variance-covariance matrix. Below, we
provide an interpretation of the Gaussian local density approximation. Next, we consider a
Gaussian pseudomodel parametrized by the mean only, and show the relationship between
the l.p.f. estimator and two well-known nonparametric estimators of regression and density,
respectively.

(i) Interpretation

For a Gaussian pseudomodel indexed by mean m and variance Σ, we have

∂ log f
(
y;m,Σ

)

∂y
= Σ−1(y −m). (2.8)

Thus, the approximation associated with a Gaussian pseudofamily is the standard
one, where the partial derivatives of the log-density are replaced by a family of hyperplanes
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parallel to the tangent hyperplanes. These tangent hyperplanes are not independently
defined, due to the Schwartz equality

∂2 log f
(
y
)

∂yi∂yj
=
∂2 log f

(
y
)

∂yj∂yi
; ∀i /= j. (2.9)

The Schwartz equalities are automatically satisfied by the approximated densities
because of the symmetry of matrix Σ−1.

(ii) Gaussian Pseudomodel Parametrized by the Mean and Gaussian Kernel

Let us consider a Gaussian kernel: K(·) = φ(·) of dimension d, where φ denotes the pdf of the
standard Normal N(0, Id).

Proposition 2.4. The l.p.f. estimator for a Gaussian pseudomodel parametrized by the mean and with
a Gaussian kernel can be written as

θ̃T (c) = c +
1 + h2

h2 [m̃T (c) − c] = c +
(

1 + h2
)∂ log

∂c
f̃T (c), (2.10)

where

m̃T (c) =

(∑T
t=1
(
1/hd

)
φ
((
yt − c

)
/h
)
yt
)

(∑T
t=1
(
1/hd

)
φ
((
yt − c

)
/h
)) (2.11)

is the Nadaraya-Watson estimator of the conditional meanm(c) = E[Y | Y = c] = c, and

f̃T (c) =
1
T

T∑

t=1

1
hd

φ

(
yt − c
h

)

(2.12)

is the Gaussian kernel estimator of the unknown value of the true marginal pdf at c.

Proof. See Appendix B.

In this special case, the asymptotic properties of θ̃T (c) follow directly from the
asymptotic properties of f̃T (c) and ∂f̃T (c)/∂c [9]. In particular, θ̃T (c) converges to c +
∂ log f0(c)/∂y, when T and h tend to infinity and zero, respectively, with Thd+2 → 0.

Alternatively, the asymptotic behavior can be inferred from the Nadaraya-Watson
estimator [10, 11] in the degenerate case when the regressor and the regressand are identical.
Section 5 will show that similar relationships are asymptotically valid for non-Gaussian
pseudofamilies.

2.4. Pseudodensity over a Tail Interval

Instead of using the local parameter function and calibrating the pseudodensity locally
about a value, one could calibrate the pseudodensity over an interval in the tail. (We thank
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an anonymous referee for this suggestion.) More precisely, we could define a pseudo-true
parameter value

θ∗
(
c, f0
)
= Argmax

θ

E0

{

1Y>c log

[
f
(
y; θ
)

S(c, θ)

]}

, (2.13)

where S denotes the survival function, and consider an approximation of the true distribution
over a tail interval f[y; θ∗(c, f0)], for y > c. From a theoretical point of view, this approach
can be criticized as it provides different approximations of f0(y) depending on the selected
value of c, c < y.

3. From Marginal to Conditional Analysis

Section 2 described the local approach to marginal density estimation. Let us now show
the passage from the marginal to conditional density analysis and the application to the
conditional VaR.

3.1. General Approach to VaR Computation

The VaR analysis concerns the future return on a given portfolio. Let xt denote the return
on that portfolio at date t. In practice, the prediction of xt is based on a few summary
statistics computed from past observations, such as a lagged portfolio return, realized market
volatility, or realized idiosyncratic volatility in a previous period. The application of our
method consists in approximating locally the joint density of series yt = (y′

1t, y
′
2t)

′, whose
component y1t is xt, and component y2t contains the summary statistics, denoted by zt−1.
Next, from the marginal density of yt, that is, the joint density of y1t and y2t, we derive the
conditional density of y1t given y2t, and the conditional VaR.

The joint density is approximated locally about c which is a vector of two components,
c = (c′1, c

′
2)

′. The first component c1 is a tail value of portfolio returns, such as the 5% quantile
of the historical distribution of portfolio returns, for example, if the conditional VaR at α < 5%
needs to be found. The second component c2 is the value of the conditioning set, which is
fixed, for example, at the last observed value of the summary statistics in y2t = zt−1. Due to
the difference in interpretation, the bandwidths for c1 and c2 need to be different.

