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We expand a framework for Bayesian variable selection for Gaussian process (GP) models
by employing spiked Dirichlet process (DP) prior constructions over set partitions containing
covariates. Our approach results in a nonparametric treatment of the distribution of the covariance
parameters of the GP covariance matrix that in turn induces a clustering of the covariates. We
evaluate two prior constructions: the first one employs a mixture of a point-mass and a continuous
distribution as the centering distribution for the DP prior, therefore, clustering all covariates.
The second one employs a mixture of a spike and a DP prior with a continuous distribution as
the centering distribution, which induces clustering of the selected covariates only. DP models
borrow information across covariates through model-based clustering. Our simulation results, in
particular, show a reduction in posterior sampling variability and, in turn, enhanced prediction
performances. In our model formulations, we accomplish posterior inference by employing novel
combinations and extensions of existing algorithms for inference with DP prior models and
compare performances under the two prior constructions.

1. Introduction

In this paper, we expand a framework for Bayesian variable selection for Gaussian process
(GP) models by employing spiked Dirichlet process (DP) prior constructions over set
partitions containing covariates. Savitsky et al. [1] incorporate Gaussian processes in the
generalized linear model framework of McCullagh and Nelder [2] by expanding the
flexibility for the response surface to lie in the space of continuous functions. Their modeling
approach results in a class of nonparametric regression models where the covariance
matrix depends on the predictors. GP models, in particular, accommodate high-dimensional
heterogenous covariate spaces where covariates possess different degrees of linear and non-
linear association to the response, Rasmussen and Williams [3].
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In this paper, we investigate mixture prior models that induce a nonparametric
treatment of the distribution of the covariance parameters of the GP covariance matrix that, in
turn, induces a clustering of the covariates. Mixture priors that employ a spike at zero are now
routinely used for variable selection—see for example, George andMcCulloch [4] and Brown
et al. [5] for univariate and multivariate regression settings, respectively, and Sha et al. [6] for
probit models—and have been particularly successful in applications to high-dimensional
settings. These approaches employ mixture prior formulations for the regression coefficients
that impose an a priori multiplicity penalty, as argued by Scott and Berger [7]. More recently,
MacLehose et al. [8] have proposed a Bayesian nonparametric approach to the univariate
linear model that incorporates mixture priors containing a Dirac measure component into
the DP construction of Ferguson [9] and Antoniak [10]. Dunson et al. [11] use a similar
spiked centering distribution in a logistic regression. As noted by these authors, DP models
borrow information across covariates through model-based clustering, possibly induced
through a spatial or temporal correlation, and can achieve improved variable selection and
prediction performances with respect to models that use mixture priors alone. Within the
modeling settings ofMacLehose et al. [8] andDunson et al. [11], the clustering induced by the
Dirichlet process is on the univariate regression coefficients and strength is borrowed across
covariates. Kim et al. [12] have adapted the DP modeling framework to provide meaningful
posterior probabilities of sharp hypotheses on the coefficients of a random effects model.
Their goal is not necessarily variable selection, but rather the more general problem of testing
hypotheses on the model parameters. Their model formulation does not share information
across covariates but rather clusters vectors of regression coefficients across observations.

While the prior constructions described above all use a mixture of a point mass and
a continuous distribution as the centering distribution of the DP prior, in this paper we also
investigate constructions that employ a mixture of a spike and a DP prior with a continuous
distribution as the centering distribution. The former approach clusters all covariates, the
latter induces clustering of the selected covariates only. The prior formulations we adopt
show a reduction in posterior sampling variability with enhanced prediction performances
in cases of covariates that express nearly the same association to the response.

