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Log-linear-binomial distribution was introduced for describing the behavior of the sum
of dependent Bernoulli random variables. The distribution is a generalization of binomial
distribution that allows construction of a broad class of distributions. In this paper, we consider
the problem of estimating the two parameters of log-linearbinomial distribution by moment and
maximum likelihood methods. The distribution is used to fit genetic data and to obtain the
sampling distribution of the sign test under dependence among trials.

1. Introduction

During the last three decades, a growing amount of literature has been observed in
generalizing the classical discrete distributions. The main idea was to apply the extended
versions of modeling different kinds of dependent count or frequency structure in various
fields; see the work of Johnson et al. in [1], and of Bowman and George in [2], and of George
and Bowman in [3], Yu and Zelterman [4, 5]. Failure to take account of correlation in the data
will cause less precision for binomial-based estimates; see, for example, Kolev and Paiva [6].

As a generalization for the binomial distribution, Lovison [7] has derived the
distribution of the sum of dependent Bernoulli randomvariables as an alternative of Altham’s
multiplicative-binomial distribution [8] from Cox’s log-linear representation [9] for the
joint distribution of n binary-dependent responses and it will be called log-linear-binomial
distribution. This distribution is characterized by two parameters and provides wider range
of distributions than are provided by the binomial distribution where the log-linear binomial
distribution includes underdispersion, overdispersion models and the binomial distribution
as a special case.
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In this paper, the methods of moment and maximum likelihood are used to estimate
the two parameters of Lovison’s log-linear binomial distribution. The variance-covariance
matrix for the estimated parameters is obtained. Log-linear binomial distribution is also used
to fit genetic data, and to obtain the sampling distribution of the sign test under dependence
among trials.

In Section 2, we define Lovison’s log-linear binomial distribution. Estimation of
the parameters of the distribution based on moments and maximum likelihood methods
are derived in Section 3. Ungrouped data is studied in Section 4 as a special case. Two
applications are given in Section 5.

2. Lovison’s Log-Linear-Binomial Distribution

Consider the random vector Z = [Z1, . . . , Zn]
′, Zi being a binary response which measures

whether some event of interest is present, “1”, or absent, “0” for a sample of n units and
Yn =

∑n
i=1Zi denotes the sample frequency of successes. To accommodate the possible

dependence among Zi, and under the assumption that the units are exchangeable Lovison
[7] has obtained the distribution of Yn as

P
(
Yn = y

)
=

( n
y
)
ψy
(
1 − ψ)n−yωy(n−y)

∑n
t=0(

n
t )ψt

(
1 − ψ)n−tωt(n−t)

, y = 0, 1, . . . , n, (2.1)

where 0 < ψ < 1 and ω > 0 are the parameters; for more details about this distribution; see
the work of Lovison in [7]. This distribution provides a wider range of distributions than is
provided by the binomial distribution, for example, Figures 1 and 2 show the distribution of
Yn for n = 10, ψ = 0.2, 0.5, and different values of ω. For the values of ω > 1, the distribution
is sharper in the middle than the binomial.

As can be seen from the figures for some values of ω < 1, the distribution can be U,
bimodal and unimodal shapes. The expected value and the variance of Yn are given by

μ = E(Yn) = nπ,

σ2 = V (Yn) = nπ(1 − π) + n(n − 1)
(
π1 − π2

)
.

(2.2)

Note that

V (Yn) = V (Yb) + n(n − 1)Cov(Zk,Zh) (2.3)

for k /=h and Cov stands for covariance. The variance of the binomial is

V (Yb) = nπ(1 − π), (2.4)

and the covariance of Zk and Zh is

Cov(Zk,Zh) = π1 − π2, (2.5)
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Figure 1: The distribution of Yn for different values of ω, ψ = 0.2, and n = 10.
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Figure 2: The distribution of Yn for different values of ω, ψ = 0.5, and n = 10.

where

π = ψ
κn−1

(
ψ,ω

)

κn
(
ψ,ω

) ,

π1 = ψ2κn−2
(
ψ,ω

)

κn
(
ψ,ω

) .

(2.6)
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Figure 3: Variance of Yn for various values of ω at each value of ψ and n = 25.
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Figure 4: Variance of Yn for various values of ω at each value of ψ and n = 25.