The approach above does not suffer from the curse of dimensionality. Indeed, in
practice, y1 is univariate, and the number of summary statistics is small (often less than 3),
while the number of observations is sufficiently large (250 per year) for a daily VaR.

3.2. Gaussian Pseudofamily

When the pseudofamily is Gaussian, the local approximation of the density of yt is
characterized by the local mean and variance-covariance matrix. For yt = (y′

1t, y
′
2t)

′, these
moments are decomposed by blocks as follows:

μ(c) =

(
μ1(c)

μ2(c)

)

, Σ(c) =

(
Σ11(c) Σ12(c)

Σ21(c) Σ22(c)

)

. (3.1)
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The local conditional first and second-order moments are functions of these joint moments:

μ1|2(c) = μ1(c) − Σ12(c)Σ−1
22 (c)μ2(c), (3.2)

Σ1|2(c) = Σ11(c) − Σ12(c)Σ−1
22 (c)Σ21(c). (3.3)

When y1t = xt is univariate, these local conditional moments can be used as inputs in the
basic Gaussian VaR formula (1.2).

The method is convenient for practitioners, as it suggests them to keep using the
misspecified Gaussian VaR formula. The only modifications are the inputs, which become
the local conditional mean and variance in the tail that are easy to calculate given the closed-
form expressions given above.

Even though the theoretical approach is nonparametric, its practical implementation
is semi-parametric. This is because, once an appropriate location c has been selected, the local
pseudodensity estimated at c is used to calculate any VaR in the tail. Therefore, the procedure
can be viewed as a model building method, in which the two benchmark loss probabilities are
arbitrarily close. As compared with other model building approaches, it allows for choosing
a location c with more data-points in its neighborhood than the quantile of interest.

4. Application to Value-at-Risk

The nonparametric feature of our localized approach requires the availability of a sufficient
number of observations in a neighborhood of the selected c. This requirement is easily
satisfied when high-frequency data are used and an intraday VaR is computed. We first
consider an application of this type. It is followed by a Monte-Carlo study, which provides
information on the properties of the estimator when the number of observations is about 200,
which is the sample size used in practice for computing the daily VaR.

4.1. Comparative Study of Portfolios

We apply the local conditional mean and variance approach to intraday data on financial
returns and calculate the intraday Value-at-Risk. The financial motivation for intraday risk
analysis is that internal control of the trading desks and portfolio management is carried
out continuously by banks, due to the use of algorithmic trading that implements automatic
portfolio management, based on high-frequency data. Also, the BCBS in [2, page 3], suggests
that a weakness of the current (daily) risk measure is that it is based on the end-of-day
positions, and disregards the intraday trading risk. It is known that intraday stock price
variation can be often as high as the variation of the market closure prices over 5 to 6
consecutive days.

Our analysis concerns two stocks traded on the Toronto Stock Exchange: the Bank
of Montreal (BMO) and the Royal Bank (ROY) from October 1st to October 31, 1998, and
all portfolios with nonnegative allocations in these two stocks. This approach under the no-
short-sell constraint will suffice to show that allocations of the least risky portfolios differ,
depending on the method of VaR computation.

From the tick-by-tick data, we select stock prices at a sampling interval of two minutes,
and compute the two minute returns xt = (x1t, x2t)

′. The data contain a large proportion of
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zero price movements, which are not deleted from the sample, because the current portfolio
values have to be computed from the most recent trading prices.

The BMO and ROY sample consists of 5220 observations on both returns from October
1 to October 31, 1998. The series have equal means of zero. The standard deviations are 0.0015
and 0.0012 for BMO and ROY, respectively. To detect the presence of fat tails, we calculate the
kurtosis, which is 5.98 for BMO and 3.91 for ROY, and total range, which is 0.0207 for BMO
and 0.0162 for ROY. The total range is approximately 50 (for BMO) and 20 (for ROY) times
greater than the interquartile range, equal to 0.0007 in both samples.