In our model formulations, we accomplish posterior inference by employing novel
combinations and extensions of existing algorithms for inference with DP prior models
and variable selection. Unlike prior constructions for linear models, which are able to
marginalize over the model space indicators and directly sample the model coefficients a
posteriori, our non-linear modeling frameworks employ nonconjugate priors. We achieve
robust selection results by using set partitions on which we impose a DP prior to enclose
both the model and the associated parameter spaces. We optimize performances of posterior
sampling with a modification of the auxiliary Gibbs algorithm of Neal [13] that accounts for a
trivial cluster containing nuisance covariates. We investigate performances on simulated data
under the two prior constructions. Our DP prior model constructions represent generalized
nonconjugate formulations with associated posterior sampling algorithms that, while specific
to GP models, may be applied to other nonconjugate settings.

The remainder of the paper is structured as follows: GP models and covariance
matrix formulations are reviewed in Section 2. Section 3 introduces our spiked DP prior
formulations, including separate models to cluster all covariates and only selected covariates.
Sampling schemes for posterior inference are described in Section 4. Simulations are
conducted in Section 5, where we compare the clustering construction to the mixture priors
model and also compare the two DP prior model formulations. A benchmark dataset is
analysed in Section 6. Concluding remarks are offered in Section 7.
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2. Generalized Gaussian Process Models

Savitsky et al. [1] incorporate GP models within the generalized linear model framework of
McCullagh and Nelder [2] by employing the relation

g
(
ηi
)
= z(xi), i = 1, . . . , n (2.1)

for link function g(·), where ηi is the (possibly latent) canonical parameter for the ith
observation. A Gaussian process prior is then specified on the n × 1 latent vector

z(X) = ((z(x1), . . . , z(xn))
′ ∼ N(0,C), (2.2)

with the n×n covariancematrixC being an arbitrarily complex function of the predictors. This
general construction extends to latent regressionmodels used for continuous, categorical, and
count data, obtained by choosing the appropriate link in (2.1), and incorporates in particular
the univariate regression and classification contributions of Neal [14] and Linkletter et al.
[15]. Continuous data regression models, for example, are obtained by choosing the identity
link function in (2.1) to obtain

y = z(X) + ε (2.3)

with being y the n×1 observed response vector and ε ∼ N(0, (1/r)In)with being r a precision
parameter. For inference z(X) can be integrated out to work with a marginalized likelihood.

Savitsky et al. [1] extend GP models to also include the class of proportional hazard
models of Cox [16] by defining the hazard rate as h(ti | z(xi)) = h0(ti) exp(z(xi))where h0(·) is
the baseline hazard function, t is the failure time, and z(xi) is defined as in (2.2). Let the triples
(t1, x1, d1), . . . , (tn, xn, dn) indicate the data, with censoring index di = 0 if the observation is
right censored and di = 1 if the associated failure time, ti, is observed. Suppose that there
are no ties among event/failure times and let t(1) < t(2) < · · · < t(D) be the D ≤ n distinct
noncensored failure times. In this paper, we use the partial likelihood formulation, defined as

π(t,d | z(X)) =
D∏

i=1

exp
(
z
(
x(i)

))

A(i)
=

n∏

j=1

[
exp

(
z(xj)

)

Aj

]dj

, (2.4)

whereAj =
∑

l∈R(tj ) exp(z(xl)+εl), with R(tj) being the set of individuals at risk right before tj
andA(i) theAj evaluated at the ith failure time. The use of the partial likelihood conveniently
avoids prior specification of the baseline hazard.

2.1. Covariance Formulation

A common choice for C in (2.2) is a covariance function that includes a constant term and an
exponential term, that is,

C = Cov(z(X)) =
1
λa

Jn +
1
λz

exp(−G), (2.5)
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with Jn being an n×nmatrix of 1’s andG amatrix with elements gij = (xi−xj)′P(xi−xj) and P =
diag(− log(ρ1, . . . , ρp)), with ρk ∈ [0, 1] associated to variable xk, k = 1, . . . , p. This single-term
exponential covariance provides a parsimonious representation that enables a broad class of
linear and non-linear response surfaces. In particular, Rasmussen andWilliams [3] show how
the exponential form (2.5) can be derived from a linear construction by expanding the inputs,
xj ’s, into an infinite basis. The chosen parametrization allows simple prior specifications and
it is also used by Linkletter et al. [15] as a transformation of the exponential term used by
Neal [14] and Sacks et al. [17] in their covariance matrix formulations. This construction
is sensitive to scaling and we find best results by normalizing the predictors to lie in the
unit cube [0, 1]. Other choices of C, such as exponential constructions that include a second
exponential term and Matern constructions, are reviewed in Savitsky et al. [1].