Therefore, the variance of the log-linear binomial is equal to the variance of binomial when
Cov(Zk,Zh) = 0, greater than the variance of binomial when Cov(Zk,Zh) > 0, and less than
the variance of binomial when Cov(Zk,Zh) < 0.

The expected value and the variance of Yn are nonlinear on both ψ andω. For example,
the nonlinearity in the variance of Yn is depicted in Figures 3 and 4.
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3. Estimation of the Parameters

Let a random sample of R sets of n trials each be available, the number of given y successes
being fy(y = 0, 1, 2, . . . , n), and R =

∑n
y=0 fy.

3.1. Method of Moments

We can use the first two sample moments to find moment estimates for ψ and ω as follows.
The first sample moment is

m1 =
n∑

y=0

yfy

R
,

M2 =
n∑

y=0

fr
(
y −m1

)2

R
.

(3.1)

Equating these sample moments to the corresponding population moments we obtain the
estimates of ψ and ω by solving the two equations

m1 = nψ
κn−1

(
ψ,ω

)

κn
(
ψ,ω

) ,

M2 = n(n − 1)ψ2κn−2
(
ψ,ω

)

κn
(
ψ,ω

) + nψ
κn−1

(
ψ,ω

)

κn
(
ψ,ω

) − n2ψ2

[
κn−1

(
ψ,ω

)

κn
(
ψ,ω

)

]2

.

(3.2)

The solution of these two equations needs numerical methods. The numerical solution of
these two equations may be found by using nonlinear equation solver (nleqslv) in statistical
R-software. The author has a program written in R for finding the moment estimates upon
request.

3.2. Method of Maximum Likelihood

The method of maximum likelihood provides estimators that have a reasonable intuitive
basis and many desirable statistical properties. The likelihood of the sample can be written as

L
(
ψ,ω | n, y, f) = R!

n∏

y=0

[
P(y;ψ,ω)

]fy

fy!
. (3.3)

Take the logarithm of this function

l = logR! +
n∑

y=0

fy logP
(
y;ψ,ω

) −
n∑

y=0

logfy! (3.4)
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The first partial derivatives with respect to ψ and ω are

∂l

∂ψ
=

n∑

y=0

fy

(
∂/∂ψ

)
P
(
y;ψ,ω

)

P
(
y;ψ,ω

) ,

∂l

∂ω
=

n∑

y=0

fy
(∂/∂ω)P

(
y;ψ,ω

)

P
(
y;ψ,ω

) .

(3.5)

Let

q0 =

(
n

y

)

ψy
(
1 − ψ)(n−y)ωy(n−y),

q1 =
n∑

t=0

(
n

t

)

ψt
(
1 − ψ)(n−t)ωt(n−t).

(3.6)

Hence,

P
(
y;ψ,ω

)
=
q0
q1
. (3.7)

3.2.1. Estimation of ψ and ω

After simplification the first partial derivative for ψ and ω can be written as

∂l

∂ψ
=

∑n
y=0 yfy

ψ
−
∑n

y=0
(
n − y)fy

1 − ψ −
Rq′1ψ
q1

,

∂l

∂ω
=

n∑

y=0

y
(
n − y)fy
ω

− q′1ωR

q1
.

(3.8)

where

q′1ψ =
n∑

t=0

(
n

t

)

ψt
(
1 − ψ)(n−t)ωt(n−t)

[
t

ψ
− n − t
1 − ψ

]

,

q′1ω =
n∑

t=0

(
n

t

)

t(n − t)ψt(1 − ψ)(n−t)ωt(n−t)−1.

(3.9)

By solving ∂l/∂ψ = 0 and ∂l/∂ω = 0 simultaneously we obtain the maximum likelihood
estimates ψ̂ml and ω̂ml under the sufficient condition ∂2l/∂ψ2 < 0 and ∂2l/∂ω2 < 0.

