
Hindawi Publishing Corporation
Journal of Probability and Statistics
Volume 2010, Article ID 596839, 17 pages
doi:10.1155/2010/596839

Research Article
Estimating the Conditional Tail Expectation in
the Case of Heavy-Tailed Losses

Abdelhakim Necir,1 Abdelaziz Rassoul,2 and Ričardas Zitikis3

1 Laboratory of Applied Mathematics, Mohamed Khider University of Biskra, 07000, Algeria
2 Ecole Nationale Superieure d’Hydraulique, Guerouaou, BP 31, Blida, 09000, Algeria
3 Department of Statistical and Actuarial Sciences, University of Western Ontario, London,
ON, Canada N6A5B7

Correspondence should be addressed to Ričardas Zitikis, zitikis@stats.uwo.ca
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The conditional tail expectation (CTE) is an important actuarial risk measure and a useful tool
in financial risk assessment. Under the classical assumption that the second moment of the loss
variable is finite, the asymptotic normality of the nonparametric CTE estimator has already been
established in the literature. The noted result, however, is not applicable when the loss variable
follows any distribution with infinite second moment, which is a frequent situation in practice.
With a help of extreme-value methodology, in this paper, we offer a solution to the problem by
suggesting a new CTE estimator, which is applicable when losses have finite means but infinite
variances.

1. Introduction

One of the most important actuarial risk measures is the conditional tail expectation (CTE)
(see, e.g., [1]), which is the average amount of loss given that the loss exceeds a specified
quantile. Hence, the CTE provides a measure of the capital needed due to the exposure to
the loss, and thus serves as a risk measure. Not surprisingly, therefore, the CTE continues
to receive increased attention in the actuarial and financial literature, where we also find its
numerous extensions and generalizations (see, e.g., [2–8], and references therein). We next
present basic notation and definitions.

Let X be a loss random variable with cumulative distribution function (cdf) F.
Usually, the cdf F is assumed to be continuous and defined on the entire real line,
with negative loss interpreted as gain. We also assume the continuity of F throughout
the present paper. The CTE of the risk or loss X is then defined, for every t ∈ (0, 1),
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by

CTEF(t) = E[X | X > Q(t)], (1.1)

where Q(t) = inf{x : F(x) ≥ t} is the quantile function corresponding to the cdf F. Since the
cdf F is continuous, we easily check that

CTEF(t) =
1

1 − t

∫1

t

Q(s)ds. (1.2)

Naturally, the CTE is unknown since the cdf F is unknown. Hence, it is desirable to
establish statistical inferential results such as confidence intervals for CTEF(t) with specified
confidence levels and margins of error. We shall next show how to accomplish this task,
initially assuming the classical moment assumption E[X2] < ∞. Namely, suppose that we
have independent random variables X1, X2, . . . , each with the cdf F, and let X1:n < · · · < Xn:n

denote the order statistics of X1, . . . , Xn. It is natural to define an empirical estimator of
CTEF(t) by the formula

ĈTEn(t) =
1

1 − t

∫1

t

Qn(s)ds, (1.3)

where Qn(s) is the empirical quantile function, which is equal to the ith order statistic Xi:n

for all s ∈ ((i − 1)/n, i/n], and for all i = 1, . . . , n. The asymptotic behavior of the estimator
ĈTEn(t) has been studied by Brazauskas et al. [9], and we next formulate their most relevant
result for our paper as a theorem.

Theorem 1.1. Assume that E[X2] < ∞. Then for every t ∈ (0, 1), we have the asymptotic normality
statement

√
n
(

ĈTEn(t) − CTEF(t)
)
(1 − t)−→dN

(
0, σ2(t)

)
, (1.4)

when n → ∞, where the asymptotic variance σ2(t) is given by the formula

σ2(t) =
∫1

t

∫1

t

(
min
(
x, y
) − xy

)
dQ(x)dQ

(
y
)
. (1.5)

The assumption E[X2] < ∞ is, however, quite restrictive as the following example
shows. Suppose that F is the Pareto cdf with index γ > 0, that is, 1−F(x) = x−1/γ for all x ≥ 1.
Let us focus on the case γ < 1, because when γ ≥ 1, then CTEF(t) = +∞ for every t ∈ (0, 1).
Theorem 1.1 covers only the values γ ∈ (0, 1/2) in view of the assumption E[X2] < ∞. When
γ ∈ [1/2, 1), we have E[X2] = ∞ but, nevertheless, CTEF(t) is well defined and finite since
E[X] < ∞. Analogous remarks hold for other distributions with Pareto-like tails, an we shall
indeed work with such general distributions in this paper.
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Namely, recall that the cdf F is regularly varying at infinity with index (−1/γ) < 0 if

lim
t→∞

1 − F(tx)
1 − F(t)

