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In their classic book [1] Hardy et al. present the H61der inequality in a
general setting which can be rephrased as follows. Letf, g and Hbe three
functions satisfying the following assumption:

(A) f, g and H are suitably regular (for definiteness, continuous)
functions from [x0, ), from [Y0, ) and from [x0, )x [Y0, )
respectively to +, such that
(a) f(x)g(y) < H(x, y) for all x > x0, y >_ Yo,
(b) H is jointly concave in (x, y).

The following result is then an immediate consequence of concavity:

PROPOSITION Let f,g,H satisfy the assumption. (A). Then for any
probability space (S, m) and any measurablefunctions q and bfrorn S to
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[Xo, ) and to [Yo, ) respectively, thefollowing inequality holds:

/ < H(f dm(s) f dm(s) (1)

The H61der inequality is obtained by taking xo-Yo-O, fix)= xa,
g(y) yb with 0 < a, b < 1, and H=f(R) g, namely H(x, y) =f(x)g(y).
The concavity condition on H reduces to a + b < 1, and the H61der
inequality follows as the limiting case a + b= 1. In that case, both
members of(1) are homogeneous ofdegree in m, and the condition that
m has mass or has finite mass can be eliminated by a limiting procedure.

In order to generalize the H61der inequality, it would be interesting to
analyse the assumption (A) in a systematic way. Meanwhile, one may try
to look for useful examples, namely to look for functions f, g and H
satisfying (A) that are reasonably simple or at least easily computable.
When looking for such examples, inspiration may be gained from the
problem of convergence .of the integral fdxf(x)-1 for large x. If
fix) =f0(x)- x, the convergence condition is a > 1. In order to get
closer to the limiting case, one may consider successively fl(x)-
x(logx), f(x)- x(logx) (log logx), etc., still with the convergence
condition a > 1. Coming back to the assumption (A), the analogue of

f consists of functions behaving at infinity like

f(x) xa(log x)a, g(y) yb(log y)-/ (2)

in the limiting power case a + b 1. We assume furthermore a > 0 in
order to get interesting examples. If the function f(x)g(y) is to admit a
concave majorant, then the same must hold for f,g and for the
restriction to rays hA(x)=f(x)g(Ax) (A E It +), and we must therefore
assume a < and/3 _> a (actuallywe shall need/3 > a). The purpose ofthis
note is to exhibit a simple explicit function H such that the assumption
(A) holds with the previous choice offandg. The main result is as follows:

PROPOSITION 2
6 by

Let 0 _< a < 1, 0 < a </3- a + "7, and define o, 1 and

0 [2a(1 a)] -1 [/3(2a 1) +/3(1 + 4a(1 a)7-1)’/21 (3)
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61-- 2flO-1 -+-/3(1 a) -1 [2a(1 a)o] -1

{cfl+[16a2(1 a)2/37 4a(1-a)c/3(/3+7)-{-02/2] 1/2} (4)

which is well definedfor 4a(1 a)’y _>

for 4a(1 a)7 _< c(/3 + 7),

for 4a(1 a)7 _> c(/3 + 7). (6)

Let Xo andYo e6 and definef, g andH by

f(x) xa(log x), g(y) -yl-a(1og y)-, (7)

H(x, y) f(x)g(y) for x >_ 1, Yo <_ Y <_ x/c, (8)

H(x, y) oz /3-(/3 c)-c xa yl-a(log Ylx)c-/

forx > 1, y >_ Max(yo, x/). (9)

Then the assumption (A) is satisfied (and therefore Proposition applies).

Remark 1 Define

a2 fl[(1 a)-’ + 2(/3 + ,.)/)-1]. (10)

One can check directly on (3)-(6) but it follows more simply from the
proof of Proposition 2 given below that

(50=61 =(52

61 > (50 > (52

a0>a2

for 4a(1 a)7 > c(/3 + 7),
for 4a(1 a)7 c(/3 + 7),
for

for 4a(1 a)7 <

while 61 is not defined for 4a(1 a)7 < a/3. On the other hand, it follows
from (5) that 6 60 for a sufficiently small, for a sufficiently close to 1,
and for all a if-y _< a(/3 + 3’) or equivalently/32 >_ 7(7 + 1).
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Remark 2 Clearly Proposition 2 remains true if one replaces by a
larger quantity in the definition ofy0. It follows from the ordering given
in Remark that

6 _< Max(6o, 2

and one can therefore replace 6 by Max(6o, 62) in the definition of Yo,
thereby avoiding the cumbersome 6. In the same spirit, let

s -/3[(1 a)-’ + 7-]. (11)

One can check that 6 0 (more precisely (3 60 for a 0 and 3 > (0 for
a > 0) and therefore obviously g3 _> Max(0, g2), so that one can afortiori
replace by the very simple 3 in the definition ofy0. The quantity 3 is
optimal for a 0, but it overestimates the singularity at 7 0 for a > 0.