The objective is to compute the VaR for any portfolio that contains these two assets.
Therefore, yt = (y1t, y2t) has two components; each of which is a bivariate vector. We are
interested in finding a local Gaussian approximation of the conditional distribution of y1t = xt
given y2t = xt−1 in a neighborhood of values c1 = (c11, c12) of xt and c2 = (c21, c22) of
xt−1 (which does not mean that the conditional distribution itself is Gaussian) . We fix c21 =
c22 = 0. Because a zero return is generally due to nontrading, by conditioning on zero past
returns, we investigate the occurrence of extreme price variations after a non-trading period.
As a significant proportion of returns is equal to zero, we eliminate smoothing with respect
to these conditioning values in our application.

The local conditional mean and variance estimators were computed from formulae
(3.2)-(3.3) for c11 = 0.00188 and c12 = 0.00154, which are the 90% upper percentiles of the
sample distribution of each return on the dates preceded by zero returns. The bandwidth for
xt was fixed at h = 0.001, proportionally to the difference between the 10% and 1% quantiles.
The estimates are

μ1 = −6.54 10−3, μ2 = −0.48 10−3,

σ11 = 10.2 10−6, σ22 = 1.33 10−6, ρ =
σ12

σ11σ22
= −0.0034.

(4.1)

They can be compared to the global conditional moments of the returns, which are the
moments computed from the whole sample, μ = E(xt | xt−1 = 0), Σ = V (xt | xt−1 = 0). Their
estimates are

μ1 = −2.057 10−5, μ2 = −1.359 10−4,

σ11 = 2.347 10−6, σ22 = 1.846 10−6, ρ =
σ12

σ11σ22
= 0.0976.

(4.2)

As the conditional distribution of xt given xt−1 = 0 has a sharp peak at zero, it comes as no
surprise that the global conditional moments estimators based on the whole sample lead to
smaller Values-at-Risk than the localized ones. More precisely, for loss probability 5% and a
portfolio with allocations a, 1 − a, 0 ≤ a ≤ 1, in the two assets, the Gaussian VaR is given by

VaR(5%, a) = −(a, 1 − a)μ + 1.64
[
(a, 1 − a)Σ(a, 1 − a)′]1/2

, (4.3)

and determines the required capital reserve for loss probability 5%. Figure 1 presents the
Values-at-Risk computed from the localized and unlocalized conditional moments, for any
admissible portfolios of nonnegative allocations. The proportion a invested in the BMO is
measured on the horizontal axis.
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As expected, the localized VaR lies far above the unlocalized one. This means that
the localized VaR implies a larger required capital reserve. We also note that, under the
unlocalized VaR, the least risky portfolio contains equal allocations in both assets. In contrast,
the localized measure suggests to invest the whole portfolio in a single asset to avoid extreme
risks (under the no-short-sell constraint).

4.2. Monte-Carlo Study

The previous application was based on a quite large number of data (more than 5000) on
trades in October 1998 and risk level of 5%. It is natural to assess the performance of the new
method in comparison to other methods of VaR computation, for smaller samples, such as
200 (resp. 400) observations that correspond to one year (resp., two years) of daily returns
and for a smaller risk level of 1%.

A univariate series of 1000 simulated portfolio returns is generated from an ARCH(1)
model, with a double exponential (Laplace) error distribution. More precisely, the model is

xt = (0.4 + 0.95x2
t−1)

1/2
ut, (4.4)

where the errors ut are i.i.d. with pdf

g(u) =
1
2

exp(−|u|). (4.5)

The error distribution has exponential tails that are slightly heavier than the tails of a
Gaussian distribution. The data generating process are assumed to be unknown to the person
who estimates the VaR. In practice, that person will apply a method based on a misspecified
model (such as the i.i.d. Gaussian model of returns in the Gaussian variance-covariance
method or the IGARCH model of squared returns by J. P. Morgan with an ad-hoc fixed
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parameter 0.94). Such a procedure leads to either biased, or inefficient estimators of the VaR
level.

The following methods of VaR computation at risk level of 1% are compared. Methods
1 to 4 are based on standard routines used in banks, while method 5 is the one proposed in
this paper.

(1) The historical simulation based on a rolling window of 200 observations. We will
see later (Figure 2) that this approach results in heavy smoothing with respect to time. A
larger bandwidth would entail even more smoothing.

(2) The Gaussian variance-covariance approach based on the same window.
(3) The IGARCH-based method by J. P. Morgan:

V̂aRt = −Φ−1(1%)0.06
∞∑

h=0

(0.94)hx2
t−h. (4.6)

(4) Two conditional ARCH-based procedures that consist of the following steps. First,
we consider a subset of observations to estimate an ARCH(1) model:

xt = (a0 + a1x
2
t−1)

1/2
vt, (4.7)

where vt are i.i.d. with an unknown distribution. First, the parameters a0 and a1 are estimated
by the quasi-maximum likelihood, and the residuals are computed. From the residuals we
infer the empirical 1% quantile q̂, say. The VaR is computed as V̂aRt = −(â0 + â1x

2
t )

1/2
q̂.

