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We consider probability distributions with constant rate on partially ordered sets, generalizing
distributions in the usual reliability setting ([0,∞),≤) that have constant failure rate. In spite of
the minimal algebraic structure, there is a surprisingly rich theory, including moment results and
results concerning ladder variables and point processes. We concentrate mostly on discrete posets,
particularly posets whose graphs are rooted trees. We pose some questions on the existence of
constant rate distributions for general discrete posets.

1. Preliminaries

1.1. Introduction

The exponential distribution on [0,∞) and the geometric distribution on N are characterized
by the constant rate property: the density function (with respect to Lebesgue measure in
the first case and counting measure in the second) is a multiple of the upper (right-tail)
distribution function.

The natural mathematical home for the constant rate property is a partially
ordered set (poset) with a reference measure for the density functions. In this paper
we explore these distributions. In spite of the minimal algebraic structure of a poset,
there is a surprisingly rich theory, including moment results and results concerning
ladder variables and point processes. In many respects, constant rate distributions lead
to the most random way to put ordered points in the poset. We will be particularly
interested in the existence question—when does a poset support constant rate distribu-
tions?
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1.2. Standard Posets

Suppose that (S,≺) is a poset. For x ∈ S, let

I(x) = {t ∈ S : t � x}, I[x] =
{
t ∈ S : t�x

}
, D[x] =

{
t ∈ S : t≺x

}
. (1.1)

For n ∈ N+ and x ∈ S, let

Dn = {(x1, x2, . . . , xn) ∈ Sn : x1 � x2 � · · · � xn},

Dn[x] = {(x1, x2, . . . , xn) ∈ Sn : x1 � x2 � · · · � xn � x}.
(1.2)

For x, y ∈ S, y is said to cover x if y is a minimal element of I(x). If S is countable,
the Hasse graph or covering graph of (S,≺) has vertex set S and (directed) edge set {(x, y) ∈
S2 : ycovers x}. We write x ⊥ y if x and y are comparable, and we write x‖y if x and y
are noncomparable. The poset (S,≺) is connected if, for every x, y ∈ S, there exists a finite
sequence (x0, x1, . . . , xn) such that x0 = x, xn = y, and xi−1 ⊥ xi for i = 1, . . . , n.

Now suppose that S is a σ-algebra on S, and let Sn denote the corresponding product
σ-algebra on Sn for n ∈ N+. The main assumption that we make to connect the algebraic
structure of S to the measure structure is that the partial order ≺ is itself measurable, in the
sense thatD2 ∈ S2. It then follows that I[x], D[x] ∈ S for x ∈ S since these sets are simply the
cross-sections ofD2 (see [1, 2]). Note that {x} = D[x]∩I[x] ∈ S, so in fact all of the “intervals”
I[x] ∩ D[y], I(x) ∩ D[y], and so forth are measurable for x ≺ y. Also, Dn, Dn[x] ∈ Sn for
x ∈ S and n ∈ N+. If S is countable, S is the power set of S. When S is uncountable, S is
usually the Borel σ-algebra associated with an underlying topology (see [3, 4]).

Finally, we fix a positive, σ-finite measure λ on S as a reference measure. We assume that
λ(I[x]) > 0 and λ(D[x]) < ∞ for each x ∈ S. When S is countable, we take λ to be counting
measure on S unless otherwise noted. In this case, D[x]must be finite for each x, so that S is
locally finite in the terminology of discrete posets [5].

Definition 1.1. The term standard posetwill refer to a poset (S,≺) together with ameasure space
(S, λ) that satisfies the algebraic andmeasure theoretic assumptions.When themeasure space
is understood (in particular for discrete posets with counting measure), we will often omit
the reference to this space.

An important special case is the poset associated with a positive semigroup. A positive
semigroup (S, ·) is a semigroup that has an identity element e, satisfies the left-cancellation
law, and has no nontrivial inverses. The partial order � associated with (S, ·) is given by

x≺y iff xt = y for some t ∈ S. (1.3)

If x≺y, then t satisfying xt = y is unique and is denoted by x−1y. The space S has a topology
that makes the mapping (x, y) → xy continuous, and S is the ordinary Borel σ-algebra. The
reference measure λ is left invariant:

λ(xA) = λ(A) , x ∈ S, A ∈ S. (1.4)
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Probability distributions (particularly exponential type distributions) on positive
semigroups have been studied in [6–10]. The critical feature of a positive semigroup is that,
for each x, I[x] = xS looks like the entire space S from algebraic, topological, and measure
theoretic points of view. Of course, there is no such self-similarity for general standard posets.
Nonetheless, the definition of a standard poset is supposed to capture the minimal structure
of a temporal (i.e., time-like) set, particularly in probability applications such as reliability
and queuing. The following examples are intended to give some idea of the structures that
we have in mind; some of these will be explored in more detail in this paper.

Example 1.2. Consider that ([0,∞),≤), where ≤ is ordinary order (and where λ is Lebesgue
measure on the Borel σ-algebra S) is the standard model of continuous time. Of course, this
poset is associated with the positive semigroup ([0,∞),+).

Example 1.3. Consider that (N,≤), where ≤ is ordinary order, is the standard model of discrete
time. This poset is associated with the positive semigroup (N,+).

Example 1.4. If (Si, ≺i,Si, λi) is a standard poset for i = 1, . . . , n, then so is (S,≺,S, λ),
where S is the Cartesian product, � the product order, S the product σ-algebra, and λ the
product measure. Product sets occur frequently in multivariate settings of reliability and
other applications. In particular, the n-fold powers of the posets in Examples 1.2 and 1.3 are
the standard multivariate models for continuous and discrete time, respectively.