3. Spiked Dirichlet Process Prior Models for Variable Selection

Variable selection can be achieved in the GP modeling framework with covariance matrix of
type (2.5) by imposing mixture priors on the covariance parameters, that is,

π
(
ρk | γk

)
= γkI

[
0 ≤ ρk ≤ 1

]
+
(
1 − γk

)
δ1
(
ρk
)
, (3.1)

for ρk, k = 1, . . . , p, which employs a U(0, 1) prior for ρk | γk = 1 and a δ1(·), that is, a point
mass distribution at one, for γk = 0. This formulation is similar in spirit to the use of mixture
priors employed for variable selection in linear regression models, as, for example, in George
and McCulloch [4] and Brown et al. [5] for univariate and multivariate regression settings,
respectively.

In this paper, we embed mixture priors for variable selection into Dirichlet process
prior models that cluster covariates to strengthen selection. The Dirichlet process (DP)
construction of Ferguson [9] and Antoniak [10] is a typical choice for a prior on an unknown
distribution, G. In particular, given a set of a priori i.i.d. parameters, φ = (φ1, . . . , φp),
with φi ∼ G, we define the DP prior on G ∼ DP(α,G0), where G0 is the parametric base
measure defining the prior mean, E(G) = G0. The concentration parameter, α, expresses the
prior confidence in the base measure. Draws from G are discrete a.s., implying a positive
probability of ties to instantiate randomly generated partitions. Indeed, many contributions
in nonparametric Bayesian inference are formulated in terms of random partition models,
that is, probability models that cluster the set of experimental units. See Quintana [18] for a
nice review of nonparametric Bayesian models.

Here we introduce probability distributions on set partitions with a particular focus on
clustering the p covariates (through the a priori i.i.d. covariance parameters, φ), rather than
the usual choice of n i.i.d. observations. Let φ∗ = (φ∗

1, . . . , φ
∗
M)′, for M ≤ p, define the unique

values of φ, and let us define the clusters as S� = {k : φk = φ∗
�}. Let F indicate the space

of all possible partitions of the p covariates. The partition νp = {S1, . . . , SM} ∈ F captures a
particular disjoint clustering of the covariates, with Sk∩Sm = ∅ for k /=m, such that we recover
the full set of covariates in the disjoint union,

⋃p

k=1 Sk = S0 = {1, . . . , p}. The DP provides the
Pólya urn scheme of Blackwell and MacQueen [19] by marginalizing over G to define a joint
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prior construction for a particular partition,

π
(
νp
)
=

∏
S∈νpαΓ

(
pS

)

∏p

k=1(α + k − 1)
, (3.2)

where Γ(x) is the gamma function and pS the number of covariates in cluster S. Higher values
of α tend to produce a larger number of clusters. This is evident if we factorize the joint prior
as

π(sk = s | s−k) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p−k,s
p − 1 + α

if 1 ≤ s ≤ M−,

α

p − 1 + α
if s = M− + 1,

(3.3)

where we introduce cluster indicators, sk = � ⇒ k ∈ S� , k = 1, . . . , p and employ
exchangeability for φk to treat covariate k as the last one added. Here p−k,s /= st indicates the
number of covariates, excluding covariate k, allocated to the nontrivial cluster S. Similarly,
M−, captures the total number of clusters when excluding covariate k. In particular, this
construction of the conditional prior reveals that the probability for covariate k to be clustered
withm is uniform for all k or π(sk = sm | s−k) ∝ 1 form = 1, . . . , k−1, k+1, . . . , p. We complete
the prior specification with α ∼ G(aα, bα) to allow the data to update the concentration
parameter for a fully Bayesian approach. It is important to note that our prior construction
is over set partitions that contain covariates and that all the observations are in every cluster.
We next develop two specific and alternative prior formulations, the first permits clustering
on all—trivial and selected—covariates and the second one focuses on clustering only the
selected covariates.