Remark 3 The function H can be defined and shown to be concave
in a larger region than indicated in (8), (9). In (8), (9) we have restricted
it to the largest product region where it can be used to implement the
assumption (A).

Remark 4 With m a probability measure, the main issue in Proposition
lies in the behaviour off, g andHfor large values oftheir arguments. In

particular one could replacefand g in (7) by various equivalent forms at
infinity in order to ensure preferred behaviour of these functions for
small values of (x, y). It turns out however that the explicit forms (7) or
rescaled versions thereof as used in Proposition 2’ below are especially
suitable to make subsequent computations simple and lead to simple
formulas for H.
For the applications, it may be convenient to rescale the variable y in

order to get a fixed range for it and to reformulate Proposition 2 in the
following equivalent form:

PROPOSITION 2’ Let 0 < a < 1, 0 < a </3 a + 7; define by (3)-(6);
let Xo Yo 1; and definef, g andH by

f(x) xa(log x), g(y) yl-a(6 + log y)-/, (7’)

H(x, y) f(x)g(y) for x > 1, <_ y < e- x/, (8’)
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H(x, y) oa fl-fl(fl o)[3- xa yl-a(6 + log y/x)-for x > 1, y > Max(l, e- x/). (9’)

Then the assumption (A) is satisfied (and therefore Proposition applies).

Proof of Proposition 2 Clearly one should try to define H=f(R) g
insofar as this is a concave function of (x, y), and only large values of
(x, y) matter since smaller values can be eliminated by suitably choosing
x0 and Y0. It will turn out (see below) thatf(R) g is concave for (x, y) not
too small and y <_ Cx/ for some constant C. Therefore the product
form H=f(R) g is suitable except in the region y >_ Cx/ where it has
to be modified. In that region, we modifyf(R) g by replacing its graph by
the concave envelope of that graph and of the origin of coordinates,
namely by the cone with apex at the origin and tangent to that graph.
For that purpose we consider for A > the restriction to rays

hA(x) --f(x)g(Ax) ,l-a x(log x)(log Ax)-3 (12)

which is well defined for x > 1.
Now

h/h x-l(1 + a/log x -/3/log Ax). (13)

The tangent from the origin to the graph of hA touches the latter for

h’/h x-1 namely a log Ax--3log x, or equivalently at the intersec-
tion of the ray y-Ax with the curve S (hereafter called separatrix)
defined by y x/ ( _> x >_ 1). For y >_ Max(x, x/) we replace f(R) g by
the conic function

(x, y) Of(x/O)g(y/O) xa yl-a(log xlO)(log y/O)- (14)

where 0 < is defined by the condition that (x/O, y/O) E S, namely

log y/O =/3 log x/O (15)

so that (14) reduces to

/-)(X, y) a /-/3(/ O)-a Xa yl-a(log y/x)a-3 (16)
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by an elementary computation. That function is well defined for
0 _< x < y. Furthermore it follows from (13) that (x, y) >_ f(x)g(y) for
< x <_ x/ <_ y. In fact let/A (x) -/(r(x, Ax). Then by (13)

d log/A-h- <h d
loghA

dx hA x- hA dx

for <_ x <_ x/ <_ Ax while/A (x) hA (x) for x/ Ax, thereby yielding
the required inequality by integration.
We now define the function Ho(x, y), in the domain (x > 1, y > 1)

wheref(x) g(y) is naturally defined, by

/-/0(x, y) y)

Ho(x, y) f(x)g(y)

for <_ x < x// <_ y,

for < y <_ x/.
(17)