Example 1.5. Consider that (N+,≺), where x � y means that x divides y, is a standard
poset and corresponds to the positive semigroup (N+, ·). Exponential distributions for this
semigroup were explored in [10].

Example 1.6. Suppose that (R,≺R) is a poset and that (Sx,≺x) is a poset for each x ∈ R. The
lexicographic sum of (Sx,≺x) over x ∈ R is the poset (T,≺), where T =

⋃
x∈R{x} × Sx and

where (u, v)≺(x, y) if and only if either u≺Rx or u = x and v≺xy. In the special case that
(Sx,≺x) = (S,≺S) for each x ∈ R, (T,≺) is the lexicographic product of (R,≺R) and (S,≺S). In
the special case that ≺R is the equality relation, (T,≺) is the simple sum of (Sx,≺x) over x ∈ R.

Given appropriate σ-algebras and reference measures, these become standard posets
and have possible applications. For example, suppose that (Si,≺i) is a poset in a reliability
model, for each i ∈ {1, 2, . . . , n}. The simple sum could represent the appropriate space
when n devices are run in parallel. On the other hand, sometimes the more exotic posets
lead to additional insights into simple posets. For example, ([0,∞),≤) is isomorphic to the
lexicographic product of (N,≤) with ([0, 1),≤) (just consider the integer part and remainder
of x ∈ [0,∞)).

Example 1.7. Suppose that (S,≺,S, λ) is a standard poset and that T ∈ S with λ(I[x] ∩ T) > 0
for each x ∈ T . Then (T,≺T ,T, λT ) is also a standard poset, where ≺T is the restriction of � to T
and λT is the restriction of λ to T = {A ∩ T : A ∈ S}. An incredibly rich variety of new posets
can be constructed from a given poset in this way. Moreover, such subposets can be used to
impose restrictions in the reliability setting and other applications.

Example 1.8. A rooted tree is the Hasse graph of a standard poset, and such trees have myriad
applications to various kinds of data structures. One common application is to reproducing
objects (e.g., organisms in a colony or electrons in a multiplier). In this interpretation, that y
covers x means that y is a child of x, and, more generally, x≺y means that y is an ancestor
of x.
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Example 1.9. If S denotes the set of all finite subsets of N+, then (S,⊆) is a standard discrete
poset. Somewhat surprisingly, this poset corresponds to a positive semigroup. Exponential
type distributions for this semigroup were explored in [9]. Random sets have numerous
applications (see [11]); in particular, the problem of choosing a subset of N+ in the “most
random” way is important in statistics.

Example 1.10. Various collections of finite graphs can be made into standard posets under
the subgraph relation. Depending on the model of interest, the graphs could be labeled or
unlabeled and might be restricted (e.g., to finite rooted trees). Of course, random graphs in
general and random trees in particular are large and important areas of research (see [12, 13]).

For the remainder of this paper, unless otherwise noted, we assume that (S, ≺,S, λ) is
a standard poset.

1.3. Operators and Cumulative Functions

Let D(S) denote the set of measurable functions from S into R that are bounded on D[x] for
each x ∈ S. Define the lower operator L on D(S) by

Lf(x) =
∫

D[x]
f(t)dλ(t), x ∈ S. (1.5)

Next, let L(S) denote the usual Banach space of measurable functions f : S → R, with
‖f‖ =

∫
S |f(x)|dλ(x) < ∞. Define the upper operator U on L(S) by

Uf(x) =
∫

I[x]
f
(
y
)
dλ
(
y
)
, x ∈ S. (1.6)

A simple application of Fubini’s theorem gives the following duality relationship between
the linear operators L and U:

∫

S

Lf(x)g(x)dλ(x) =
∫

S

f(x)Ug(x)dλ(x), (1.7)

assuming, of course, the appropriate integrability conditions. Both operators can be written
as integral operators with a kernel function. Define ρ : S × S → R by

ρ
(
x, y
)
=

⎧
⎨

⎩

1 if x≺y,

0 otherwise.
(1.8)
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Then

Lf(x) =
∫

S

ρ(t, x)f(t)dλ(t), x ∈ S,

Uf(x) =
∫

S

ρ(x, t)f(t)dλ(t), x ∈ S.

(1.9)

In the discrete case, ρ is the Riemann function in the terminology of Möbius inversion [5], and
its inverse m (also in the sense of this theory) is the Möbius function. The lower operator L is
invertible, and if g = Lf, then

f(x) =
∑

t∈S
g(t)m(t, x). (1.10)

As we will see in Example 2.2, the upper operator U is not invertible in general, even in the
discrete case.

Now let 1 denote the constant function 1 on S, and define λn : S → [0,∞) by λn = Ln1
for n ∈ N. Equivalently, λn(x) = λn(Dn[x]) for n ∈ N+ and x ∈ S, where λn is n-fold product
measure on (Sn,Sn). We will refer to λn as the cumulative function of order n; these functions
play an important role in the study of probability distribution on (S,≺). For the poset of
Example 1.2, the cumulative functions are

λn(x) =
xn

n!
, x ∈ [0,∞), n ∈ N. (1.11)

For the poset of Example 1.3, the cumulative functions are

λn(x) =
(
n + x
x

)
, x, n ∈ N. (1.12)

For the poset of Example 1.5, λn(x) is the number of n + 1 factorings of x ∈ N+; these are
important functions in number theory. For the poset of Example 1.9, the cumulative functions
are

λn(x) = (n + 1)#(x), x ∈ S, n ∈ N. (1.13)

The ordinary generating function of n → λn(x) is the function Λ given by

Λ(x, t) =
∞∑

n=0

λn(x)tn, (1.14)
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for x ∈ S and for t ∈ R for which the series converges absolutely. The generating function Λ
arises in the study of the point process associated with a constant rate distribution. For the
poset of Example 1.2, Λ(x, t) = etx. For the poset of Example 1.3,

Λ(x, t) =
1

(1 − t)x+1
, x ∈ N, |t| < 1. (1.15)

2. Probability Distributions

2.1. Distribution Functions

Suppose now that X is a random variable taking values in S. We assume that P(X ∈ A) > 0
if and only if λ(A) > 0 for A ∈ S. Thus, the distribution of X is absolutely continuous with
respect to λ, and the support of X is the entire space S in a sense. Let f denote the probability
density function (PDF) of X, with respect to λ.