We observe that the ARCH parameter estimators are very inaccurate, which is due to the
exponential tails of the error distribution. Two subsets of data were used to estimate the
ARCH parameters and the 1%-quantile. The estimator values based on a sample of 200
observations are â0 = 8.01, â1 = 0.17, and q̂ = −3.85. The estimator values based on a sample
of 800 observations are â0 = 4.12, â1 = 0.56, and q̂ = −2.78. We find that the ratios â1/â0 are
quite far from the true value 0.95/0.4 used to generate the data, which is likely due to fat tails.

(5) Localized VaR.
We use a Gaussian pseudofamily, a Gaussian kernel, and two different bandwidths for

the current and lagged value of returns, respectively. The bandwidths were set proportional
to the difference between the 10% and 1% quantiles, and the bandwidth for the lagged return
is 4 times the bandwidth for the current return. Their values are 1.16 and 4.64, respectively.
We use a Gaussian kernel (resp., a simple bandwidth) instead of an optimal kernel (resp.,
an optimal bandwidth) for the sake of robustness. Indeed, an optimal approach may not be
sufficiently robust for fixing the required capital. Threshold c is set equal to the 3%-quantile
of the marginal empirical distribution. The localized VaR’s are computed by rolling with a
window of 400 observations.

For each method, Figures 2, 3, 4, 5, 6 and 7 report the evolution of the true VaR
corresponding to the data generating model along with the evolution of the estimated VaR.
For clarity, only 200 data points are plotted.

The true VaR features persistence and admits extreme values. The rolling methods
such as the historical simulation and variance-covariance method produce stepwise patterns
of VaR, as already noted, for example, by Hull and White [12]. These patterns result from the
i.i.d. assumption that underlies the computations. The J. P. Morgan IGARCH approach creates
spurious long memory in the estimated VaR and is not capable to recover the dynamics of
the true VaR series. The comparison of the two ARCH-based VaR’s shows that the estimated
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Figure 4: True and IGARCH-Based VaR.



Journal of Probability and Statistics 15

0

20

40

60

V
aR

0 50 100 150 200

Time

Figure 5: True and ARCH-Based VaR (200 obs).

0

20

40

60

V
aR

0 50 100 150 200

Time
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Figure 7: True and Localized VaR.
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paths strongly depend on the estimated ARCH coefficients. When the estimators are based
on 200 observations, we observe excess smoothing. When the estimators are based on 800
observations, the model is able to recover the general pattern, but overestimates the VaR
when it is small and underestimates the VaR when it is large. The outcomes of the localized
VaR method are similar to the second ARCH model, with a weaker tendency to overestimate
the VaR when it is small.

The comparison of the different approaches shows the good mimicking properties of
the ARCH-based methods and of the localized VaR. However, these methods need also to be
compared with respect to their tractability. It is important to note that the ARCH parameters
were estimated only once and were kept fixed for future VaR computations. The approach
would become very time consuming if the ARCH model was reestimated at each point in
time. In contrast, it is very easy to regularly update the localized VaR.

5. Properties of the Estimator of the Local Parameter Function

5.1. Asymptotic Properties

In this section, we discuss the asymptotic properties of the local pseudomaximum likelihood
estimator under the following strict stationarity assumption.

Assumption 5.1. The process Y = (Yt) is strictly stationary, with marginal pdf f0.
Let us note that the strict stationarity assumption is compatible with nonlinear

dynamics, such as in the ARCH-GARCH models, stochastic volatility models, and so forth,
All proofs are gathered in Appendices.

The asymptotic properties of the local P. M. L. estimator of θ are derived along
the following lines. First, we find the asymptotic equivalents of the objective function and
estimator, that depend only on a limited number of kernel estimators. Next, we derive the
properties of the local P. M. L. estimator from the properties of these basic kernel estimators.
As the set of assumptions for the existence and asymptotic normality of the basic kernel
estimators for multivariates dependent observations can be found in the literature (see the
study by Bosq in [13]), we only list in detail the additional assumptions that are necessary
to satisfy the asymptotic equivalence. The results are derived under the assumption that
θ is exactly identified (see Assumptions 5.2 and 5.3). (In the overidentified case p > d,
the asymptotic analysis can be performed by considering the terms of order h3, h4 in the
expansion of the objective function (see Appendix A), which is out of the scope of this paper.)