The numerical solution for these two equations may be obtained using nonlinear
equation solver (nleqslv) in R-software. The author has a program written in R for finding
the maximum likelihood estimates upon request.
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3.2.2. The Asymptotic Variances

Suppose that θ = [ψ ω]′ and under certain regularity conditions the information matrix is

Iij(θ) = −E
[

∂2

∂θi∂θj
logL(θ)

]

. (3.10)

The asymptotic variance-covariance matrix can be obtained as

V
(
θ̂
)
≈ [Iij(θ)

]−1
. (3.11)

To find the information matrix for the log-linear binomial distribution, we note that

∂2l

∂ψ2
= −

∑n
y=0 yfy

ψ2
−
∑n

y=0
(
n − y)fy

(
1 − ψ)2

−
⎡

⎣
q1q

′′
1ψR − q′2

1ψR

q21

⎤

⎦,

∂2l

∂ω2
= −

n∑

y=0

y(n − y)fy
ω2

−
[
q1q

′′
1ωR − q′2

1ωR

q21

]

,

∂

∂ψ

∂l

∂ω
= −

Rq1q
′′
1ω.ψ − Rq′1ωq′1ψ

q21
,

(3.12)

where

q′′1ψ =
n∑

t=0

(
n

t

)

ψt
(
1 − ψ)(n−t)ωt(n−t)

[
t(t − 1)
ψ2

− 2t(n − t)
ψ
(
1 − ψ) +

(n − t)(n − t − 1)
(
1 − ψ)2

]

,

q′′1ω =
n∑

t=0

(
n

t

)

t(n − t)[t(n − t) − 1]ψt
(
1 − ψ)(n−t)ωt(n−t)−2,

q′′1ω·ψ =
n∑

t=0

(
n

t

)

t(n − t)ψt(1 − ψ)(n−t)ωt(n−t)−1
[
t

ψ
− n − t
1 − ψ

]

.

(3.13)

Taking the expectation, the information matrix is obtained as

I(θ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Rμ

ψ2
+
R
(
n − μ)

(
1 − ψ)2

+

⎡

⎣
q1q

′′
1ψR − q′2

1ψR

q21

⎤

⎦
Rq1q

′′
1ω·ψ − Rq′1ωq′1ψ

q21

Rq1q
′′
1ω·ψ − Rq′1ωq′1ψ

q21

R
[
μ
(
n − μ) − σ2]

ω2
+

[
q1q

′′
1ωR − q′2

1ωR

q21

]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(3.14)
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where E[
∑n

y=0 y(n − y)fy] = nE(
∑n

y=0 yfy) − E(
∑n

y=0 y
2fy) = nRμ −R(μ2 + σ2). The variance-

covariance matrix will be

V
(
θ̂
)
≈ [I(θ)]−1. (3.15)

The estimated variance-covariance matrix is

V̂
(
θ̂
)
≈
[
I(θ̂)

]−1
. (3.16)

The author has a program written in R for finding the estimated variance-covariance matrix
upon request.

4. Special Case: Ungrouped Data

If the values of Bernoulli random variables Zi are known, the parameters ψ and ω can be
estimated as follows. By noticing that in a vector of binary responses z there are n(n − 1)/2
pairs of responses, and if the order is irrelevant three types of pairs are distinguishable: (n −
y)(n − y − 1)/2 pairs of (zk = 0, zh = 0), y(y − 1)/2 pairs of (zk = 1, zh = 1), and (n − y)y
pairs of (zk = 0, zh = 1), or (zk = 1, zh = 0) where y =

∑n
k=1 zk; see the work of Lovison in [7].

Therefore, the estimate of ω is

ω̂ =
1

√
ĈPR

. (4.1)

The estimated cross-product ratio (CPR) is

ĈPR =
0.25y

(
y − 1

)(
n − y)(n − y − 1

)

#(zk = 0, zh = 1) #(zk = 1, zh = 0)
. (4.2)

To obtain the maximum likelihood estimate of ψ, we need to solve

dl

dψ
=
y

ψ
−
(
n − y)

1 − ψ −
q′1ψ
q1

= 0. (4.3)

The estimated variance of ψ̂ can be obtained when R = 1.