Definition 2.1. The upper probability function (UPF) ofX is the function F : S → (0, 1] given by

F(x) = P(X � x) = P(X ∈ I[x]), x ∈ S. (2.1)

If (S,≺) is interpreted as a temporal space and X as the failure time of a device, then
F is the reliability function; F(x) is the probability that the failure of the device occurs at or
after x (in the sense of the partial order). This is the usual meaning of the reliability function
in the standard spaces of Examples 1.2 and 1.3 and of the multivariate reliability function in
the setting of Example 1.4 (see [14]). The definition is relevant for more exotic posets as well,
such as the lexicographic order discussed in Example 1.6. Note that

F(x) = Uf(x) =
∫

I[x]
f(t)dλ(t), x ∈ S. (2.2)

In general, the UPF of X does not uniquely determine the distribution of X.

Example 2.2. LetA be fixed set with k elements (k ≥ 2), and let (S,�) denote the lexicographic
sum of the antichains (An,=) over (N,≤), where A0 = {e} and An = A for n ∈ N+. Let f be a
PDF on Swith UPF F. Define g by

g(n, x) = f(n, x) +
(
− 1
k − 1

)n

c, (2.3)

where c is a constant. It is straightforward to show that

∑

(m,y)�(n,x)
g
(
m,y

)
= F(n, x), (n, x) ∈ S. (2.4)

In particular,
∑

(n,x)∈S g(n, x) = 1. Hence if we can choose a PDF f and a nonzero constant c
so that g(n, x) > 0 for every (n, x) ∈ S, then g is a PDF different from f but with the same
UPF. This can always be done when k ≥ 3.
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In the discrete case, a simple application of the inclusion-exclusion rule shows that the
distribution of X is determined by the generalized UPF, defined for finite A ⊆ S by

F(A) = P
(
X�x∀x ∈ A

)
. (2.5)

An interesting problem is to give conditions on the poset (S,≺) that ensure that a distribution
on S is determined by its ordinary UPF. This holds for a discrete upper semilattice, since
F(A) = F(sup(A)) for A finite. It also holds for trees, as we will see in Section 5.

The following proposition gives a simple result that relates expected value to the lower
operator L. For positive semigroups, this result was given in [10].

Proposition 2.3. Suppose that X has UPF F. For g ∈ D(S) and n ∈ N,

∫

S

Lng(x)F(x)dλ(x) = E

[
Ln+1g(X)

]
. (2.6)

Proof. Using Fubini’s theorem,

∫

S

Lng(x)P
(
X �x

)
dλ(x) =

∫

S

Lng(x)E
[
1
(
X �x

)]
dλ(x)

= E

(∫

D[X]
Ln(g

)
(x)dλ(x)

)

= E

[
Ln+1g(X)

]
.

(2.7)

When X has a PDF f , (2.6) also follows from (1.7). In particular, letting g = 1 gives

∫

S

λn(x)F(x)dλ(x) = E[λn+1(X)], n ∈ N, (2.8)

and when n = 0, (2.8) becomes

∫

S

F(x)dλ(x) = E(λ(D[X])). (2.9)

For the poset of Example 1.2, (2.8) becomes

∫∞

0

xn

n!
P(X ≥ x) = E

(
Xn+1

(n + 1)!

)

(2.10)

and (2.9) reduces to the standard result
∫∞
0 P(X ≥ x)dx = E(X). For the poset of Example 1.3,

(2.8) becomes

∞∑

x=0

(
n + x
n

)
P(X ≥ x) = E

(
X + n + 1
n + 1

)
(2.11)
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and (2.9) reduces to the standard result
∑∞

n=0 P(X ≥ n) = E(X) + 1. For the poset of
Example 1.9, (2.8) becomes

∑

x∈S
(n + 1)#(x)P(X ⊇ x) = E

(
(n + 2)#(X)

)
. (2.12)

Definition 2.4. Suppose that X has UPF F and PDF f . The rate function of X is the function
r : S → (0,∞) defined by

r(x) =
f(x)
F(x)

, x ∈ S. (2.13)

Again, if (S,≺) is interpreted as a temporal space and X as the failure time of a device,
then r is the failure rate function: r(x) gives the probability density of failure at x given that
failure occurs at or after x. As mentioned before, this agrees with the usual meaning of failure
rate in the standard spaces of Examples 1.2 and 1.3 and with the usual multivariate meaning
for the product of these spaces (see [14]).

In general, X has constant rate if r is constant on S, increasing rate if r is increasing on S,
and decreasing rate if r is decreasing on S. In the reliability setting, devices with increasing
failure rate deteriorate over time, in a sense, while devices with decreasing failure rate
improve. Devices with constant failure rate do not age, in a sense.

Proposition 2.5. Suppose that (S,≺) is a standard discrete poset and thatX has rate function r. Then
r(x) ≤ 1 for x ∈ S, and r(x) = 1 if and only if x is maximal.