Let us introduce the additional assumptions.

Assumption 5.2. The parameter set Θ is a compact set and p = d.

Assumption 5.3. (i) There exists a unique solution θ̃(c; f0) of the system of equations:

∂ log f(c; θ)
∂y

=
∂ log f0(c)

∂y
, (5.1)

and this solution belongs to the interior of Θ.
(ii) The matrix ∂2 log f[c, θ̃(c, f0)]/∂θ∂y′ is nonsingular.
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Assumption 5.4. The following kernel estimators are strongly consistent:

(i) (1/T)
∑T

t=1(1/h
d)K((yt − c)/h) a.s.→ f0(c),

(ii) (1/T)
∑T

t=1(1/h
d)K((yt − c)/h)((yt − c)/h)((yt − c)/h)′ a.s.→ η2f0(c),

(iii) (1/Th)
∑T

t=1(1/h
d)K((yt − c)/h)((yt − c)/h) a.s.→ f0(c)η2(∂ log f0(c)/∂y).

Assumption 5.5. In any neighbourhood of θ, the third-order derivatives ∂3 log f(y; θ)/
∂yi∂yj∂yk, i, j, k varying, are dominated by a function a(y) such that ‖y‖3a(y) is integrable.

Proposition 5.6. The local pseudomaximum likelihood estimator θ̃T (c) exists and is strongly
consistent for the local parameter function θ̃(c; f0) under Assumptions 5.1–5.5.

Proof. See Appendix C.

It is possible to replace the set of Assumptions 5.4 by sufficient assumptions
concerning directly the kernel, the true density function f0, the bandwidth h, and the Y
process. In particular it is common to assume that the process Y is geometrically strong
mixing, and that h → 0, Thd/(log T)2 → +∞, when T tends to infinity (see [13–15]).

Proposition 5.7. Under Assumptions 5.1–5.5 the local pseudomaximum likelihood estimator is

asymptotically equivalent to the solution
≈
θT (c) of the equation:

∂ log f
[

c;
≈
θT (c)

]

∂y
=
(
η2
)−1 1

h2 (m̃T (c) − c), (5.2)

where:

m̃T (c) =
∑T

t=1 K
((
yt − c

)
/h
)
yt

∑T
t=1 K

((
yt − c

)
/h
) (5.3)

is the Nadaraya-Watson estimator ofm(c) = E(Y | Y = c) = c based on the kernel K.

Proof. See Appendix D.

Therefore the asymptotic distribution of θ̃T (c) may be derived from the properties of
m̃T (c) − c, which are the properties of the Nadaraya-Watson estimator in the degenerate case
when the regressand and the regressor are identical. Under standard regularity conditions
[13], the numerator and denominator of 1/h2(m̃T (c) − c) have the following asymptotic
properties.
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Assumption 5.8. If T → ∞, h → 0, Thd+2 → ∞, and Thd+4 → 0, we have the limiting
distribution

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

√
Thd+2

[
1

Thd+2

T∑

t=1

K

(
yt − c
h

)
(
yt − c

) − η2 ∂f0(c)
∂y

]

√
Thd
[

1
Thd

T∑

t=1

K

(
yt − c
h

)

− f0(c)

]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

d→ N

⎛

⎜
⎜
⎜
⎝

0, f0(c)

⎡

⎢
⎢
⎢
⎣

∫

uu′K2(u)du
∫

uK2(u)du

∫

u′K2(u)du
∫

K2(u)du

⎤

⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎠
.

(5.4)

The formulas of the first- and second-order asymptotic moments are easy to verify (see
Appendix E). (Assumption 5.8 is implied by sufficient conditions concerning the kernel, the
process... (see, [13]). In particular it requires some conditions on the multivariate distribution
of the process such as supt1<t2‖ft1,t2−f⊗f‖∞ <∞,where ft1,t2 denotes the joint p.d.f. of (Yt1 , Yt2)
and f ⊗ f the associated product of marginal distributions, and supt1<t2<t3<t4‖ft1,t2,t3,t4‖∞ < ∞,
where ft1,t2,t3,t4 denotes the joint p.d.f of (Yt1 , Yt2 , Yt3 , Yt4).) Note that the rate of convergence
of the numerator is slower than the rate of convergence of the denominator since we study
a degenerate case, when the Nadaraya-Watson estimator is applied to a regression with the
regressor equal to the regressand.

