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Two Poincar6 type theorems for sufficiently regular fields are obtained. In particular, we
prove that their L2(f)-norm can be controlled by the LE(Vt)-norms of their curl and
divergence and the L2(0f0-norm of their tangential (or normal) component on the
boundary. Finally, some applications of these results are given in the context of the
electromagnetic theory.
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1 INTRODUCTION

In this paper the Poincar6 theorem for solenoidal fields is generalized to
the case of general boundary conditions. It is, in fact, well known that if
2 c R3 is a sufficiently regular domain, then the following theorem [3,8]
holds:

THEOREM 1.1 Let v E H1() such that V v 0 and v x nlo. 0, then it

satisfies thefollowing inequality:

Ilvllz-/l() _< Cl IIV x vll=(), (1)

where el is a positive constant.
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Generally, Poincar6 type theorems require the vanishing ofat least one
component ofthe field on the boundary. In fact, besides Theorem 1.1, it
exists an analogous version for solenoidal fields with a null normal
component on the boundary [3,8]:

THEOREM 1.2 Let v E Hl(Q) such that V v 0 and v. nlo.-- 0, then it

satisfies thefollowing inequality:

IIvlIHI(a) < c211v vll =(a/, (2)

where c2 is a positive constant.

The previous two theorems are strictly related to questions arising in
mathematical physics. For example, ifwe study the behavior of a linear
electromagnetic conductor, occupying a (regular) domain f c R3 with a
boundary realized by a perfect conductor (that is on the boundary the
tangential component of the electric field and the normal component of
the magnetic field vanish), they are very important tools in order to prove
existence, uniqueness and stability theorems.

In these last years, many works [6,9] in the context of the
electromagnetic theory have been dedicated to the case of domains
whose boundaries are realized by "good" but not perfect conductors.
This physical situation can be well described by linking the tangential
component of the magnetic field to the same component of the electric
field. Since the tangential component of the electric (or magnetic) field
does not vanish on the boundary and nothing is known about the normal
components, Theorem 1.1 or 1.2 cannot be more used.
As said before, the aim of this paper is to obtain an extension of

Theorems 1.1 and 1.2, applicable to sufficiently regular fields with a non-
vanishing tangential (and normal) component on the boundary. More
precisely, by making use of the orthogonal Hodge decompositions for
the space L2(Q), we will prove that the L2(Q)-norm of a field can be
controlled by the LE(f)-norms of its curl and divergence and by the
L2(0f)-norm ofits tangential (or normal) component on the boundary.

These generalizations are the subjects, respectively, of Section 2 and
Section 3. Finally, in Section 4, some applications ofthe previous results
to problems arising in the electromagnetic theory are presented. More
precisely, we shall study the quasi-static evolution ofa dielectricwhen the
boundary of the domain is dissipative and the time-harmonic evolution
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of a linear conductor with a conservative boundary. In both cases, we
obtain an existence and uniqueness theorem as a consequence ofthe new
theorems.

2 FIRST THEOREM

From now on with a "sufficiently regular" domain f, we intend a
bounded domain ofR3 which satisfies the following conditions:

(1) f is simply connected, i.e. such that every continuous closed curve
(entirely contained in 9t) can be deformed continuously until it has
shrunk to a point;

(2) its complementar f’ R \ is connected;
(3) it admits a bounded C2-boundary cOf and f is situated, locally, on

one side of 0f.

In order to obtain the above mentioned generalization of Theorems
1.1 and 1.2, we introduce the functional spaces

and recall the following [5]:

LEMMA 2.1 Let f be a sufficiently regular domain. The space L2(f)
admits thefollowing orthogonal decomposition."

L2() curl(Hl() f’179no(ft)) @ grad(Hol(gt)).
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The theorem we are looking for can be expressed as follows:

THEOREM 2.1 Let f be a "sufficiently regular" domain and u E 7(f).
Then it exists a positive constant k such that

Proof Since u E (f), Lemma 2.1 guarantees that there exist a vector
w Hl(f) N gno(f) and b H(f), such that

u V x w + V0. (4)

From Green’s formulas, it follows immediately that

lu(x)lEdx L[X7 w(x) + XT(x)]. u(x)dx

f[V x u(x). w(x) O(x)V. u(x)] dx

+ foa [w(cr) x u(cr)+ b(cr)u(cr)]. n(cr)de.