= x−1/γ (1.6)

for every x > 0. This class includes a number of popular distributions such as Pareto,
generalized Pareto, Burr, Fréchet, Student, and so forth, which are known to be appropriate
models for fitting large insurance claims, fluctuations of prices, log-returns, and so forth
(see, e.g., [10]). In the remainder of this paper, therefore, we restrict ourselves to this class
of distributions. For more information on the topic and, generally, on extreme value models
and their manifold applications, we refer to the monographs by Beirlant et al. [11], Castillo et
al. [12], de Haan and Ferreira [13], Resnick [14].

The rest of the paper is organized as follows. In Section 2 we construct an alternative,
called “new”, CTE estimator by utilizing an extreme value approach. In Section 3 we establish
the asymptotic normality of the new CTE estimator and illustrate its performance with a
little simulation study. The main result, which is Theorem 3.1 stated in Section 3, is proved in
Section 4.

2. Construction of a New CTE Estimator

We have already noted that the “old” estimator ĈTEn(t) does not yield the asymptotic
normality (in the classical sense) beyond the condition E[X2] < ∞. Indeed, this follows by
setting t = 0, in which case ĈTEn(t) becomes the sample mean of X1, . . . , Xn, and thus the
asymptotic normality of ĈTEn(0) is equivalent to the classical Central Limit Theorem (CLT).
Similar arguments show that the finite second moment is necessary for having the asymptotic
normality (in the classical sense) of ĈTEn(t) at any fixed “level” t ∈ (0, 1). Indeed, note that
the asymptotic variance σ2(t) in Theorem 1.1 is finite only if E[X2] < ∞.

For this reason, we next construct an alternative CTE estimator, which takes into
account different asymptotic properties of moderate and high quantiles in the case of heavy-
tailed distributions. Hence, from now on we assume that γ ∈ (1/2, 1). Before indulging
ourselves into construction details, we first formulate the new CTE estimator:

C̃TEn(t) =
1

1 − t

∫1−k/n

t

Qn(s)ds +
kXn−k,n

n(1 − t)
(
1 − γ̂

) , (2.1)

where we use the simplest yet useful and powerful Hill’s [15] estimator

γ̂n =
1
k

k∑
i=1

logXn−i+1:n − logXn−k:n (2.2)

of the tail index γ ∈ (1/2, 1). Integers k = kn ∈ {1, . . . , n} are such that k → ∞ and k/n → 0
when n → ∞, and we note at the outset that their choices present a challenging task. In
Figures 1 and 2, we illustrate the performance of the new estimator C̃TEn(t) with respect to
the sample size n ≥ 1, with the integers k = kn chosen according to the method proposed by
Cheng and Peng [16]. Note that when t increases through the values 0.25, 0.50, 0.75, and 0.90
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Figure 1: Values of the CTE estimator C̃TEn(t) (vertical axis) versus sample sizes n (horizontal axis)
evaluated at the levels t = 0.25, t = 0.50, t = 0.75, and t = 0.90 (panels (a)–(d), resp.) in the Pareto case with
the tail index γ = 2/3.

(panels (a)–(d), resp.), the vertical axes of the panels also increase, which reflects the fact that
the larger the t gets, the more erratic the “new” and “old” estimators become. Note also that
the empirical (i.e., “old”) estimator underestimates the theoretical CTEF(t), which is a well
known phenomenon (see [17]).

We have based the construction of C̃TEn(t) on the recognition that one should estimate
moderate and high quantiles differently when the underlying distribution is heavy-tailed. For
this, we first recall that the high quantile qs is, by definition, equal to Q(1 − s) for sufficiently
small s. For an estimation theory of high quantiles in the case of heavy-tailed distributions
we refer to, for example, Weissman [18], Dekkers and de Haan [19], Matthys and Beirlant
[20], Gomes et al. [21], and references therein. We shall use the Weissman estimator

q̃s =
(
k

n

)γ̂

Xn−k:ns
−γ̂ , 0 < s <

k

n
, (2.3)

of the high quantile qs. Then we write CTEF(t) as the sum CTE1,n(t) + CTE2,n(t) with the
two summands defined together with their respective empirical estimators C̃TE1,n(t) and
C̃TE2,n(t) as follows:

CTE1,n(t) =
1

1 − t

∫1−k/n

t

Q(s)ds ≈ 1
1 − t

∫1−k/n

t

Qn(s)ds = C̃TE1,n(t),

CTE2,n(t) =
1

1 − t

∫1

1−k/n
Q(s)ds ≈ 1

1 − t

∫1

1−k/n
q̃1−sds = C̃TE2,n(t).