We deduce that the asymptotic distribution of

√

Thd+2
(

1
h2 [m̃T (c) − c] − η2 ∂ log f0(c)

∂y

)

(5.5)

is equal to the asymptotic distribution of

√
Thd+2 1

f0(c)

(
1

Thd+2

T∑

t=1

K

(
yt − c
h

)
(
yt − c

) − η2 ∂f0(c)
∂y

)

, (5.6)

which is N[0, (1/f0(c))
∫
uu′K2(u)du].

By the δ-method we find the asymptotic distribution of the local pseudomaximum
likelihood estimator and the asymptotic distribution of the log-derivative of the true p.d.f..

Proposition 5.9. Under Assumptions 5.1–5.8 one has the following.
(i)

√
Thd+2

⎛

⎜
⎜
⎝

∂ log f
(

c;
≈
θT (c)

)

∂y
− ∂ log f0(c)

∂y

⎞

⎟
⎟
⎠

d→ N

[

0,

(
η2)−1

f0(c)

∫

uu′K2(u)du
[
η2
]−1
]

. (5.7)
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(ii)

√

Thd+2
(≈
θT (c) − θ̃

(
c; f0
)
)

d−→N

⎡

⎢
⎣0,

⎡

⎢
⎣
∂2 log f

[
c; θ̃
(
c; fo
)]

∂θ∂y′

⎤

⎥
⎦

−1 [
η2]−1

f0(c)

×
∫

uu′K2(u)du
[
η2
]−1

⎡

⎢
⎣
∂2 log f

[
c; θ̃
(
c; f0
)]

∂y∂θ′

⎤

⎥
⎦

−1⎤

⎥
⎦

(5.8)

The first-order asymptotic properties of the estimator of the log-derivative of the
density function do not depend on the pseudofamily, whereas the value of the estimator
does. (It is beyond the scope of this paper to discuss the effect of the pseudofamily when
dimension p is strictly larger than d. Nevertheless, by analogy to the literature on local
estimation of nonparametric regression and density functions (see, e.g., the discussion in [7]),
we expect that the finite sample bias in the associated estimator of the density will diminish
when the pseudofamily is enlarged, that is, when the dimension of the pseudoparameter
vector increases.) For a univariate proces (yt), the functional estimator of the log-derivative
∂ log f0(c)/∂y may be compared to the standard estimator

∂ log f̂0(c)
∂y

=
∑T

t=1(1/h)K̇
((
yt − c

)
/h
)

∑T
t=1(1/h)K

((
yt − c

)
/h
) , (5.9)

where K̇ is the derivative of the kernel of the standard estimator. The standard estimator has
a rate of convergence equal to that of the estimator introduced in this paper and the following
asymptotic distribution:

√

Th3

(
∂ log f̂0(c)

∂y
− ∂ log f0(c)

∂y

)
d→ N

[

0,
1

η4f0(c)

∫

K̇(u)2du

]

. (5.10)

The asymptotic distributions of the two estimators of the log-derivative of the density
function are in general different, except when |dK(u)/du| = |uK(u)|, which, in particular,
arises when the kernel is Gaussian. In such a case the asymptotic distributions of the
estimators are identical.

5.2. Asymptotic versus Finite Sample Properties

In kernel-based estimation methods, the asymptotic distributions of estimators do not
depend on serial dependence and are computed as if the data were i.i.d. However, serial
dependence affects the finite sample properties of estimators and the accuracy of the
theoretical approximation. Pritsker [16] (see also work by Conley et al. in [17]) illustrates
this point by considering the finite sample properties of Ait-Sahalia’s test of continuous time
model of the short-term interest rate [18] in an application to data generated by the Vasicek
model.
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The impact of serial correlation depends on the parameter of interest, in particular on
whether this parameter characterizes the marginal or the conditional density. This problem
is not specific to the kernel-based approaches, but arises also in other methods such as the
OLS. To see that, consider a simple autoregressive model yt = ρyt−1+εt, where εt is IIN(0, σ2).
The expected value of yt is commonly estimated from the empirical mean m̂ = yT that has
asymptotic variance V m̂ ≈ (η2/T)(1/(1−ρ)−1), where η2 = Vyt = σ2/(1−ρ2). In contrast, the
autoregressive coefficient is estimated by ρ̂ =