3.1. Clustering All Covariates

The first prior construction we consider employs the mixture prior as the centering
distribution for the DP prior model, therefore, clustering all covariates. Let us consider the
covariance parameters, φ = (φ1, . . . , φp) with φk = (γk, ρk), for k = 1, . . . , p. We proceed with
the usual DP prior construction

φ1, . . . , φp | G ∼ G,

G ∼ DP(α,G0),

G0 =
[
γkU(0, 1) +

(
1 − γk

)
δ1
(
ρk
)] × Bern(w)

(3.4)

which encloses the mixture prior on ρk | γk and the Bernoulli prior on γk in the base
distribution, and where w is the prior probability of covariate inclusion. A further Beta prior
can be placed onw to introduce additional variation. Under model sparsity, we a priori expect
most covariates to be excluded from the model space, which we accomplish by allocating the
associated ρk for a nuisance covariate to the Dirac measure component of the conditional
mixture prior under the setting (γk = 0, ρk = 1), effectively reducing the dimensionality of
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the parameter space. Our clustering model (3.4) therefore strengthens exclusion of nuisance
covariates with a prior construction that co-clusters nuisance covariates. Let us define the
trivial cluster as St = {k : φk = [φ∗

t = (γ∗t = 0, ρ∗t = 1)]}, with the star symbol indicating
unique values. The trivial cluster can be extracted into a separate line in the conditional prior
formulation over the set partitions from (3.3),

π(sk = s | s−k) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

p−k,s /= st

p − 1 + α
if 1 ≤ s /= st ≤ M−,

p−k,s=st
p − 1 + α

if s = st,

α

p − 1 + α
if s = M− + 1,

(3.5)

Notice how prior (3.5) strengthens selection by aggregating all trivial covariates into a single
cluster. Later in the paper we will employ a data augmentation approach to conduct posterior
samples from this nonconjugate model formulation.

3.2. Clustering Selected Covariates

Alternatively, we can use prior models that employ a mixture of a spike and a DP prior with
a continuous distribution as the centering distribution, therefore, inducing clustering of the
selected covariates only. We construct this model as

ρk | γk ∼ γkG +
(
1 − γk

)
δ1(·),

G ∼ DP(α,G0),

G0 ∼ U(0, 1),

(3.6)

which may be written more intuitively as (ρk | γk = 1, G) ∼ G. This formulation confines
the set partitions to cluster only the selected covariates. While the dimension of the selected
covariates, pγ , will change at every iteration of the MCMC algorithm for posterior inference,
we may still marginalize over G, given pγ , to produce the Pólya urn prior formulation (3.3)
where we set φ = {ρk | γk = 1},

π(sk = s | s−k) =

⎧
⎪⎪⎨

⎪⎪⎩

p−k,s
pγ − 1 + α

if 1 ≤ s ≤ M−,

α

pγ − 1 + α
if s = M− + 1.

(3.7)

We note that the normalizing expression in the denominator now uses pγ , rather than p,
to account for our reduced clustering set. Trivial covariates are not clustered together so
that we a priori expect reduced efficacy to remove trivial covariates from the model space.
In other words, this prior construction produces a relatively flatter prior for assignment to
nontrivial clusters under model sparsity as compared to (3.5). Yet, we expect improvement
in computational speed as we are only clustering pγ ≤ p covariates.
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4. Markov Chain Monte Carlo Methods

We accomplish posterior inference by employing novel combinations and extensions of
existing algorithms for inference with DP models and variable selection. In particular, we
adapt the auxiliary Gibbs algorithm of Neal [13] to data augmentation schemes that draw
posterior samples for our nonconjugate model formulations.