(2.4)
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Figure 2: Values of the CTE estimator C̃TEn(t) (vertical axis) versus sample sizes n (horizontal axis)
evaluated at the levels t = 0.25, t = 0.50, t = 0.75, and t = 0.90 (panels (a)–(d), resp.) in the Pareto case with
the tail index γ = 3/4.

Simple integration gives the formula

C̃TE2,n(t) =
kXn−k,n

n
(
1 − γ̂

)
(1 − t)

. (2.5)

Consequently, the sum C̃TE1,n(t)+ C̃TE2,n(t) is an estimator of CTEF(t), and this is exactly the
estimator C̃TEn(t) introduced above. We shall investigate asymptotic normality of the new
estimator in the next section, accompanied with an illustrative simulation study.

3. Main Theorem and Its Practical Implementation

We start this section by noting that Hill’s estimator γ̂n has been thoroughly studied, improved,
and generalized in the literature. For example, weak consistency of γ̂n has been established
by Mason [22] assuming only that the underlying distribution is regularly varying at infinity.
Asymptotic normality of γ̂ has been investigated under various conditions by a number of
researchers, including Csörgő and Mason [23], Beirlant and Teugels [24], Dekkers et al. [25],
see also references therein.

The main theoretical result of this paper, which is Theorem 3.1 below, establishes
asymptotic normality of the new CTE estimator C̃TEn(t). To formulate the theorem, we need
to introduce an assumption that ensures the asymptotic normality of Hill’s estimator γ̂n.
Namely, the cdf F satisfies the generalized second-order regular variation condition with
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second-order parameter ρ ≤ 0 (see [26, 27]) if there exists a function a(t) which does not
change its sign in a neighbourhood of infinity and is such that, for every x > 0,

lim
t→∞

1
a(t)

(
1 − F(tx)
1 − F(t)

− x−1/γ
)

= x−1/γ x
ρ/γ − 1
ρ/γ

. (3.1)

When ρ = 0, then the ratio on the right-hand side of (3.1) is interpreted as logx. For
statistical inference concerning the second-order parameter ρ, we refer, for example, to Peng
and Qi [28], Gomes et al. [21], Gomes and Pestana [29]. Furthermore, in the formulation of
Theorem 3.1, we shall also use the function A(z) = γ2a(U(z)), where U(z) = Q(1 − 1/z).

Theorem 3.1. Assume that the cdf F satisfies condition (3.1) with γ ∈ (1/2, 1). Then for any
sequence of integers k = kn → ∞ such that k/n → 0 and k1/2A(n/k) → 0 when n → ∞,
we have that for any fixed t ∈ (0, 1),

√
n
(

C̃TEn(t) − CTEF(t)
)
(1 − t)

(k/n)1/2Xn−k:n

−→dN
(

0, σ2
γ

)
, (3.2)

where the asymptotic variance σ2
γ is given by the formula

σ2
γ =

γ4

(
1 − γ

)4(2γ − 1
) . (3.3)

The asymptotic variance σ2
γ does not depend on t, unlike the variance in Theorem 1.1.

This is not surprising because the heaviness of the right-most tail of F makes the asymptotic
behaviour of

∫1
t (Qn(s)−Q(s))ds “heavier” than the classical CLT-type behaviour of

∫ t
0(Qn(s)−

Q(s))ds, for any fixed t. This in turn implies that under the conditions of Theorem 3.1,
statement (3.2) is equivalent to the same statement in the case t = 0. The latter statement
concerns estimating the mean E[X] of a heavy-tailed distribution. Therefore, we can view
Theorem 3.1 as a consequence of Peng [30], and at the same time we can view results of
Peng [30] as a consequence of Theorem 3.1 by setting t = 0 in it. Despite this equivalence, in
Section 4 we give a proof of Theorem 3.1 for the sake of completeness. Our proof, however,
is crucially based on a powerful technique called the Vervaat process (see [31–33], for details
and references).