∑
t ytyt−1/

∑
t y

2
t−1 and has asymptotic variance

V ρ̂ ≈ (1 − ρ2)/T .
If serial dependence is disregarded, both estimators m̂ and ρ̂ have similar asymptotic

efficiencies that are η2/T and 1/T , respectively. However, when ρ tends to one while η2

remains fixed, the variance of m̂ tends to infinity whereas the variance of ρ̂ tends to zero.
This simple example shows that omission of serial dependence does not have the same effect
on the marginal parameters as opposed to the conditional ones. Problems considered by
Conley et al. [17] or Pritsker [16] concern the marginal (long run) distribution of yt, while
our application is focused on a conditional parameter, which is the conditional VaR. This
parameter is derived from the analysis of the joint pdf f(yt, yt−1) as in the previous example
ρ̂ was derived from the bivariate vector ((1/T)

∑
t ytyt−1, (1/T)

∑
t y

2
t−1). Due to cointegration

between yt and yt−1 in the case of extreme persistence, we can reasonably expect that the
estimator of the conditional VaR has good finite sample properties, even when the point
estimators f̂(yt, yt−1) do not. The example shows that in finite sample the properties of the
estimator of a conditional parameter can be even better than those derived under the i.i.d.
assumption.

6. Conclusions

This paper introduces a local likelihood method of VaR computation for univariate or
multivariate data on portfolio returns. Our approach relies on a local approximation of the
unknown density of returns by means of a misspecified model. The method allows us to
estimate locally the conditional density of returns, and to find the local conditional moments,
such as a tail mean and tail variance. For a Gaussian pseudofamily, these tail moments can
replace the global moments in the standard Gaussian formula used for computing the VaR’s.
Therefore, our method based on the Gaussian pseudofamily is convenient for practitioners, as
it justifies computing the VaR from the standard Gaussian formula, although with a different
input, which accommodates both the thick tails and path dependence of financial returns.
The Monte-Carlo experiments indicate that tail-adjusted VaRs are more accurate than other
VaR approximations used in the industry.

Appendices

A. Proof of Proposition 2.2

Let us derive the expansion of the objective function

Ah(θ) = E0

[
1
hd
K

(
Y − c
h

)

log f(Y ; θ)
]

− E0

[
1
hd
K

(
Y − c
h

)]

log
∫

1
hd
K

(
y − c
h

)

f
(
y; θ
)
dy,

(A.1)
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when h approaches zero. By using the equivalence (see Assumption (A.1))

∫
1
hd
K

(
y − c
h

)

g
(
y
)
dy = g(c) +

h2

2
Tr

[
∂2g(c)
∂y∂y′ η

2

]

+ o
(
h2
)
, (A.2)

where Tr is the trace operator, we find that

Ah(θ) = f0(c) log f(c; θ) +
h2

2
Tr

{
∂2

∂y∂y′
[
f0(c) log f(c; θ)

]
η2

}

−
[

f0(c) +
h2

2
Tr

(

η2 ∂
2f0(c)
∂y∂y′

)]

log

{

f(c; θ) +
h2

2
Tr

[

η2 ∂
2f(c; θ)
∂y∂y′

]}

+ o
(
h2
)

= −h
2

2
∂ log f0(c)

∂y′ η2 ∂ log f0(c)
∂y

+
h2

2

[
∂ log f(c; θ)

∂y′ − ∂ log f0(c)
∂y′

]

η2
[
∂ log f(c; θ)

∂y
− ∂ log f0(c)

∂y

]

+ o
(
h2
)
.

(A.3)

The result follows.
The expansion above provides a local interpretation of the asymptotic objective

function at order h2 as a distance between the first-order derivatives of the logarithms of
the pseudo and true pdf’s. In this respect the asymptotic objective function clearly differs
from the objective function proposed by Hjort and Jones [7], whose expansion defines an
l2-distance between the true and pseudo pdfs.

B. Proof of Proposition 2.4

For a Gaussian kernel K(·) = φ(·) of dimension d, we get

∫
1
hd
φ

(
y − c
h

)

f
(
y; θ
)
dy =

∫
1
hd
φ

(
c − y
h

)

φ
(
y − θ)dy

=
1

(1 + h2)d/2
φ

(
c − θ√
1 + h2

)

.