Proof. Let f denote the PDF of X and F the UPF. For x ∈ S,

F(x) = f(x) + P(X � x) = r(x)F(x) + P(X � x). (2.14)

Hence

P(X � x) = [1 − r(x)]F(x). (2.15)

By (2.15), r(x) ≤ 1 for all x ∈ S. If x is maximal then P(X � x) = P(∅) = 0 so r(x) = 1.
Conversely, if x is not maximal, then P(X � x) > 0 (sinceX has support S) and hence r(x) < 1.

2.2. Ladder Variables and Partial Products

Let X = (X1, X2, . . .) be a sequence of independent, identically distributed random variables,
taking values in S, with common UPF F and PDF f . We define the sequence of ladder variables
Y = (Y1, Y2, . . .) associated with X as follows. First let

N1 = 1, Y1 = X1, (2.16)
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and then recursively define

Nn+1 = min{k > Nn : Xk � Yn}, Yn+1 = XNn+1 . (2.17)

Proposition 2.6. The sequence Y is a homogeneous Markov chain with transition density g given by

g
(
y, z
)
=

f(z)
F
(
y
) ,

(
y, z
)
∈ D2. (2.18)

Proof. Let (y1, . . . , yn−1, y, z) ∈ Dn+1. The conditional distribution of Yn+1 given {Y1 =
y1, . . . , Yn−1 = yn−1, Yn = y} corresponds to observing independent copies ofX until a variable
occurs with a value greater than y (in the partial order). The distribution of this last variable
is the same as the conditional distribution ofX givenX�y, which has density z → f(z)/F(y)
on I[y].

Since Y1 = X1 has PDF f , it follows immediately from Proposition 2.6 that
(Y1, Y2, . . . , Yn) has PDF gn (with respect to λn) given by

gn
(
y1, y2, . . . , yn

)
= f
(
y1
)f
(
y2
)

F
(
y1
) · · ·

f
(
yn

)

F
(
yn−1

) ,
(
y1, y2, . . . , yn

)
∈ Dn. (2.19)

This PDF has a simple representation in terms of the rate function r:

gn
(
y1, y2, . . . , yn

)
= r
(
y1
)
r
(
y2
)
· · · r
(
yn−1

)
f
(
yn

)
,
(
y1, y2, . . . , yn

)
∈ Dn. (2.20)

Suppose now that (S, ·) is a positive semigroup and that X = (X1, X2, . . .) is an IID
sequence in S with PDF f . Let Zn = X1 · · ·Xn for n ∈ N+, so that Z = (Z1, Z2, . . .) is the partial
product sequence associated with Z.

Proposition 2.7. The sequence Z is a homogeneous Markov chain with transition probability density
h given by

h
(
y, z
)
= f
(
y−1z

)
,
(
y, z
)
∈ D2. (2.21)

Since Z1 = X1 has PDF f , it follows immediately from Proposition 2.7 that
(Z1, Z2, . . . , Zn) has PDF hn (with respect to λn) given by

hn(z1, z2, . . . , zn) = f(z1)f
(
z−11 z2

)
· · · f

(
z−1n−1zn

)
, (z1, z2, . . . , zn) ∈ Dn. (2.22)

So in the case of a positive semigroup, there are two natural processes associated with an IID
sequence X: the sequence of ladder variables Y and the partial product sequence Z. In general,
these sequences are not equivalent but, as we will see in Section 3, are equivalent when
the underlying distribution of X has constant rate. Moreover, this equivalence characterizes
constant rate distributions.
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Return now to the setting of a standard poset. If W = (W1,W2, . . .) is an increasing
sequence of random variables in S (such as a sequence of ladder variables or, in the special
case of a positive semigroup, a partial product sequence), we can construct a point process in
the usual way. For x ∈ S, let

Nx = #
{
n ∈ N+ : Wn ≺x

}
, (2.23)

so that Nx is the number of random points in D[x]. We have the usual inverse relation
between the processes W and N = (Nx : x ∈ S), namely, Wn ≺x if and only if Nx ≥ n for
n ∈ N+ and x ∈ S. For n ∈ N+, let Gn denote the lower probability function of Wn, so that
Gn(x) = P(Wn � x) for x ∈ S. Then P(Nx ≥ n) = P(Wn � x) = Gn(x) for n ∈ N+. Of course,
P(Nx ≥ 0) = 1. If we define G0(x) = 1 for all x ∈ S, then for fixed x, n → Gn(x) is the upper
probability function of Nx.

The sequence of random points W can be thinned in the usual way. Specifically,
suppose that each point is accepted with probability p ∈ (0, 1) and rejected with probability
1 − p, independently from point to point. Then the first accepted point is WM where M is
independent of W and has the geometric distribution on N+ with parameter p.

3. Distributions with Constant Rate

3.1. Characterizations and Properties

Suppose thatX is a random variable taking values in Swith UPF F. Recall thatX has constant
rate α > 0 if f = αF is a PDF of X.

If (S, ≺) is associated with a positive semigroup (S, ·), then X has an exponential
distribution if

P(X ∈ xA) = F(x)P(X ∈ A), x ∈ S, A ∈ S. (3.1)

Equivalently, the conditional distribution of x−1X given byX�x is the same as the distribution
of X. Exponential distributions on positive semigroups are studied in [6–10]. In particular, it
is shown in [7] that a distribution is exponential if and only if it has constant rate and

F
(
xy
)
= F(x)F

(
y
)
, x, y ∈ S. (3.2)

However there are constant rate distributions that are not exponential. Moreover, of course,
the exponential property makes no sense for a general poset.

Constant rate distributions can be characterized in terms of the upper operator U or
the lower operator L. In the first case, the characterization is an eigenvalue condition and in
the second case a moment condition.