To discuss practical implementation of Theorem 3.1, we first fix a significance level
ς ∈ (0, 1) and use the classical notation zς/2 for the (1 − ς/2)-quantile of the standard
normal distribution N(0, 1). Given a realization of the random variables X1, . . . , Xn (e.g.,
claim amounts), which follow a cdf F satisfying the conditions of Theorem 3.1, we construct
a level 1 − ς confidence interval for CTEF(t) as follows. First, we choose an appropriate
number k of extreme values. Since Hill’s estimator has in general a substantial variance
for small k and a considerable bias for large k, we search for a k that balances between the
two shortcomings, which is indeed a well-known hurdle when estimating the tail index. To
resolve this issue, several procedures have been suggested in the literature, and we refer to,
for example, Dekkers and de Haan [34], Drees and Kaufmann [35], Danielsson et al. [36],
Cheng and Peng [16], Neves and Fraga Alves [37], Gomes et al. [38], and references therein.
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Table 1: Point estimates C̃TEn(t) and 95% confidence intervals for CTEF(t) when γ = 2/3.

t = 0.75 CTEF(t) = 7.005
n k∗ C̃TEn(t) error rmse lower upper cover length
1000 054 6.876 0.045 0.303 6.356 7.397 0.839 1.041
2000 100 6.831 0.025 0.231 6.463 7.199 0.882 0.736
5000 219 7.119 0.016 0.194 6.881 7.357 0.895 0.476
t = 0.90 CTEF(t) = 12.533
n k∗ C̃TEn(t) error rmse lower upper cover length
1000 054 12.753 0.017 0.534 12.241 13.269 0.847 1.028
2000 100 12.487 0.003 0.294 12.137 12.838 0.841 0.701
5000 219 12.461 0.005 0.236 12.246 12.676 0.887 0.430

Table 2: Point estimates C̃TEn(t) and 95% confidence intervals for CTEF(t) when γ = 3/4.

t = 0.75 CTEF(t) = 9.719
n k∗ C̃TEn(t) error rmse lower upper cover length
1000 051 9.543 0.018 0.582 8.589 9.543 0.854 0.954
2000 104 9.808 0.009 0.466 9.150 10.466 0.888 1.316
5000 222 9.789 0.007 0.410 9.363 10.215 0.915 0.852
t = 0.90 CTEF(t) = 18.494
n k∗ C̃TEn(t) error rmse lower upper cover length
1000 051 18.199 0.015 0.989 17.437 18.960 0.874 1.523
2000 104 18.696 0.011 0.858 18.052 19.340 0.895 1.288
5000 222 18.541 0.002 0.798 18.092 18.990 0.925 0.898

In our current study, we employ the method of Cheng and Peng [16] for an appropriate value
k∗ of the “parameter” k. Having computed Hill’s estimator and consequently determined
Xn−k∗:n, we then compute the corresponding values of C̃TEn(t) and σ2

γ̂n
, and denote them by

C̃TE
∗
n(t) and σ2∗

γ̂n
, respectively. Finally, using Theorem 3.1 we arrive at the following (1 − ς)-

confidence interval for CTEF(t):

C̃TE
∗
n(t) ± zς/2

(k∗/n)1/2Xn−k∗:n σ2∗
γ̂n

(1 − t)
√
n

. (3.4)

To illustrate the performance of this confidence interval, we have carried out a small-
scale simulation study based on the Pareto cdf F(x) = 1 − x−1/γ , x ≥ 1, with the tail index γ
set to 2/3 and 3/4, and the level t set to 0.75 and 0.90. We have generated 200 independent
replicates of three samples of sizes n = 1000, 2000, and 5000. For every simulated sample, we
have obtained estimates C̃TEn(t). Then we have calculated the arithmetic averages over the
values from the 200 repetitions, with the absolute error (error) and root mean squared error
(rmse) of the new estimator C̃n(t) reported in Table 1 (γ = 2/3) and Table 2 (γ = 3/4). In
the tables, we have also reported 95%-confidence intervals (3.4) with their lower and upper
bounds, coverage probabilities, and lengths.

We note emphatically that the above coverage probabilities and lengths of confidence
intervals can be improved by employing more precise but, naturally, considerably more
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complex estimators of the tail index. Such estimators are described in the monographs by
Beirlant et al. [11], Castillo et al. [12], de Haan and Ferreira [13], and Resnick [14]. Since the
publication of these monographs, numerous journal articles have appeared on the topic. Our
aim in this paper, however, is to present a simple yet useful result that highlights how much
Actuarial Science and developments in Mathematical Statistics, Probability, and Stochastic
Processes are interrelated, and thus benefit from each other.