First we extend our notation and use ργ to indicate the ρ vector where ρk = 1when γk =
0, for k = 1, . . . , p. For model (3.5), we collect the covariance parameters in Θ = (s,φ∗, λa, λz)
where φ∗ = (γ∗, ρ∗γ∗) indicates the M unique cluster values of φ = (γ, ργ). For model (3.7), we
haveΘ = (s, γ,ρ∗

γ , λa, λz) to reflect the fact that covariate selection is done separately from the
clustering.

We recall the augmented data likelihood of Savitsky et al. [1] employed as a
generalized formulation for GP models to construct the joint posterior distribution over
model parameters,

π(D | Θ,h), (4.1)

with Di ∈ {yi, {ti, di, z(xi)}} and D := {D1, . . . , Dn} to capture the observed data augmented
by the unobserved GP variate, z(X), in the case of latent responses, such as for the survival
model (2.4). Note that D depends on the concentration parameter for clustering covariates,
α, through the prior on s. We collect all other model-specific parameters in h; for example,
h = r for the univariate regression model (2.3).

4.1. Clustering All Covariates

We first define our sampling algorithm using the covariate clustering construction (3.5)
which includes all covariates—both trivial and selected. Our MCMC algorithm sequentially
samples s,φ∗, α, λa, λz,h in a Gibbs-type fashion. We improve efficiency of the auxiliary Gibbs
algorithm ofNeal [13] used to sample s bymaking amodification that avoids duplicate draws
of the trivial cluster. The sampling scheme we propose is as follows.

(1) Update s: The auxiliary Gibbs algorithm of Neal [13] achieves sampling of
the cluster indicators by introducing temporary auxiliary parameters typically
generated from the base distribution (3.4). While multiple draws of nontrivial
cluster are almost surely unique, repeated draws of the trivial cluster are entirely
duplicative. We make a modification to the auxiliary Gibbs algorithm by ensuring
that our state space always contains the trivial cluster, therefore, avoiding duplicate
generations. The algorithm employs a tuning parameter, ω, as the number of
temporary auxiliary parameters to be generated from the prior to facilitate
sampling each sk at every MCMC iteration. We begin by drawing the ω auxiliary
parameters from the conditional prior given the current state space values. If
�� ∈ {1, . . . , p} : sl = st, then one of possibly multiple auxiliary parameters has
a connection to the trivial state. We thus sample φ∗

M−+1 ∼ δ0(γ∗k)δ1(ρ
∗
k), which

draws this value as the trivial cluster. If, however, ∃� ∈ {1, . . . , p} : sl = st, then
the auxiliary parameters are independent of the trivial state and are sampled as
nontrivial clusters from δ1(γk)I[0 ≤ ρk ≤ 1], as in the original auxiliary Gibbs
algorithm. Next, we draw the cluster indicator, sk, in a Gibbs Step from the
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conditional posterior over the set partitions with a state that includes our auxiliary
parameters,

π(sk = s | s−k,D) ∝

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

p−k,s /= st

p − 1 + α
π(D | Θ,h) if 1 ≤ s /= st ≤ M−,

p−k,s=st
p − 1 + α

π(D | Θ,h) if s = st,

[α∗/w]
p − 1 + α

π(D | Θ,h) if M− < s ≤ M− +w,

(4.2)

where we abbreviate (4.1) with π(D | φ∗
s) with φ∗

s ∈ φ∗, the unique parameter
associated to cluster index, s. In the examples below, we use ω = 3, and therefore
a probability to assign a covariate to each of the new clusters as proportional to
[α/w]. Neal [13] notes that larger values of ω produce posterior draws of lower
autocorrelation.