Proposition 3.1. The poset (S,≺, λ) supports a distribution with constant rate α if and only if there
exists a strictly positive g ∈ L(S) with

U
(
g
)
=

1
α
g. (3.3)
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Proof. If F is the UPF of a distribution with constant rate α, then trivially f = αF satisfies the
conditions of the proposition since f is a PDF with UPF F. Conversely, if g ∈ L(S) is strictly
positive and satisfies (3.3), then f := g/‖g‖ is a PDF and U(f) = (1/α)f , so the distribution
with PDF f has constant rate α.

Proposition 3.2. Random variable X has constant rate α if and only if

E
[
Lg(X)

]
=

1
α

E
[
g(X)

]
, (3.4)

for every g ∈ D(S).

Proof. Suppose that X has constant rate α and UPF F, so that f = αF is a PDF of X. Let
g ∈ D(S). From Proposition 2.3,

E
[
Lg(X)

]
=
∫

S

g(x)F(x)dλ(x) =
∫

S

g(x)
1
α
f(x)dλ(x) =

1
α

E
[
g(X)

]
. (3.5)

Conversely, suppose that (3.4) holds for every g ∈ D(S). Again let F denote the UPF of X. By
Proposition 2.3, condition (3.4) is equivalent to

∫

S

αg(x)F(x)dλ(x) = E
[
g(X)

]
. (3.6)

It follows that f = αF is a PDF of X.

If X has constant rate α, then iterating (3.4) gives

E
[
Ln(g

)
(X)
]
=

1
αn

E
[
g(X)

]
, n ∈ N. (3.7)

In particular, if g = 1, then

E[λn(X)] =
1
αn

, n ∈ N, (3.8)

and if n = 1, E[λ1(X)] = E(λ(D[X])) = 1/α.
Suppose now that (S,≺) is a discrete standard poset and that X has constant rate α on

S. From Proposition 2.5, α ≤ 1, and if α = 1, all elements of S are maximal, so that (S,≺) is an
antichain. Conversely, if (S,≺) is an antichain, then any distribution on S has constant rate 1.
On the other hand, if (S,≺) is not an antichain, then α < 1 and S has no maximal elements.

Consider again a discrete standard poset (S,≺). For x, y ∈ S, we say that x and y are
upper equivalent if I(x) = I(y). Upper equivalence is the equivalence relation associated with
the function s → I(s) from S to P(S). Suppose that X has constant rate α on S and UPF F. If
x, y are upper equivalent, then P(X � x) = P(X � y); so from (2.15),

F(x) =
P(X � x)
1 − α

=
P
(
X � y

)

1 − α
= F
(
y
)
. (3.9)

Thus, the UPF (and hence also the PDF) is constant on the equivalence classes.
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For the poset in Example 1.2, of course, the constant rate distributions are the
ordinary exponential distributions (see [15] for myriad characterizations). For the poset in
Example 1.3, the constant rate distributions are the ordinary geometric distributions. For the
poset ([0,∞)n,≤) as described in Example 1.4, the constant rate distributions are mixtures of
distributions that correspond to independent, exponentially distributed coordinates [16].

3.2. Ladder Variables and Partial Products

Assume that (S,≺) is a standard poset. Suppose that X = (X1, X2, . . .) is an IID sequence with
common UPF F, and let Y = (Y1, Y2, . . .) be the corresponding sequence of ladder variables.

Proposition 3.3. If the distribution has constant rate α, then

(1) Y is a homogeneous Markov chain on S with transition probability density g given by

g
(
y, z
)
= α

F(z)
F
(
y
) ,

(
y, z
)
∈ D2; (3.10)

(2) (Y1, Y2, . . . , Yn) has PDF gn given by

gn
(
y1, y2, . . . , yn

)
= αnF

(
yn

)
,
(
y1, y2, . . . , yn

)
∈ Dn; (3.11)

(3) Yn has PDF fn given by

fn
(
y
)
= αnλn−1

(
y
)
F
(
y
)
, y ∈ S; (3.12)

(4) the conditional distribution of (Y1, Y2, . . . , Yn−1) given Yn = y is uniform on Dn−1[y];

Proof. Parts 1 and 2 follow immediately from Proposition 2.6. Part 3 follows from Part 2 and
Part 4 from Parts 2 and 3.

Part 4 shows that the sequence of ladder variables Y of an IID constant rate sequence
X is the most random way to put a sequence of ordered points in S. In the context of
Example 1.2, of course, Y is the sequence of arrival times of an ordinary Poisson process
and the distribution in Part 3 is the ordinary gamma distribution of order n and rate α. In
the context of Example 1.3, the distribution in Part 3 is the negative binomial distribution of
order n and parameter α. Part 4 almost characterizes constant rate distributions.

Proposition 3.4. Suppose that (S,≺) is a standard, connected poset and that Y is the sequence of
ladder variables associated with an IID sequence X. If the conditional distribution of Y1 given Y2 = y
is uniform on D[y], then the common distribution of X has constant rate.
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Proof. From (2.20), the conditional PDF of Y1 given Y2 = y ∈ S is

h1
(
x | y

)
=

1
C
(
y
)r(x), x ∈ D

[
y
]
, (3.13)

where C(y) is the normalizing constant. But this is constant in x ∈ D[y] by assumption, and
hence r is constant on D[y] for each y ∈ S. Thus, it follows that r(x) = r(y) whenever x ⊥ y.
Since S is connected, r is constant on S.