4. Proof of Theorem 3.1

We start the proof of Theorem 3.1 with the decomposition

(
C̃TEn(t) − CTEF(t)

)
(1 − t) = An,1(t) +An,2, (4.1)

where

An,1(t) =
∫1−k/n

t

(Qn(s) −Q(s))ds,

An,2 =
k/n

1 − γ̂n
Xn−k:n −

∫1

1−k/n
Q(s)ds.

(4.2)

We shall show below that there are Brownian bridges Bn such that

√
nAn,1(t)

(k/n)1/2Q(1 − k/n)
= −

∫1−k/n
0 Bn(s)dQ(s)

(k/n)1/2Q(1 − k/n)
+ oP(1), (4.3)

√
nAn,2

(k/n)1/2Q(1 − k/n)
=

γ2

(
1 − γ

)2

√
n

k
Bn

(
1 − k

n

)

− γ(
1 − γ

)2

√
n

k

∫1

1−k/n

Bn(s)
1 − s

ds + oP(1).

(4.4)

Assuming for the time being that statements (4.3) and (4.4) hold, we next complete the proof
of Theorem 3.1. To simplify the presentation, we use the following notation:

W1,n = −
∫1−k/n

0 Bn(s)dQ(s)

(k/n)1/2Q(1 − k/n)
,

W2,n =
γ2

(
1 − γ

)2

√
n

k
Bn

(
1 − k

n

)
,

W3,n = − γ(
1 − γ

)2

√
n

k

∫1

1−k/n

Bn(s)
1 − s

ds.

(4.5)



Journal of Probability and Statistics 9

Hence, we have the asymptotic representation

√
n
(

C̃TEn(t) − CTEF(t)
)
(1 − t)

(k/n)1/2Q(1 − k/n)
= W1,n +W2,n +W3,n + oP(1). (4.6)

The sum W1,n+W2,n+W3,n is a centered Gaussian random variable. To calculate its asymptotic
variance, we establish the following limits:

E
[
W2

1,n

]
−→ 2γ

2γ − 1
, E

[
W2

2,n

]
−→ γ4

(
1 − γ

)4
, E

[
W2

3,n

]
−→ 2γ2

(
1 − γ

)4
,

2E[W1,nW2,n] −→
−2γ2

(
1 − γ

)2
, 2E[W1,nW3,n] −→

2γ(
1 − γ

)2
,

2E[W2,nW3,n] −→
−2γ3

(
1 − γ

)4
.

(4.7)

Summing up the right-hand sides of the above six limits, we obtain σ2
γ , whose expression in

terms of the parameter γ is given in Theorem 3.1. Finally, since Xn−k:n/Q(1 − k/n) converges
in probability to 1 (see, e.g., the proof of Corollary in [39]), the classical Sultsky’s lemma
completes the proof of Theorem 3.1. Of course, we are still left to verify statements (4.3) and
(4.4), which make the contents of the following two subsections.

4.1. Proof of Statement (4.3)

If Q were continuously differentiable, then statement (4.3) would follow easily from the proof
of Theorem 2 in [39]. We do not assume differentiability of Q and thus a new proof is required,
which is crucially based on the Vervaat process (see [31–33], and references therein)

Vn(t) =
∫ t

0
(Qn(s) −Q(s))ds +

∫Q(t)

−∞
(Fn(x) − F(x))dx. (4.8)

Hence, for every t such that 0 < t < 1 − k/n, which is satisfied for all sufficiently large n since
t is fixed, we have that

An,1(t) =
∫1−k/n

0
(Qn(s) −Q(s))ds −

∫ t

0
(Qn(s) −Q(s))ds

= −
∫Q(1−k/n)

Q(t)
(Fn(x) − F(x))dx + Vn

(
1 − k

n

)
− Vn(t).

(4.9)

It is well known (see [31–33]) that Vn(t) is nonnegative and does not exceed −(Fn(Q(t)) −
t)(Qn(t) −Q(t)). Since the cdf F is continuous by assumption, we therefore have that

√
nVn(t) ≤ |en(t)||Qn(t) −Q(t)|, (4.10)
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where en(t) is the uniform empirical process
√
n(Fn(Q(t)) − F(Q(t)), which for large n looks

like the Brownian bridge Bn(t). Note also that with the just introduced notation en, the
integral on the right-hand side of (4.9) is equal to

∫Q(1−k/n)
Q(t) en(F(x))dx. Hence,

√
nAn,1(t)

(k/n)1/2Q(1 − k/n)
= −
∫Q(1−k/n)
Q(t) en(F(x))dx

(k/n)1/2Q(1 − k/n)

+OP(1)
|en(1 − k/n)||Qn(1 − k/n) −Q(1 − k/n)|

(k/n)1/2Q(1 − k/n)

+OP(1)
|en(t)||Qn(t) −Q(t)|
(k/n)1/2Q(1 − k/n)

.