We have seen that H0(x, y) >_ f(x)g(y) for x >_ 1, y > 1, and it remains
only to be shown that H0 is concave in [1, )x [Y0, ) so that its
restriction H to that domain fulfils the condition (b) of the assump-
tion (A).
We recall a few elementary properties of concave functions. A real

valued function F defined in a convex subset X of Rn is concave by
definition ifthe hypograph _(F) {(x, y) X x I: y <_ F(x)} is a convex
subset ofX . IfXis openwith closure X, ifF C(X) is concave in Xand
ifFextends by continuity to a function F C(X), then Fis concave in X.
IfXis open and FE CI(x), a necessary and sufficient condition for Fto be
concave is that the graph (F) {(x, y) X I: y- F(x)} lies below its
tangent plane locally at every point x of(a dense subset of) X. IfXis open
andFE C2(X) it is sufficent for Fto be concave that the Hessian matrix of
Fbe non-positive (as a matrix) at every point of (a dense subset of) X.
The function Ho defined above lies in C(Q)f-qCI(Q)f"l(2(Q\S),

where Q =(1, )x (y0, c). From the previous properties, it follows
that for H0 to be concave in Q, it suffices that the Hessian matrix of H0
be non-positive in Q\S.
We first consider the conic form H. Omitting the prefactor, we take

ffI(x, y) Xa yl-a(1og y/x) -7
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so that

x -(Y/X)l-a{a(lg Y/X) -’r + 7(log y/x)-(’+) } k(y/x),

’ (x/y)a{ (1 -a)(log y/x) -’ 7(log y/x) -(’+) } =_ g(y/x),

-(y/x k/ (y/x),x (1 Ix) ’ (y/x),

" k’ g’I4x /x) (y/x) -(y/x (y/x)

An elementary computation shows that

g’(A) -Ae’(A)

A-a{a(1- a)(log A)-7 + 7(1- 2a)(log A) -(’+1)

7(7 + 1)(log /)-(7+2) .
)

One checks that the Hessian of vanishes, and the concavity condition
reduces to k’(A) >_ O, namely

a(1 a)(log A)2 + 7(1 2a)log A ")’(7 + 1) >_ 0

or equivalently A _> Ao=exp(76o//3) with 60 defined by (3). Therefore
the function H is concave for 0 <_ A0x <_y, and by the appropriate
restriction, the function H0 is concave for x >_ 1, y >_ Max(AoX, X/’).
Furthermore, the ray y A0x intersects the separatrix S at the point
(0,)0) with 0 exp(a6o/fl), 0 exp(60) so that by further restric-
tion, the function H is concave for x >_ 1, y > Max(Y0, x//).
We next consider the product form f(R)g. The concavity of that

function in some domain is equivalent to the non-positivity of the
Hessian matrix at each point of that domain. Withfand g non-negative
functions, the latter at (x,y) reduces to the conditions f"(x)<_O,
g"(y) _< O, and

f(x)f"(x) g(y) g"(y) (ft(x) g,(y))2 >_ 0. (18)
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Using the redundant parameter b 1- a for convenience and the
variables u- log x, v- log y, we compute

f’(x) xa-1 ua-1 (au + c),

f"(x) xa-2 u-2 (-abu2 + oe(a b)u + oz(a 1)),
g,(y) yb-1 v-(+l)(bv fl),

g,,(y) yb-2 v-(/+2)(_abv:Z +/3(a b)v + fl(fl + 1)),

so that the concavity conditions reduce to

abu2 ce(a b)u a(a 1) _> O, (19)

abv2 -/3(a b)v ( + 1) _> O, (20)

F(u, v) [abu2 o(a b)u o(o 1)]
x [abv2 fl(a b)v ( + 1)] (au + o)2(bl fl)2 O.

(21)

The conditions (19), (20) are satisfied for u and v large and therefore by
continuity remain satisfied as long as one does not cross the curve

F(u, v) 0. It is therefore sufficient to consider the condition (21) starting
from large u and v. By an elementary computation one obtains

F(u, v) ab uv(/3u av) a/3( + b)u2 ba(a a)v2

+ afluv /3(/3 + b a)u + oe/3(c + b a)v
a/3(1 +/3- a). (22)

It is convenient to introduce the variable w-/3u-cv and the new
function G(w, v)-= F(u, v). The separatrix is now the line w- 0 and an
elementary computation yields