If the poset is not connected, it is easy to construct a counterexample to Proposition 3.4.
Consider the simple sum of two copies of (N,≤). Put proportion p of a geometric distribution
with rate α on the first copy and 1 − p of a geometric distribution with rate β on the second
copy, where p, α, β ∈ (0, 1) and α/= β. The resulting distribution has rate α on the first copy
and rate β on the second copy. If X is an IID sequence with the distribution so constructed
and Y the corresponding sequence of ladder variables, then the conditional distribution of
(Y1, . . . , Yn−1) given Yn = y is uniform for each y ∈ S.

Suppose now that X is an IID sequence from a distribution with constant rate α and
UPF F. Let Y denote the corresponding sequence of ladder variables, and suppose that the
sequence Y is thinned with probability p ∈ (0, 1), as described in Section 2.2. Let YM denote
the first accepted point.

Proposition 3.5. The PDF g of YM is given by

g(x) = pαΛ[x, α(1 − r)]F(x), x ∈ S, (3.14)

where Λ is the generating function associated with (λn : n ∈ N).

Proof. For x ∈ S,

g(x) = E
[
fM(x)

]
=

∞∑

n=1

p
(
1 − p

)n−1
fn(x)

=
∞∑

n=1

p
(
1 − p

)n−1
αnλn−1(x)F(x)

= αpF(x)
∞∑

n=1

[
α
(
1 − p

)]n−1
λn−1(x)

= αpF(x)Λ
[
x, α
(
1 − p

)]
.

(3.15)

In general, YM does not have constant rate but, as we will see in Section 5, does have
constant rate when (S,≺) is a tree.

Suppose now that (S, ·) is a positive semigroup and that X = (X1, X2, . . .) is an IID
sequence. Let Y denote the sequence of ladder variables and Z the partial product sequence.
If the underlying distribution of X is exponential, then the distribution has constant rate, so
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Proposition 3.3 applies. But by Proposition 2.7, Z is also a homogeneous Markov chain with
transition probability

h
(
y, z
)
= f
(
y−1z

)
= αF

(
y−1z

)
= α

F
(
y
)

F(z)
, y ∈ S, z ∈ I

[
y
]
, (3.16)

where α is the rate constant, f the PDF, and F the UPF. Thus Z also satisfies the results in
Proposition 3.3, and, in particular, Y and Z are equivalent. The converse is also true.

Proposition 3.6. If Y and Z are equivalent, then the underlying distribution of X is exponential.

Proof. Let f denote the common PDF of X and F the corresponding UPF. Since Y1 = Z1 =
X1, the equivalence of Y and Z means that the two Markov chains have the same transition
probability density, almost surely with respect to λ. Thus we may assume that

f(z)
F
(
y
) = f

(
y−1z

)
,
(
y, z
)
∈ D2. (3.17)

Equivalently,

f(xu) = F(x)f(u), x, u ∈ S. (3.18)

Letting u = e, we have f(x) = f(e)F(x), so the distribution has constant rate α = f(e). But
then we also have αF(xu) = F(x)αF(u), so F(xu) = F(x)F(u), and hence the distribution is
exponential.

4. Relative Aging

In most cases, the reference measure λ of a standard poset (S,≺,S, λ) is natural in some sense-
counting measure for discrete posets, Lebesgue measure for Euclidean posets, for example.
However, another possibility is to use a given probability distribution on S to construct a
reference measure and then to study the rate functions of other probability distributions
relative to this reference measure. In this way, we can study the “relative aging” of one
probability distribution with respect to another. (This was done for positive semigroups in
[6].)

Thus, suppose that (S,≺) is a poset and that S is a σ-algebra of subsets of S satisfying
the assumptions in Section 1.2. Suppose that X is a random variable taking values in S, with
UPF F assumed to be strictly positive. Let μ denote the distribution ofX, so that μ(A) = P(X ∈
A) for A ∈ S. If we take μ itself to be the reference measure, then, trivially of course, the PDF
of X is the constant function 1 (so that X is “uniformly distributed” on S with respect to μ).
Thus the rate function is 1/F, so that, curiously, X has increasing rate with respect to its own
distribution.
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Of course, this is not quite what we want. We would like to construct a measure on
S that gives X constant rate 1 and then study the rate of other distributions relative to this
measure. Define the measure ν on S by

ν(A) =
∫

A

1
F(x)

dμ(x) = E

(
1

F(X)
;X ∈ A

)
. (4.1)

Thus, dμ(x) = F(x)dν(x). So X has PDF F, and hence has constant rate 1, with respect to
ν. Now if Y is another random variable with values in S, then the definitions and results of
Sections 2 and 3 apply, relative to ν. It is easy to see that Y has rate function q with respect to
X, thenX has rate function 1/qwith respect to Y . In particular, Y has increasing (decreasing)
(constant) rate with respect to X if and only if X has decreasing (increasing) (constant) rate
with respect to Y , respectively.

Finally, suppose that S does in fact have a natural reference measure λ, so that
(S,≺,S, λ) is a standard poset. If X and Y are random variables with rate functions r and
s (with respect to λ), respectively, then the rate function of Y with respect to X is s/r.

5. Trees

In this section we consider a standard discrete poset (S,≺) whose covering graph is a rooted
tree. Aside from the many applications of rooted trees, this is one of the few classes of posets
for which explicit computations are possible.

The root e is the minimum element. When x≺y, there is a unique path from x to y and
we let d(x, y) denote the distance from x to y. We abbreviate d(e, x) by d(x). LetA(x) denote
the children of x, and more generally let

An(x) =
{
y ∈ S : x≺y, d

(
x, y
)
= n
}
, (5.1)

for x ∈ S and n ∈ N. Thus, A0(x) = {x} and {An(x) : n ∈ N} partitions I[x]. When x = e, we
write An instead of An(e).