5. Applications

5.1. Sampling Distribution of the Sign Test for Comparing Paired Sample

The sign test is a nonparametric test which makes very few assumptions about the nature of
the distributions under test. It is for use with two repeated (or correlated) measures, and
measurement is assumed to be at least ordinal. The usual null hypothesis for this test is
that there is no difference between the two treatments (groups, gk, k = 1, 2). Formally, let
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τ = P(X > Y ), and then test the null hypothesis H0: τ = 0.5 for no differences against H1:
π /= 0.5 for differences. The sign test can be written as

sd =
n∑

i=1

I
(
g1i − g2i

)
=

n∑

i=1

Zi = Yn, (5.1)

where

Zi =

⎧
⎨

⎩

1, g1i − g2i > 0 (+),

0, xg1i − g2i < 0 (−).
(5.2)

Under the assumptions of two outcomes, fixed probability of success, and independent trials
it is assumed that the sampling distribution of sd is binomial distribution. The rejection region
is

Pvalue = P
(
reject H0 | H0 is true, n, yd

)
=

yd∑

j=0

(
n

j

)

0.5n (5.3)

and yd = min(#1, # 0). For a two-tailed test we reject H0 if 2Pvalue ≤ α, else we do not reject
H0, where α is prespecified value.

5.1.1. Sign Test Under Dependence of the Trials

Suppose the assumption of mutual independence in the data is violated and the trails are
dependent; see, for example, the work of Tallis in [10] and Luceño [11]. In this case, we
suggest the log-linear binomial distribution as a sampling distribution of sd =

∑n
i=1Zi rather

than the binomial distribution. Let τ = P(X > Y ) = P(Z = 1) = ψ(κn−1(ψ,ω)/κn(ψ,ω))
represent the probability of success. Then the null hypothesisH0: τ = 0.5 is equivalent toH0:
ψ = 0.5. Therefore, under the null hypothesis, the rejection region can be obtained as

Pvalue·lb = P
(
reject H0 | H0 is true, n, yd, ω

)
=

yd∑

j=0

( n
j

)
0.5nωj(n−j)

∑n
t=0(

n
t )0.5

nωt(n−t) , (5.4)

where yd = min(#1, # 0) and ω = 1/
√
CPR. For a two-tailed test, we rejectH0 if 2Pvalue.lb ≤ α,

else do not rejectH0 and α is a prespecified value (H0: there is no difference againstH1: there
is difference.)

Example 5.1. A physiologist wants to know if monkeys prefer stimulation of brain area A to
stimulation of brain area B. In the experiment, 14 rhesus monkeys from the same family are
taught to press two bars. When a light comes on, presses on Bar 1 result in stimulation of area
A and presses on Bar 2 result in stimulation of area B. After learning to press the bars, the
monkeys are tested for 15 minutes, during which time the frequencies for the two bars are
recorded. The data are shown in Table 1.
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Table 1: Number of bar presses in brain stimulation experiment.

Subject bar 1 bar 2 Difference Zi (sign)

1 20 40 −20 0 (−)
2 18 25 −7 0 (−)
3 24 38 −14 0 (−)
4 14 27 −13 0 (−)
5 5 31 −26 0 (−)
6 26 21 5 1 (+)

7 15 32 −17 0 (−)
8 29 38 −9 0 (−)
9 15 25 −10 0 (−)
10 9 18 −9 0 (−)
11 25 32 −7 0 (−)
12 31 28 3 1 (+)

13 35 33 2 1 (+)

14 12 29 −17 0 (−)
The data are obtained from Weaver [12].

Using the binomial distribution, we have n = 14, yd = 3, and Pvalue is

2Pvalue =
3∑

j=0

(
14

j

)

0.514 = 2 × 0.0287 = 0.0574. (5.5)

Since 0.0574 > 0.05, we do not rejectH0.
Using the log-linear binomial distribution, we have n = 14, yd = 3, and

ω =
1

√
(55)(3)/(25)(8)

= 1.1, (5.6)

and the Pvalue is

2Pvalue.lb =
3∑

j=0

(
14
j

)
0.5141.1j(14−j)

∑14
t=0
(
14
t

)
0.5141.1t(14−t)

= 2(0.00687) = 0.0137, (5.7)

where 0.0137 < 0.05, so we reject H0. That is, we would conclude that monkeys prefer
stimulation in brain area B to stimulation in area A. Note that the rejection ofH0 agrees with
Wilcoxon Signed-Ranks test for the same data; see the work of Weaver in [12] and Siegel and
Castellan in [13].
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Power of the Test

Following themethod given by Groebner et al. in [14], wemay use the normal approximation
to study the power of the sign test at n = 14, ω = 1.1 and using one-tail test for simplicity as
follows. The power of the test is

power = 1 − β,
β = P

(
accept H0 | H0 is false

)
.