Let us put

Ifl f[V x u(x). w(x) b(x)V. u(x)] dx

and

loft f0f[w(r) x u(cr) + b(cr)u(cr)]- n(r)dcr.

An application ofthe Schwarz inequality, due to the fact that u (f)
and therefore V x u and V. u belong to L2(f), yields to

If

_
[ffl lw(x)12 dxJ

l/2 [f lv ll(X)12 dx] l/2

+ [ffl I(x)12dxl 1/2 [ffl IV ll(X)12dx] 1/2
(6)
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Now, since w E H (2) fq Z)n0, from Theorem 1.2 we have

(7)

while b E H01 (f) and the classical Poincar6 inequality guarantees that

(8)

So, we can rewrite (6) as follows:

Turning now our attention to the boundary integral Ioa appearing in
(5), we first observe that the occurence of the unit outward normal n
makes w and u contribute only through their tangential parts w. and u
and then recall that b H(f). Hence we can write

Iaa fail w.,.(cr) x U.r(Cr). n(cr)do’.

Besides, w is in HI(); therefore its tangential component to the
boundary 0f belongs to H1/2(0)) and satisfies the "trace inequality"
[1,4]:

(10)

A further application of the Schwarz inequality, together with (10),
yields to the following estimate:

Ia S c411wll.,()llu x (11)

while relation (7) allows us to write

Ioa cllV >< wllL(a)llu >< (12)



288 R. NIBBI

Finally, we are able to conclude our proof; in fact, ifwe put (9) and (12)
in (5), then we have

r.=a) < c611V wll,=<a) Ilv ullt=<a) / Ilu x

2 0 2 nll2(0fl (fl))
(13)

that is our thesis.

Two direct consequences of the previous result are the following:

PoposIzIOy 2.1 Let be a sufficiently regular domain and u o().
Then we have

with h apositive constant.

PROPOSITION 2.2 Let be a sufficiently regular domain and u H().
Then we have

with h: a positive constant.

Proof Inequality (15) follows from the fact that the hypothesis of
regularity on the domain allows us to identify the Sobolev spaceH()
with the space

(u v(fl) (); u x n0.

and that it exists a positive constant such that

Ilull,<)
(6)

for any u H() (see [5], Cot. 1, p. 212).
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Now, if the vector u belongs to H (), by Theorem 2.1 its LZ(f)-norm
can be controlled by the LE(f)-norms of its curl and divergence and by
the LE(0f)-norm of its tangential component on the boundary, so that
the inequality (16) assumes the desired form (15).

3 SECOND THEOREM

In this section we are interested in finding an analogous ofTheorem 2.1
which involves the normal component on the boundary. The first step
consists in considering anotherHodge decomposition ofthe space L2(f):
LEMMA 3.1 Let f be a "sufficiently regular" domain. The space L2(f)
admits thefollowing orthogonal decomposition:

L2(f) curl(H (f) N Dt0(f)) @ grad(H (f)).

Ifwe choose u E K(f), then from the above decomposition there exist
p E Hl(f), unique to within an additive constant, and w HI(f)N
Dt0(f), such that

u=Vxw+Vp.

Moreover, p Hl(f) is a solution of the problem

Ap= V-U,
Vp" nl0 u. nl0 (17)

and this implies [10,12] the existence of a positive constant fl such that

(18)

On the other hand, V x w ?(f) Dn0(f) and it satisfies the identity:

V x (X7 xw)= X7 xu.

The boundarycondition is aconsequence ofthe fact [8] that the curl operatorestablishes
a one-to-one correspondence between the spaces Hl(f) N D(f) and 79nO(f) and therefore
w E Dto(f) implies that V x w. nl 0.
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It follows that V x w fulfills the hypotheses ofTheorem 1.2 and thanks
to (2) the next inequality holds:

(19)

As a direct consequence of the inequalities (18) and (19), we are now
able to state the theorem:

THEOREM 3.1 Let f be a "sufficiently regular" domain, then, for any
vector u E 1C(ft) it exists a positive constant 9/such that

Ilull:<a) _< (llV. ull,.<a)+ IIV x ull,.<a)+ Ilu. nll:<o,)). (20)

We can also deduce from Theorem 3.1 the following two corollaries.