The only trees that correspond to positive semigroups are those for whichA(x) has the
same cardinality for every x ∈ S. In this case, the poset is isomorphic to the free semigroup
on a countable alphabet, with concatenation as the semigroup operation [7].

Since there is a unique path from e to x, it follows from (1.12) that the cumulative
function of order n ∈ N is

λn(x) =
(
n + d(x)
d(x)

)
=
(
n + d(x)

n

)
, x ∈ S. (5.2)

By (1.15), the corresponding generating function is

Λ(x, t) =
1

(1 − t)d(x)+1
, x ∈ S, |t| < 1. (5.3)
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5.1. Upper Probability Functions

Let X be a random variable with values in S having PDF f and UPF F. Then

F(x) = P(X = x) +
∑

y∈A(x)

P
(
Y�y

)
= f(x) +

∑

y∈A(x)

F
(
y
)
. (5.4)

In particular, F uniquely determines f . Moreover, we can characterize upper probability
functions.

Proposition 5.1. Suppose that F : S → (0, 1]. Then F is the UPF of a distribution on S if and only
if

(1) F(e) = 1,

(2) F(x) >
∑

y∈A(x) F(y) for every x ∈ S,

(3)
∑

x∈An
F(x) → 0 as n → ∞.

Proof. Suppose first that F is the UPF of a random variableX taking values in S. Then trivially
F(e) = 1, and, by (5.4),

F(x) −
∑

y∈A(x)

F
(
y
)
= P(X = x) > 0. (5.5)

Next, d(X) ≥ n if and only if X � x for some x ∈ An. Moreover the events {X�x} are disjoint
over x ∈ An. Thus

P[d(X) ≥ n] =
∑

x∈An

F(x). (5.6)

But by local finiteness, the random variable d(X) (taking values in N) has a proper
(nondefective) distribution, so P[d(X) ≥ n] → 0 as n → ∞).

Conversely, suppose that F : S → (0, 1] satisfies conditions (1.7)–(1.15). Define f on
S by

f(x) = F(x) −
∑

y∈A(x)

F
(
y
)
, x ∈ S. (5.7)
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Then f(x) > 0 for x ∈ S by (1.12). Suppose that x ∈ S, and let m = d(x). Then

n−1∑

k=0

∑

y∈Ak(x)

f
(
y
)
=

n−1∑

k=0

∑

y∈Ak(x)

⎡

⎣F
(
y
)
−
∑

z∈A(y)
F(z)

⎤

⎦

=
n−1∑

k=0

⎡

⎣
∑

y∈Ak(x)

F
(
y
)
−
∑

y∈Ak(x)

∑

z∈A(y)
F(z)

⎤

⎦

=
n−1∑

k=0

⎡

⎣
∑

y∈Ak(x)

F
(
y
)
−

∑

y∈Ak+1(x)

F
(
y
)
⎤

⎦

= F(x) −
∑

y∈An(x)

F
(
y
)

(5.8)

since A0(x) = {x} and since the sum collapses. But

0 ≤
∑

y∈An(x)

F
(
y
)
≤
∑

y∈Am+n

F
(
y
)
−→ 0 as n −→ ∞. (5.9)

Thus letting n → ∞ in (5.8), we have

∑

y∈I[x]
f
(
y
)
= F(x), x ∈ S. (5.10)

Letting x = e in (5.10) gives
∑

y∈S f(y) = 1 so f is a PDF on S. Another application of (5.10)
then shows that F is the UPF of f .

Note that (S,≺) is a lower semilattice. Hence if X and Y are independent random
variables with values in S, with UPFs F and G, respectively, then X ∧ Y has UPF FG.

Proposition 5.2. Suppose that F : S → (0, 1] satisfies F(e) = 1 and

F(x) ≥
∑

y∈A(x)

F
(
y
)
, x ∈ S. (5.11)

For p ∈ (0, 1), define Fp : S → (0, 1] by Fp(x) = pd(x)F(x). Then Fp is an UPF on S.

Proof. First, Fp(e) = p0F(e) = 1. Next, for x ∈ S,

∑

y∈A(x)

Fp

(
y
)
=
∑

y∈A(x)

pd(y)F
(
y
)
= pd(x)+1

∑

y∈A(x)

F(x)

≤ pd(x)+1F(x) < pd(x)F(x) = Fp(x).

(5.12)
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A simple induction using (5.11) shows that
∑

x∈An
F(x) ≤ F(e) = 1 for n ∈ N, so

∑

x∈An

Fp(x) =
∑

x∈An

pd(x)F(x) = pn
∑

x∈An

F(x) ≤ pn −→ 0 asn −→ ∞, (5.13)

so it follows from Proposition 5.1 that Fp is an UPF.

Note that x → pd(x) is not itself an UPF, unless the tree is a path, since properties
(2) and (3) in Proposition 5.1 will fail in general. Thus, even when F is an UPF, we cannot
view Fp simply as the product of two UPFs in general. However, we can give a probabilistic
interpretation of the construction in Proposition 5.2 in this case. Thus, suppose that X is a
random variable taking values in S with UPF F and PDF f . Moreover, suppose that each
edge in the tree (S,≺), independently of the other edges, is either working with probability p
or failed with probability 1 − p. Define U by

U = max
{
u � X : the path from eto uis working

}
. (5.14)

Corollary 5.3. Random variableU has UPF Fp given in Proposition 5.2.