(2) Update φ∗: We update the cluster parameters, φ∗ = (φ∗
1, . . . , φ

∗
M),M ≤ p, using

a Metropolis-within-Gibbs. This scheme consists of 2 moves: a between-models
move to jointly update (γ∗k , ρ

∗
k) for k = 1, . . . ,M in a componentwise fashion,

and a within model move to update ρ∗k for covariates in the current model
after the between-models move. We use uniform proposals for the ρ∗

k
s. Under

our clustering formulation, we update the M clusters, and not the p covariates,
therefore, borrowing strength among coclustered covariates.

(3) Update α: We employ the two-step Gibbs sampling algorithm of Escobar and
West [20] constructed as a posterior mixture of two Gamma distributions with the
mixture component, η, drawn from a beta distribution. The algorithm is facilitated
by the conditional independence of α from D, given s.

(4) Update {λa, λz,h}: These are updated using Metropolis-Hastings moves. Proposals
are generated from the Gamma distributions centered at the previously sampled
values.

4.2. Clustering Selected Covariates

We describe the steps to perform updates for s, γ,ρ∗
γ , α, λa, λz,h from (3.7).

(1) Update s: Obtain draws in a Gibbs Step for s = (s1, . . . , spγ ), employing the auxiliary
Gibbs algorithm in the usual way according to the conditional posterior

π(sk = s | s−k,D) =

⎧
⎪⎪⎨

⎪⎪⎩

p−k,s
pγ − 1 + α

π(D | Θ,h) if 1 ≤ s ≤ M−,

α

pγ − 1 + α
π(D | Θ,h) if M− < s ≤ M− +w.

(4.3)

(2) Update γ : We update γ componentwise by employing a Metropolis-within-Gibbs
algorithm. Notice that an update that adds a covariate also adds a cluster and,
similarly, the removal of a covariate also discards a cluster in the case where the
cluster contains only the deleted covariate.
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(3) Update ρ∗
γ : We update the unique ρk’s values for the previously selected pγ

covariates in a componentwise fashion using a Metropolis-within-Gibbs algorithm
and uniform proposals.

(4) Update α: As in Step 3. of the previous algorithm.

(5) Update {λa, λz,h}: As in Step 4. of the previous algorithm.

For both MCMC schemes, final selection of the variables is accomplished by
employing a cutoff value for the marginal posterior probabilities of inclusion of single
variables based on a target expected False Discovery Rate (EFDR) in a fashion similar to
Newton et al. [21]. For example, let ξk be the posterior probability of the event γk = 1, that
is, a significant association of the kth predictor to the response. We fix α, a prespecified false
discovery rate, and select those covariates with posterior probabilities of exclusion under the
null hypothesis, 1 − ξk, that are below threshold, κ, that is,

α = EFDR(κ) =
p∑

k=1

(1 − ξk)I(1−ξk≤κ)
I(1−ξk≤κ)

, (4.4)

with I(·) the indicator function. As noted by Kim et al. [12], the optimal posterior threshold,
κ, may be determined as the maximum value in the set {κ : EFDR(κ) ≤ α}.

5. Simulation Study

We explore performances of the proposed models on simulated data and on a benchmark
dataset. Results will show that the application of DP priors may supply a reduction in
posterior sampling variability that, in turn, enhances prediction performances, for cases
where there is an expected clustering among covariates. We investigate performances under
the two prior constructions described above.

5.1. Hyperparameters Setting

In all examples below, we generally follow the guidelines for hyperparameter settings given
in Savitsky et al. [1] for prior settings related to the mixture prior construction of Section 3
and to specific data models. In particular, we employG(1, 1) priors on λa, λz. In addition, we
center and normalize the response and transform the design matrix to lie in [0, 1]p to produce
a small intercept term, which in turn supplies a better conditioned GP covariance matrix.
Savitsky et al. [1] note little sensitivity of the results to the choice ofw, the prior expectation of
covariate inclusion. Here we setw = 0.025 in all examples below. In the univariate regression
model (2.3), the parameters of the prior on the precision error term, r ∼ G(ar, br), should be
set to estimate the a priori expected residual variance. We choose (ar, br) = (2, 0.1).