PROPOSITION 3.1 Let be a sufficiently regular domain and u 1E(f).
Then we have

Ilull,(.) _< h3 ([[V ullL() / Ilu. nllL(o)) (21)

with h3 a positive constant.

PROPOSITION 3.2
inequality

Let f2 be a sufficiently regular domain. Then the

(22)

holdsfor any u H (2), where h4 is a positive constant.

Proof The proof is very similar to the one of Proposition 2.2. In this
case we identify (see [5], Cor. 1, p. 212) the space Hl(f) with the space

{u e (a) n/z(f); u. nloa e H/E(of)}

Moreover, it exists a positive constant a2 such that

(llullL=<a) + llV x ullL(a + llV" ullL,<a)+ IIu" nllHl/a(Oa))2

(23)

for any u HI().
Now, ifwe take into account Theorem 3.1, we get the thesis.
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4 APPLICATIONS

As already observed in the introduction, Poincar6 type theorems are
strictly related to the theory of electromagnetism. It seems therefore
natural to apply our new results to some problems arising in this context.

Let us consider a "sufficiently regular" domain f; the evolution ofthe
electromagnetic field in f2 x (0, T) is governed by the well-known
Maxwell equations:

0---O(x, t) V x H(x, t) -J(x, t) V. O(x, t) p(x, t), (24)

0
0-S(x’ t) + v (x, t) l(x, t) v. (x, t) 0. (25)

Ifwe ask the material to be linear, isotropic and homogeneous, then the
electric and magnetic fields E, H are linked to the electric and magnetic
inductions D, B by the constitutive equations:

O(x, t) ,(x, t), U(x, t) un(x, t), (26)

where e, # are positive constants, while we assume the charge density p
equal to zero and the current density J as the sum ofan unknown part Jc
and an impressed one Jr. The vector Gf is usually set equal to zero,
which means that magnetic currents do not occur in nature; however,
we let for a non zero Gf, because it might represent a forced electric
displacement current.

In this case the Maxwell equations assume the following form:

0
E(x, t) V x H(x, t) + Jc(x, t) -Jf(x, t) V. E(x, t) 0,

(27)

0H(x,t)+VxE(x t)=Gf(x,t) V.H(x,t)=0 (28)

4.1 A Quasi-Static Problem

We are interested in the quasi-static approximation of the system (27)
and (28) on f x (-o, +o) when the material is a dielectric, i.e. when
Jc 0; therefore, since E and H are slowly-varying, we can omit their
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time-derivatives. The problem we obtain in this way consists in finding a
pair (E, H) of solenoidal fields such that

v (x, t) Ax, t)
v x H(x, t) Jf(x, t), (29)

where the density currents Jf, Gf belong to L2(-, +o;D(f)).
Furthermore we assume the boundary of the domain f dissipative, so
that the boundary condition has the form [7]:

E(x, t) AH(x, t) x n(x) on cOf, (30)

where, as usual, the subscript - denotes the tangential component to cgf

and A is a positive constant.

DEFINITION 4.1 A pair (E,H) E (L2(-cx3, +cx3; 79()))2 is a weak
solution for problem (29) and (30) with sources Jr, Gf L2(-c, +
cx; 79(f)) if the identity

/

(31)
{J/(x, t). e(x, t) + G/(x, t). h(x, t)) dx dt

holds for any pair (e, h) H(Q)= {(e, h) (L2(-o, c; 7-/(f)))2; e
Ah x n on 0}.

DEFINITION 4.2 A pair (E,H) H(Q) is a strong solution for problem
(29) and (30) with sources Jr, Gf LE(-x, +cx3; D())) ifit satisfies (29)
almost everywhere.