(B.1)
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We have

θ̃T (c) = Argmax
θ

{
T∑

t=1

1
hd
φ

(
yt − c
h

)[

−d
2

log 2π −
∥
∥yt − θ

∥
∥2

2

]

−
T∑

t=1

1
hd
φ

(
yt − c
h

)[

−d
2

log 2π − d

2
log
(

1 + h2
)
− ‖c − θ‖2

2(1 + h2)

]}

=
1 + h2

h2

∑T
t=1
(
1/hd

)
φ
((
yt − c

)
/h
)
yt

∑T
t=1
(
1/hd

)
φ
((
yt − c

)
/h
) − 1

h2
c

=
1 + h2

h2
m̃T (c) − 1

h2
c.

(B.2)

Moreover we have

θ̃T (c) − c = 1 + h2

h2 (m̃T (c) − c)

=
1 + h2

h2

∑T
t=1
(
1/hd

)(
yt − c

)
φ
((
yt − c

)
/h
)

∑T
t=1
(
1/hd

)
φ
((
yt − c

)
/h
)

=
(

1 + h2
)(∂/∂c)

[∑T
t=1
(
1/hd

)
φ
((
yt − c

)
/h
)]

[∑T
t=1
(
1/hd

)
φ
((
yt − c

)
/h
)]

=
(

1 + h2
)∂ log

∂c
f̃T (c).

(B.3)

C. Consistency

Let us consider the normalized objective function

ÃT,h(θ) =
1

Th2

[
T∑

t=1

1
hd
K

(
yt − c
h

)

log f
(
yt; θ
)

−
T∑

t=1

1
hd
K

(
yt − c
h

)

log
∫

1
hd
K

(
y − c
h

)

f
(
y; θ
)
dy

]

.

(C.1)
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It can be written as

ÃT,h(θ) =
1

Th2

T∑

t=1

1
hd
K

(
yt − c
h

)

×
[

log f(c; θ) +
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(
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1
2

(
y′
t − c
h

)
∂2 log f(c; θ)

∂y∂y′

(
yt − c
h

)

+ R1
(
yt; θ
)∥
∥yt − c

∥
∥3
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(C.2)

where R1(yt; θ), R2(θ;h) are the residual terms in the expansion. We deduce:

ÃT,h(θ) =
1

Th2
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1
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(
yt − c
h

)
1

f(c; θ)
Tr

[

η2 ∂
2f(c; θ)
∂y∂y′

]

+ residual terms.

(C.3)

Under the assumptions of Proposition 5.7, the residual terms tend almost surely to zero,
uniformly on Θ, while the main terms tend almost surely uniformly on Θ to

A∞ = −∂ log f0(c)
∂y′ η2 ∂ log f0(c)

∂y

+
1
2

[
∂ log f(c; θ)

∂y′ − ∂ log f0(c)
∂y′

]

η2
[
∂ log f(c; θ)

∂y
− ∂ log f0(c)

∂y

]

,

(C.4)

which is identical to limh→ o(Ah(θ)/h2) (see Appendix A).
Then, by Jennrich theorem [19] and the identifiability condition, we conclude that the

estimator θ̃T (c) exists and is strongly consistent of θ(c; f0).
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D. Asymptotic Equivalence

The main part of the objective function may also be written as

ÃT,h(θ) ≈ 1

Th2

T∑

t=1

1
hd
K

(
yt − c
h

)
∂ log f(c; θ)

∂y′
(
yt − c

)

− 1
T
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t=1

1
hd
K

(
yt − c
h

)
∂ log f(c; θ)

∂y′ η2 ∂ log f(c; θ)
∂y

.

(D.1)

We deduce that the local parameter function can be asymptotically replaced by the solution
≈
θT (c) of

∂ log f
(

c;
≈
θT (c)

)

∂y
=
(
η2
)−1

(
1/Th2

)∑T
t=1
(
1/hd

)
K
((
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)
/h
)(
yt − c

)

(1/T)
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t=1
(
1/hd

)
K
((
yt − c

)
/h
) . (D.2)

E. The First- and Second-Order Asymptotic Moments

Let us restrict the analysis to the numerator term (1/Thd+2)
∑T

t=1 K((Yt − c)/h)(Yt − c), which
implies the nonstandard rate of convergence.

(1) First-Order Moment

We get
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(E.1)
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(2) Asymptotic Variance

We have
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(E.2)

which provides the rate of convergence (Thd+2)
−1/2

of the standard error. Moreover the

second term of the bias will be negligible if h(Thd+2)
1/2 → 0 or Thd+4 → 0.

(3) Asymptotic Covariance

Finally we have also to consider:
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(E.3)
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