(5.8)

For one-tailed testH0: τ ≤ 0.5 andH1: τ > 0.5 using binomial distribution with n = 14, τ = 0.5
and σ =

√
14(0.5)(0.5) = 1.8708. The critical value with α = 0.05 is

y0.05,b = 14(0.5) + 1.645(1.8708) = 10.077. (5.9)

The power of the test is

powerb ≈ 1 − P
(

Z <
10.077 − 14τ1

1.8708

)

, (5.10)

for τ1 > 0.5.
Using log-linear binomial distribution with n = 14, ψ = 0.5, and ω = 1.1, we obtain

σ = 1.4616, then underH0 and α = 0.05, the critical value is

y0.05,lb = 14(0.5) + 1.645(1.4616) = 9.404. (5.11)

The power of the test under log-linear binomial distribution is

powerlb ≈ 1 − P
(

Z <
9.404 − 14τ1

1.4616

)

, (5.12)

τ1 > 0.5.
Power of the sign test is given in Table 2. In this case, the log-linear binomial

distribution shows improvement in the power of the sign test over the sign test under
binomial; for example, when τ1 = 0.70, the power increases from 0.44 to 0.61 about 1.40 times.

5.2. Fitting Genetic Data

The data are taken from Salmaniyaa hospital records in Bahrain for a genetic study on the
gender ratio. Table 3 shows the number of male children in 3475 families with 7 children.

The first two sample moments are

m1 = 3.12057, M2 = 1.21567. (5.13)
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Table 2: Power of the sign test under binomial and log-linear binomial distribution for one-tail test with
n = 14, ω = 1.1, and α = 0.05 based on normal approximation.

τ1

0.5 0.60 0.70 0.80 0.90 0.95
Binomial distribution

Z 1.64 0.89 0.15 −0.60 −1.35 −1.72
Power 0.05 0.18 0.44 0.73 0.91 0.96

Log-linear binomial distribution
Z 1.64 0.68 −0.27 −1.23 −2.18 −2.66
Power 0.05 0.25 0.61 0.89 0.98 0.996

Table 3: Numbers of male children in 3475 families of size 7

Male Families Binomial Log-linear binomial
0 15 55.80 17.53
1 200 314.22 203.20
2 778 758.24 769.21
3 1240 1016.51 1233.02
4 897 817.65 903.93
5 295 394.62 303.07
6 45 105.81 43

2.02

}

7 5 12.16
Total 3475 3475 3475
Chi-square 193.01 1.374
Note: frequencies marked with bracket were combined for purpose of calculating χ2

If we use binomial distribution, the estimated value of τ from the sample is

τ̂ =
3.12057

7
= 0.4458. (5.14)

This value of τ̂ was used to obtain the expected frequencies shown in Table 3. The value of
χ2 = 193.01 with 7 degrees of freedom gives p = 0 < 0.05, the simple binomial model has to be
rejected. If we use log-linear binomial distribution, and fit the data by maximum likelihood,
we find that

ψ̂ = 0.423, ω̂ = 1.14543. (5.15)

The estimated variance-covariance matrix is

V̂
(
θ̂
)
≈
[
70974.89 1071625

10716.25 8927.83

]−1

=

[
0.000017 −.000021
−.000021 0.000137

]

. (5.16)

The expected frequencies based on these estimates are shown in Table 3. The value of
χ2 = 1.288 with 6 degrees of freedom gives p = 0.97 > 0.05. Thus, the log-linear binomial
distribution provides a good fit to the observed data.
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6. Conclusion

The parameters of the log-linear binomial distribution were estimated by the moment and
maximum likelihood methods. Both methods needed solving nonlinear equations to obtain
the estimators of the parameters. We used nonlinear equation solver (nleqslv) package in
statistical R-software to find the estimates of the parameters. The variance-covariance matrix
for the maximum likelihood estimates was obtained. Moreover, the sampling distribution of
the sign test was studied when trials are dependent. A set of genetic data from Salmaniyaa
hospital in Bahrain has been fitted using log-linear binomial distribution. The fit is found
preferable over fitting the binomial distribution.
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