(4.11)

We shall next replace the empirical process en by an appropriate Brownian bridge Bn in
the first integral on the right-hand side of (4.11) with an error term of magnitude oP(1),
and we shall also show that the second and third summands on the right-hand side of
(4.11) are of the order oP(1). The replacement of en by Bn can be accomplished using, for
example, Corollary 2.1 on page 48 of Csörgő et al. [40], which states that on an appropriately
constructed probability space and for any 0 ≤ ν < 1/4, we have that

sup
1/n≤s≤1−1/n

|en(s) − Bn(s)|
s1/2−ν(1 − s)1/2−ν = OP

(
n−ν). (4.12)

This result is applicable in the current situation since we can always place our original
problem into the required probability space, because our main results are “in probability”.
Furthermore, since Q(t) ≤ x ≤ Q(1 − k/n), we have that t ≤ F(x) ≤ 1 − k/n. Hence, statement
(4.12) implies that

−
∫Q(1−k/n)
Q(t) en(F(x))dx

(k/n)1/2Q(1 − k/n)
= −
∫Q(1−k/n)
Q(t) Bn(F(x))dx

(k/n)1/2Q(1 − k/n)
+OP(1)

∫Q(1−k/n)
Q(t) (1 − F(x))1/2−νdx

nν(k/n)1/2Q(1 − k/n)
.

(4.13)

Changing the variables of integration and using the property (k/n)1/2Q(1−k/n) → ∞ when
n → ∞, we obtain that

−
∫Q(1−k/n)
Q(t) Bn(F(x))dx

(k/n)1/2Q(1 − k/n)
= −

∫1−k/n
0 Bn(s)dQ(s)

(k/n)1/2Q(1 − k/n)
+ oP(1). (4.14)

The main term on the right-hand side of (4.14) is W1,n. We shall next show that the right-most
summand of (4.13) converges to 0 when n → ∞.
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Changing the variable of integration and then integrating by parts, we obtain the
bound

∫Q(1−k/n)
Q(t) (1 − F(x))1/2−νdx

nν(k/n)1/2Q(1 − k/n)
≤

(1 − s)1/2−νQ(s)
∣∣∣1−k/n
t

nν(k/n)1/2Q(1 − k/n)
+O(1)

∫1−k/n
t (1 − s)−1/2−νQ(s)ds

nν(k/n)1/2Q(1 − k/n)
.

(4.15)

We want to show that the right-hand side of bound (4.15) converges to 0 when n → ∞. For
this, we first note that

(1 − s)1/2−νQ(s)
∣∣∣1−k/n
t

nν(k/n)1/2Q(1 − k/n)
=

1
kν

− (1 − t)1/2−νQ(t)

nν(k/n)1/2Q(1 − k/n)
−→ 0. (4.16)

Next, with the notation φ(u) = Q(1 − u)/u1/2+ν, we have that

∫1−k/n
t (1 − s)−1/2−νQ(s)ds

nν(k/n)1/2Q(1 − k/n)
=

1
kν

∫1−t
k/n φ(s)ds

(k/n)φ(k/n)
−→ 0 (4.17)

when n → ∞, where the convergence to 0 follows from Result 1 in the Appendix of Necir
and Meraghni [39]. Taking statements (4.15)–(4.17) together, we have that the right-most
summand of (4.13) converges to 0 when n → ∞.