It is easy to showthat aweak solution for problem (29) and (30) is also a
strong one. In fact, let (E,H)E(L2(-o, +cxz; 79(f)))2 be a weak
solution and take the pairs (el, hi) with el L2(-o, cx3; Hol (f)), hi =0
and (e2, h2) with e2 0, hE LE(-cx3, 3;H(2)). Then (el, hi) belongs to

H(Q) for 1,2 and applying (31) we have

H(x, t). V’ x el (x, t) dx dt Jf(x, t) .el (x, t) dx dt,

E(x, t). 7 x h2 (x, t) dx dt Gf(x, t). h2 (x, t) dx dt,
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that is (E,H) belongs to (L2(-cxz, O; ],(-)))2 and satisfies (29) almost
everywhere on Ft. Moreover we observe that, thanks to (31) and (29),
we have

0 {H(x, t). V e(x, t)+ r(x, t). V h(x, t)

h(x, t). V x E(x, t) e(x, t). V x H(x, t)) dx dt

{h(r, t) E(cr, t) + e(cr, t) x H(cr, t)). n(cr) dcr dt

for any pair (e, h) E H(Q). By recalling that e. ,h x n in L2(-,;
L2(09t)), we can conclude that the tangential components of the electric
and magnetic fields belong to L2(-, c; L2(09t)) and satisfy (30).

Besides, the following energy inequality holds:

THEOREM 4.1
then it exists a positive constant Ksuch that

f+{liE(t)IIL2() -+- IIH(t)IIL=< } dt

2< K (llJy(t)ll2L=( / IIGf(t)ll=(a/)dt.

Let (E, H) be a weak solutionfor problem (29) and (30),

(32)

Proof The Poynting theorem, applied to problem (29) and (30), leads
to the identity:

f [ t). E(x,- t). H(x, t)) dxdt{:(x, Gs(x,

-A IH(cr, t) n(cr)l2 dcrdt. (33)

Proposition 2.1 can be applied to both electric and magnetic fields
solutions ofproblem (29) and (30); in this way we obtain the inequality:

(34)
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On the other hand, (33) yields to

,X Ila(t) nil(0) dt

{f(x, t). It(x, t) #(x, t). E(x, t)} dx at

_< {llJ(t)ll=(>l[E(t)ll=(a> + IlGf(t)ll=(>lln(t)ll=(l) at. (35)

The use of (35) in (34) leads to the energy inequality (32), where the
constant K depends on the constant of the Poincar6 type theorem
Proposition 2.1 and on A.

An immediate consequence of the foregoing result is the following
uniqueness theorem:

THEOREM 4.2 Problem (29) and (30) has at most one weak solution
corresponding to data Jf, Gf L2(-o, -+-x3; 79()).

Proof Let us consider two weak solutions of problem (29) and (30),
then their difference satisfies the same problem with vanishing data and
must be zero just because of (32).

Furthermore, Theorem 4.1 plays a very important role also in the
proof of the existence theorem:

THEOREM 4.3 Problem (29) and(30) with sources Jr, Gf L( -cx, /x;
9(f)) has a (unique) weak solution.

Proof Let us introduce the operator A, defined on H(Q) by A(E, H)=
(V x H, V E) and rewrite problem (29) as A(E, H)= (Jr, Gf).

First of all we want to prove that R(A), the range of A, is dense in
I/V--- (L2(-cxz, Cxa; L2()))2. To this end, let us consider an element (, 171)
orthogonal to R(A), then it satisfies the identity

0 {Jf(x, t). l(x, t) + Gf(x, t). ISl(x, t)} dx dt

(V x H(x, t). (x, t) + V x E(x, t). 171(x, t)) dx dt

for any (E, H) E H(Q). This relation assures that (E, H) is aweak solution
for problem (29) and (30) with vanishing data; therefore, as a con-
sequence of Theorem 4.2, it must be 171 0.
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Take now (Jf, Gf) E W. Then, thanks to the property already shown, it
exists a sequence (En, Hn) E n(o) whose source field (Jn, Gn) converges to

(Jf, Gf) in W. Besides, from the energy inequality (32) we have

f_"(liE=(., t) Em(., t)ll 2
o

L2(a)-+-IlHn(t) am(., t)l 2Iz2(a) dt

_< g
c

IlJn(., t) Jm(., t)ll=<,) / IIG=(., t) Gm(., t)II 2=2(=) dt.