As for the DP priors, we choose α ∼ G(1, 1), a setting that produces a prior expected
number of clusters of about 7.5 for p = 1000 covariates. We briefly discuss sensitivity to the
choice of these hyperparameter settings in the simulation results.
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Figure 1: Effect of covariate clustering employing prior model (3.5): Univariate regression model (n =
130, p = 1000). Box plots of posterior samples for the ρk’s; (a) shows results without covariate clustering;
(b) shows results with covariate clustering.

5.2. Clustering versus No Clustering

We first consider the univariate regression model (2.3) and compare performance of covariate
clustering under (3.5) with the original GP construction (3.1) of Savitsky et al. [1]. With
the latter approach, we employ their MCMC-scheme 2 algorithm to accomplish posterior
inference. Results we report were obtained by using a response kernel that includes both
linear and non-linear associations and where subgroups of covariates share the same
functional form, to induce clustering,

y = x1 + x2 + x3 + sin(9x4) + sin(9x5) + 1.3x6 + 1.3x7 + ε, (5.1)

with ε ∼ N(0, σ2), σ = .05, and with covariates simulated from a U(0, 1). We use
p = 1000 covariates, with the response kernel constructed from the first 7. We do 10,000
MCMC iterations, discarding half as burn-in. Results are presented in Figure 1; plots (a),
(b) present box plots for posterior samples of the ρk’s without clustering and under the
clustering model (3.5), respectively. Only the first 20 covariates are displayed, to help
visualization. One readily notes both the reduced spread between covariates sharing the
same functional form and within covariate sampled values (of ρk) for all covariates under
application of our clustering model. Such reduction in within and between spreads of
the posterior sampling affects, in turn, prediction performances. In particular, we assessed
prediction accuracy by looking at the mean-squared prediction error (MSPE) normalized
by the variance of the randomly selected test set, that we term “normalized MSPE”. The
normalized MSPE declines from 0.12 to 0.02 under application of our clustering model. We
further applied the least-squares posterior clustering algorithm of Dahl [22] that chooses
among the sampled partitions, post-burn-in, those that are closest to the empirical pairwise
clustering probabilities obtained from averaging over posterior samples. Our model returned
the correct 3 clusters.
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5.3. Clustering All versus Selected Covariates

Next we compare performances for the two prior models (3.5) and (3.7), clustering all
covariates and selected covariates only, respectively. We conduct this comparison under the
Cox survival model (2.4). The latent response kernel is constructed as

y = 3.5x1 + 3.5x2 + 3.5x3 − 1.5 sin(5x4) − 1.5 sin(9x5) − 2.5x6 − 2.5x7 + ε, (5.2)

with ε ∼ N(0, σ2), σ = .05, and with covariates simulated from a U(0, 1). We generate
observed t ∼ Exp(1)/(λ exp(y)), where we employ λ = 1. We subsequently randomly censor
5% of our generated survival times. Figure 2 presents the results for clustering all covariates
(plots (a), (c)) and only selected covariates (plots (b), (d)). Again, we see the expected
clustering behavior among selected covariates in both models, with a slightly less sharp
cluster separation in the latter case, indicating a reduction in borrowing of strength among
coclustered covariates. We further experimented with the prior expected number of clusters
by employing α ∼ G(a, 1), with a = 3 − −5, and found a further slight reduction of within
covariate sampling spread for selected covariates with increasing a, likely resulting from the
greater tendency to produce more clusters.

It is worth noting that, under model sparsity, the MCMC algorithm of the model
clustering selected covariates only is about 13-14 times faster than the one under the model
that clusters all covariates. More precisely, results presented here for the former model were
obtainedwith a computation of 4600 CPU-seconds as compared to 63000 CPU-seconds for the
latter model clustering all covariates. This is not surprising under model sparsity, since the
model formulation clustering all covariates assigns p covariates to clusters on every MCMC
iteration, while the construction clustering selected covariates assigns only pγ . Computation
times do of course increase for both clustering methods proportionally to the number of true
clusters. Reported CPU run times were based on utilization of Matlab with a 2.4GHz Quad
Core (Q6600) PC with 4GB of RAM running 64-bit Windows XP.