Consequently, in order to complete the proof of statement (4.3), we are left to show that
the second and third summands on the right-hand side of (4.11) are of the order oP(1). The
third summand is of the order oP(1) because |en(t)‖Qn(t) −Q(t)| = OP(1) and (k/n)1/2Q(1 −
k/n) → ∞. Hence, we are only left to show that the second summand on the right-hand side
of equation (4.11) is of the order oP(1), for which we shall show that

|en(1 − k/n)|
(k/n)1/2

∣∣∣∣Qn(1 − k/n)
Q(1 − k/n)

− 1
∣∣∣∣ = oP(1). (4.18)

To prove statement (4.18), we first note that

|en(1 − k/n)|
(k/n)1/2

≤ |en(1 − k/n) − Bn(1 − k/n)|
(k/n)1/2

+
|Bn(1 − k/n)|
(k/n)1/2

. (4.19)

The first summand on the right-hand side of bound (4.19) is of the order OP(1) due to
statement (4.12) with ν = 0. The second summand on the right-hand side of bound (4.19)
is of the order OP(1) due to a statement on page 49 of Csörgő et al. [40] (see the displayed
bound just below statement (2.39) therein). Hence, to complete the proof of statement (4.18),
we need to check that

Qn(1 − k/n)
Q(1 − k/n)

= 1 + oP(1). (4.20)
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Observe that, for each n, the distribution of Qn(1−k/n) is the same as that of Q(E−1
n (1−k/n)),

where E−1
n is the uniform empirical quantile function. Furthermore, the processes {1−E−1

n (1−
s), 0 ≤ s ≤ 1} and {E−1

n (s), 0 ≤ s ≤ 1} are equal in distribution. Hence, statement (4.20) is
equivalent to

Q
(
1 − E−1

n (k/n)
)

Q(1 − k/n)
= 1 + oP(1). (4.21)

From the Glivenko-Cantelli theorem we have that E−1
n (k/n) − k/n → 0 almost surely, which

also implies that E−1
n (k/n) → 0 since k/n → 0 by our choice of k. Moreover, we know from

Theorem 0 and Remark 1 of Wellner [41] that

sup
1/n≤s≤1

s−1
∣∣∣E−1

n (s) − s
∣∣∣ = oP(1), (4.22)

from which we conclude that

nE−1
n (k/n)
k

= 1 + oP(1). (4.23)

Since the function s �→ Q(1 − s) is slowly varying at zero, using Potter’s inequality (see the
5th assertion of Proposition B.1.9 on page 367 of de Haan and Ferreira [13],we obtain that

Q
(
1 − E−1

n (k/n)
)

Q(1 − k/n)
= (1 + oP(1))

(
nE−1

n (k/n)
k

)−γ±θ
(4.24)

for any θ ∈ (0, γ). In view of (4.23), the right-hand side of (4.24) is equal to 1 + oP(1), which
implies statement (4.21) and thus finishes the proof of statement (4.3).

4.2. Proof of Statement (4.4)

The proof of statement (4.4) is similar to that of Theorem 2 in Necir et al. [42], though some
adjustments are needed since we are now concerned with the CTE risk measure. We therefore
present main blocks of the proof together with pinpointed references to Necir et al. [42] for
specific technical details.

We start the proof with the function U(z) = Q(1 − 1/z) that was already used in the
formulation of Theorem 3.1. Hence, if Y is a random variable with the distribution function
G(z) = 1 − 1/z, z ≥ 1, then U(Y ) = Q(G(Y ))=dX because G(Y ) is a uniform on the interval
[0, 1] random variable. Hence,

An,2 =
k/n

1 − γ̂n
U(Yn−k:n) −

∫k/n

0
U

(
1
s

)
ds, (4.25)
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and so we have

√
nAn,2

(k/n)1/2Q(1 − k/n)
=
√
k

⎛
⎝ 1

1 − γ̂n

U(Yn−k:n)
U(n/k)

− (n/k)
∫k/n

0 U(1/s)ds
U(n/k)

⎞
⎠

=
√
k

(
1

1 − γ̂n

U(Yn−k:n)
U(n/k)

− 1
1 − γ

)

+
√
k

(
1

1 − γ
−
∫∞

1 s−2
U(ns/k)ds

U(n/k)

)
.

(4.26)

We next show that the right-most term in (4.26) converges to 0 when n → ∞. For this reason,
we first rewrite the term as follows:

√
k

(
1

1 − γ
−
∫∞

1 s−2
U(ns/k)ds

U(n/k)

)
= −
√
k

∫∞

1

1
s2

(
U(ns/k)
U(n/k)

− sγ
)
ds. (4.27)

The right-hand side of (4.27) converges to 0 (see notes on page 149 of Necir et al. [42]) due to
the second-order condition (3.1), which can equivalently be rewritten as

lim
z→∞

1
A(z)

(
U(zs)
U(z)

− sγ
)

= sγ
sρ − 1
ρ

(4.28)

for every s > 0, where A(z) = γ2a(U(z)). Note that
√
kA(n/k) → 0 when n → ∞. Hence, in

order to complete the proof of statement (4.4), we need to check that

√
k

(
1

1 − γ̂n

U(Yn−k:n)
U(n/k)

− 1
1 − γ

)
=

γ2

(
1 − γ

)2

√
n

k
Bn

(
1 − k

n

)

− γ(
1 − γ

)2

√
n

k

∫1

1−k/n

Bn(s)
1 − s

ds + oP(1).