(36)

It follows that (E,, H,) is a Cauchy sequence in (L2(-,; L2(f)))2,
which is complete. Hence, the limit field (E, H) exists and is a weak
solution (then a strong one) having the prescribed source (Jf, Gf), since
(E, H) is a weak solution with data (J,,, G).

Remark 4.1 It is possible [9] to extend the previous result, by means of
the same technique, to more general situations such as problem (29) with
a boundary condition with memory of the type

E,(t) AoH(t) x n + A(s)H(t- s) nds, (37)

when the thermodynamic restriction

,0 + (s) cos@s) ds > 0

is satisfied.

4.2 A Time-Harmonic Problem

Let us now suppose the domain f occupied by a linear conductor, i.e.

Jc ere with cr > 0 and put Gf= 0. The time-harmonic evolution of the
electromagnetic field is described by vectors of the type A(x, t)=
N{eitA(x)}, where w0 is the frequency and A a complex vector
independent on t. In this case the Maxwell equations (27) and (28) can be
rewritten as

V x H (iw + cr)E ,If,
X7 x E + iw#H 0, (38)
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while we assume the boundary condition of the type

n x E iTH on 0f, (39)

with 7 > 0. Condition (39) represents a conservative boundary, in the
sense that it satisfies the relation

{E* (o’) H(o) n(cr)) 0, o E 0f

and a practical example where it applies, is the junction ofa cavity and a
tuning stub [2].

DEFINITION 4.3 A pair (E, H) E 1-’(f) ((e, h) 7-t(f) x 7-t(f); n x
e= iTh- on Of} is a solution for problem (38) and (39) with source

Jf 79(f) /f(38) holds almost everywhere.

We can now establish the following:

THEOREM 4.4 If (E, H) is a solution to problem (38) and (39), then the
following inequality holds:

2 2IIEII2=<) + IIHIIL=(/ < CllfllL2(f),
where C is a positive constant.

(40)

Proof Let the pair (E, H) be a solution to problem (38) and (39). Then,
since both electric and magnetic fields are solenoidal, Proposition 2.1
assures that

IIEII=/) k(llV x EII=/) + lie x

IIHII,=<./</(llV HII=<.) / IIH

But if we recall (39), it results that the L2(0f)-norm of the tangential
component ofthe electric field can be controlled by the LE(0f)-norm of
H x n. Therefore

(41)
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and in order to obtain the inequality (40), we must estimate the right-
hand side of (41). Let us now put

a(w) (iwe + a), b(w) iw#,

and consider the bilinear form defined by

I(E, H)
a* (w)

V H(x). J.(x) dx. (42)

Ifwe substitute (38) in (42), we get

I(E, H) J{H(x) V E* (x) E* (x). V H(x)} dx

+ IV E(x) + a*(w)IV H(x) dx; (43)

while, thanks to (39), we have

E(cr). H(cr) x n(cr)drr -iv fo IH(rr) x n(r)[2 dcr. (44)

Since

o
E(rr). H(cr) x n(r)dcr

fn{H(x) V x E* (x) E* (x). V x H(x)} dx, (45)

if we put (44) and (45) in (43), we obtain

L{ iVxE(x)12 12 }b(w) + a*(w) IV x H(x) dx

i, foa Itt(r) x (o’)1

a*(w)
7 x H(x)- J(x)dx. (46)
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By considering the real part of (46), we get

(Zcr2 +crw2 e2 IV x H(x)l2 dx N
a*(w)

(47)

An application of the Schwarz inequality to the right-hand side of
(47), leads to

(48)

It should be underlined that the inequality (48) is strictly related to the
dissipative character of the system, represented by the term rE in (38).
On the other hand, if we take account of the imaginary part of (46),

we find that

" IH(r) nl dr /-- IV E(x) dx

+ a*(w) J(x). V x H(x)dx (49)

and a further application of the Schwarz inequality together with (48)
yield to

L2(a). (50)

From the last two inequalities we get the thesis.

Reasoning in the same way as done in the previous subsection for the
quasi-static problem, it is possible to use the inequality (40) to prove an
existence and uniqueness theorem for problem (38) and (39).
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