6. Benchmark Data Application

We analyze the Boston Housing data of Breiman and Friedman [23] using the covariate
clusteringmodel (3.5) that includes all covariates. This data set relates p = 13 predictors to the
median value of owner-occupied homes in n = 506 census tracks in the Boston metropolitan
area; see Breiman and Friedman [23] for a detailed description of the predictors. We held
out a randomly chosen validation set of 250 observations. Figure 3 compares box plots of
marginal posterior samples of ρk for all covariates in the following two models: (a) excluding
clustering (result reproduced from Savitsky et al. [1]), and (b) clustering all covariates using
(3.5). The normalized MSPEs were 0.1 and 0.09, respectively. Clustering covariates therefore
induces a relatively modest improvement in performances, though by itself this is not a clear
indicator to prefer this formulation.

We again observe some reduction in spread in the posterior samples for the clustered
covariates with respect to the formulation of Savitsky et al. [1] that does not cluster covariates,
though the effect is less pronounced thanwhat observed for our simulations.When clustering
covariates posterior samples for covariates which are frequently coclustered during the
MCMC tend to express greater location alignment and general distribution similarity for
sampled values. Based on alignment of posterior sampled values, a simple visual inspection
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Figure 2: Effect of covariate clustering: Survival model (n = 150, p = 1000). Box plots of posterior samples
for the ρk’s and marginal posterior probabilities for the γk’s; (a) and (c) show results with clustering of all
covariates; (b) and (d) show results with clustering of only selected covariates.

of plot (b) of Figure 3 suggests two clusters, φ∗
1 = {x6, x8, x13}, φ∗

2 = {x7, x10, x11}. Indeed, the
posterior configuration with the minimum score suggested by the least squares clustering
algorithm of Dahl [22], which provides an analytical approach for selecting clusters from
among the posterior partitions, contained φ1 and a separate cluster capturing {x7, x11}. The
set partition with the second lowest least squares deviation score defines this second cluster
as {x7, x10}. These results then generally support our subjective visual interpretation.

7. Discussion

In this paper, we have expanded the framework for Bayesian variable selection for
generalized Gaussian process (GP) models by employing spiked Dirichlet process (DP)
prior constructions over set partitions containing covariates. Our approach results in
a nonparametric treatment of the distribution of the covariance parameters of the GP
covariance matrix that in turn induces a clustering of the covariates. We have proposed
MCMC schemes for posterior inference that use modifications of the auxiliary Gibbs
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Figure 3: Boston Housing Data. Posterior samples of ρ. Plots (a), (b) present box plots of ρk . (a) without
clustering models; (b)with clustering on all covariates.

algorithm of Neal [13] to facilitate posterior sampling under model sparsity avoiding the
generation of duplicate trivial clusters. Our simulation results have shown a reduction in
posterior sampling variability and enhanced prediction performances. In addition, we have
evaluated two prior constructions: the first one employs a mixture of a point-mass and a
continuous distribution as the centering distribution for the DP prior, therefore, clustering all
covariates. The second one employs a mixture of a spike and a DP prior with a continuous
distribution as the centering distribution, which induces clustering of the selected covariates
only.While the former prior construction achieves a better clusters separation, clustering only
selected covariates is computationally more efficient.

In the future, it may be interesting to extend our nonparametric covariate clustering
models to hierarchical structures that impose some prior dependence among covariates.
Another possible extension of our modeling framework includes augmentation with the
simultaneous employment of a complementary clustering of observations in a Dirichlet
mixture construction incorporating the regression error term of the model. There is no
inherent conflict between these two schemes since all observations are in every covariate
cluster.
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