Proof. If X = x and u≺x, then U�u if and only if the path from e to u is working. Hence
P(U � u | X = x) = pd(u) for x ∈ S and u≺x. So conditioning on X gives

P
(
U�u

)
=
∑

x�u
pd(u)f(x) = pd(u)F(u). (5.15)

5.2. Rate Functions

Next we are interested in characterizing rate functions of distributions that have support S.
If r is such a function, then, from Proposition 2.5, 0 < r(x) ≤ 1 and r(x) = 1 if and only if x is
a leaf. Moreover, if F is the UPF, then F(e) = 1 and

∑

y∈A(x)

F
(
y
)
= [1 − r(x)]F(x). (5.16)

Conversely, these conditions give a recursive procedure for constructing an UPF correspond-
ing to a given rate function. Specifically, suppose that r : S → (0, 1] and that r(x) = 1 for
every leaf x ∈ S. First, we define F(e) = 1. Then if F(x) has been defined for some x ∈ S and x
is not a leaf, then we define F(y) for y ∈ A(x) arbitrarily, subject only to the requirement that
F(y) > 0 and that (5.16) holds. Note that F satisfies the first two conditions in Proposition 5.1.
Hence if F satisfies the third condition, then F is the UPF of a distribution with support S and
with the given rate function r. The following proposition gives a simple sufficient condition.

Proposition 5.4. Suppose that r : S → (0, 1] and that r(x) = 1 for each leaf x ∈ S. If there exists
α > 0 such that r(x) ≥ α for all x ∈ S, then r is the rate function of a distribution with support S.
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Proof. Let F : S → (0, 1] be any function constructed according to the recursive procedure
above. Then as noted above, F satisfies the first two conditions in Proposition 5.1. A simple
induction on n shows that

∑

x∈An

F(x) ≤ (1 − α)n, n ∈ N, (5.17)

so the third condition in Proposition 5.1 holds as well.

Condition (5.17) means that the distribution of d(X) is stochastically smaller than the
geometric distribution on N with rate constant α. If (S,≺) is not a path, then the rate function
does not uniquely determine the distribution. Indeed, if x has two or more children, then
there are infinitely many ways to satisfy (5.16) given F(x).

5.3. Constant Rate Distributions

Recall that if (S,≺) has maximal elements (leaves), then there are no constant rate distribution
with support S, except in the trivial case that (S,≺) is an antichain.

Corollary 5.5. Suppose that (S,≺) is a rooted tree without leaves. Then F : S → (0, 1] is the UPF of
a distribution with constant rate α if and only if F(e) = 1 and

∑

y∈A(x)

F
(
y
)
= (1 − α)F(x), x ∈ S. (5.18)

Proof. This follows immediately from Proposition 5.4.

Corollary 5.6. Suppose that X has constant rate α on (S,≺). Then d(X) has the geometric
distribution on N with rate α.

Proof. For n ∈ N,

P[d(X) ≥ n] =
∑

x∈An

P
(
X�x

)
=
∑

x∈An

F(x) = (1 − α)n. (5.19)

As a special case of the comments in Section 5.2, we can construct the UPFs of constant
rate distributions on (S,≺) recursively: start with F(e) = 1. If F(x) is defined for a given
x ∈ S, then define F(y) for y ∈ A(x) arbitrarily, subject only to the conditions F(y) > 0 and
that (5.18) holds.

5.4. Ladder Variables and the Point Process

Let F be the UPF of a distribution with constant rate α, so that F satisfies the conditions in
Corollary 5.5. Let X = (X1, X2, . . .) be an IID sequence with common distribution F, and let
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Y = (Y1, Y2, . . .) be the corresponding sequence of ladder variables. By Proposition 3.3, the
distribution of Yn has PDF

fn(x) = αn

(
n + d(x) − 1

d(x)

)
F(x), x ∈ S. (5.20)

Consider now the thinned point process associated with Y, where a point is accepted
with probability p and rejected with probability 1 − p, independently from point to point.

Proposition 5.7. The distribution of the first accepted point has constant rate pα/(1 − α + pα).

Proof. By Proposition 3.5, the PDF of the first accepted point is

g(x) = pαΛ
(
x,
(
1 − p

)
α
)
F(x) = pα

1
[
1 −
(
1 − p

)
α
]d(x)+1F(x)

=
rα

1 − α + pα

F(x)
(
1 − α + pα

)d(x) , x ∈ S.

(5.21)

Consider the function G : S → (0, 1] given by

G(x) =
F(x)

(
1 − α + pα

)d(x) , x ∈ S. (5.22)

Note that G(e) = 1 and for x ∈ S

∑

y∈A(x)

G
(
y
)
=
∑

y∈A(x)

F
(
y
)

(
1 − α + pα

)d(y)

=
1

(
1 − α + pα

)d(x)+1
∑

y∈A(x)

F
(
y
)

=
1 − α

(
1 − α + pα

)d(x)+1F(x)

=
1 − α

1 − α + pα
G(x).

(5.23)

In Proposition 5.7, the UPF F is related to the UPF G by the construction in
Corollary 5.3. That is, suppose that Y denotes the first accepted point in the thinned process.
Then the basic random variable X that we started with can be constructed as

X = max
{
x≺Y : there is a working path from eto x

}
, (5.24)

where each edge is working, independently, with probability 1 − α + pα.
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6. The Existence Question

The existence of constant rate distributions for standard posets is an interesting mathematical
question. Recall that the poset of finite subsets of N+ under set inclusion, considered in
Example 1.9, is associated with a positive semigroup. This positive semigroup does not
support exponential distributions [9], but we have been unable to determine if the poset
supports constant rate distributions. We can show that if there is a random subset X with
constant rate α, then the number of elements in X must have a Poisson distribution with
parameter − ln(α). A more general question is whether every standard discrete poset without
maximal elements supports a constant rate distribution.
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