(4.29)

With Hill’s estimator written in the form

γ̂n =
1
k

k∑
i=1

log
(

U(Yn−i+1:n)
U(Yn−k:n)

)
, (4.30)

we proceed with the proof of statement (4.29) as follows:

√
k

(
1 − γ

1 − γ̂n

U(Yn−k:n)
U(n/k)

− 1
)

=
√
k

1 − γ

1 − γ̂n

(
U(Yn−k:n)
U(n/k)

−
(
Yn−k:n

n/k

)γ)
+
√
k

1 − γ

1 − γ̂n

((
Yn−k:n

n/k

)γ

− 1
)
+
√
k

γ̂n − γ

1 − γ̂n
.

(4.31)
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Furthermore, we have that

√
k

γ̂n − γ

1 − γ̂n
=

1
1 − γ̂n

1√
k

k∑
i=1

(
log
(

U(Yn−i+1:n)
U(Yn−k:n)

)
− γ log

(
Yn−i+1:n

Yn−k:n

))

+
γ

1 − γ̂n

1√
k

k∑
i=1

(
log
(
Yn−i+1:n

Yn−k:n

)
− 1
)
.

(4.32)

Arguments on page 156 of Necir et al. [42] imply that the first term on the right-hand side of
(4.32) is of the order OP(

√
kA(Yn−k:n)), and a note on page 157 of Necir et al. [42] says that√

k A(Yn−k:n) = oP(1). Hence, the first term on the right-hand side of (4.32) is of the order
oP(1). Analogous considerations using bound (2.5) instead of (2.4) on page 156 of Necir et al.
[42] imply that the first term on the right-hand side of (4.31) is of the order oP(1). Hence, in
summary, we have that

√
k

(
1 − γ

1 − γ̂n

U(Yn−k:n)
U(n/k)

− 1
)

=
1 − γ

1 − γ̂n

√
k

((
Yn−k:n

n/k

)γ

− 1
)

+
γ

1 − γ̂n

1√
k

k∑
i=1

(
log
(
Yn−i+1:n

Yn−k:n

)
− 1
)
+ oP(1).

(4.33)

We now need to connect the right-hand side of (4.33) with Brownian bridges Bn. To this
end, we first convert the Y -based order statistics into U-based (i.e., uniform on [0, 1]) order
statistics. For this we recall that the cdf of Y is G, and thus Y is equal in distribution to G−1(U),
which is 1/(1 −U). Consequently,

√
k

(
1 − γ

1 − γ̂n

U(Yn−k:n)
U(n/k)

− 1
)

=
1 − γ

1 − γ̂n

√
k

((
1

(n/k)(1 −Un−k:n)

)γ

− 1
)

+
γ

1 − γ̂n

1√
k

k∑
i=1

(
log
(

(1 −Un−k:n)
(1 −Un−i+1:n)

)
− 1
)
+ oP(1).

(4.34)

Next we choose a sequence of Brownian bridges Bn (see pages 158-159 in [42] and references
therein) such that the following two asymptotic representations hold:

√
k

((
1

(n/k)(1 −Un−k:n)

)γ

− 1
)

= −γ
√

n

k
Bn

(
1 − k

n

)
+ oP(1),

1√
k

k∑
i=1

(
log
(

(1 −Un−k:n)
(1 −Un−i+1:n)

)
− 1
)

=
√

n

k
Bn

(
1 − k

n

)

−
√

n

k

∫1

1−k/n

Bn(s)
1 − s

ds + oP(1).

(4.35)
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Using these two statements on the right-hand side of (4.34) and also keeping in mind that γ̂n
is a consistent estimator of γ (see [22]), we have that

√
k

(
1 − γ

1 − γ̂n

U(Yn−k:n)
U(n/k)

− 1
)

=
γ2

1 − γ

√
n

k
Bn

(
1 − k

n

)

− γ

1 − γ

√
n

k

∫1

1−k/n

Bn(s)
1 − s

ds + oP(1).

(4.36)

Dividing both sides of equation (4.36) by 1 − γ , we arrive at (4.29). This completes the proof
of statement (4.4) and of Theorem 3.1 as well.
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