G(w, v) ab vw2 + ab oev:w a(b + fl)w2 -1- ab c7v

((a b)oz/3 + 2aboz)vw cfl(b a +/3)w

(a b)c/3 7v c/32(1 + 7) (23)
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(with 7 =/3 a). The equation G(w, v) 0 defines a cubic curve I’ in the
(w, v) plane, with asymptotes w -7, v +/3/b and cv + w(=__ flu)--
fl( oda), except in the special case a 0 where that curve reduces to the
hyperbola with equation

(w + 7)(v fl) a 0. (24)

In that case G(w,v) is non-negative in [0, oc)[v0, oc) where

v0 +/3 + a/7-/3(1 + 1/7), which is the common value of 0 and S
given by (3), (11) for a 0. We next consider the general case and we look
for the largest region (w, v) E [0, o) [v0, oe) where G(w, v) >_ O. For that
purpose it is convenient to change variables and use the first two

asymptotes of I" as coordinate axes. Accordingly we define w’ w + 7,

v= v- 1-/3/b, so that the separatrix is now the line w= 7, and we
proceed in two steps by defining

G(w,v) G1 (w, v’) G2(w’, v’). (25)

We first compute

G1 (w, v’) ab v’w2 + (ab av’2 + a/3v’ ab a)w

+ ab a7vt2 -[- ol,/7v -[-- 2ab aTv +aba7 a23. (26)

It follows from (26) that G(w, v) is quadratic convex in w for fixed
v’> 0 and strictly increasing in v’ for v’>_ 0 and fixed w _> O. We next

compute

G2(w’, v’) ab{(v’w’ a)(w’ + av’ 27) +/32v’} + a/3(v’w’ a)
(27)

which is ofcourse also quadratic convex in w for fixed v > 0 and strictly
increasing in v for v >_ 0 and fixed w > 7. We next rewrite G2 as follows

G2(w’, v’) abv’{ (w’ a/v’)2 + 2(az #)(w’ a/v’) +/32 } (28)

where

# 7 a3/2ab, (29)

z- z(v’) (v’2 + 1)/2v’ > 1. (3o)
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For fixed v’ > 0, the function G2(w’, v’) reaches a minimum M(v’) for

w’- ’()w cz + # c(1 v’Z)/2v nt- #, (31)

and

abv’ (/32- (oez- #)2). (32)

Clearly w (v’) decreases strictly from + oo to -oc when v’ increases
from 0 to oo, and there exists a unique ’> 0 such that w (’)= 7,

which is the positive root of the equation

,b(va 1) +- 0. (33)

On the other hand M(v’) is strictly increasing in v’ insofar as

w (v’) >_ % namely for 0 < v’ _< ’, since Gz(w’, v’) is strictly increasing
in v’ for fixed w’ _> 7.
We look for the largest product region (w, v) E [0, oo) x [v0, oo) where

G(w, v)>_0 or equivalently for the largest product region (w’, v’)E
[7, oo) x IvY, oo) where Gz(w’, v’)> O. Clearly the condition v > tS is
necessary, where tS is the larger root of the equation

G2(7,v’) oef{abv’2 + (/3 + 2ab)v’ + ab oe/3/7}
--0. (34)

That condition reduces to v0 > 60, where 60 is defined by (3). Two cases
can then occur.

Case 1 One has 6 >_ ’ or equivalently G2(’y, ’) _< 0 or equivalently

w (6) _< 7. One checks that this is the case provided 4ab7 <_(+ 7).
In that case, the condition v >_ 6 is also sufficient.

Case 2 One has 6 < ’ or equivalently G2(’)’, ’) > 0. This is the case

provided 4ab,,/> c(/3 + 7). In that case the condition v >_ Max(6, 0) is

necessary but not sufficient, while the condition v >_ ’ is obviously
sufficient but not necessary. The necessary and sufficient condition is
obtained as follows. Since M(v’) increases from -oo to G2("/, ’) _> 0
when v’ increases from 0 to ’, there is a unique 6 with 0 < 5] < ’ such
that M(6) 0. Since z >_ and # <_ 7 imply cz- # > c -7 > -/3, the
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equation M(vI) -0 reduces to

so that by (31), v’_< 6 c/(/3+7)<1 and ] is the value of v’
determined by (35) and

v’ z- v/z 1,

namely

I1- c-1 {/3 +# [(/3 + #)2 OZ211/2}. (36)

Since G2(w, v) is increasing in v for fixed w> % the necessary and
sufficient condition for the positivity of G2 in the present case becomes

v > , which reduces to v0 > 1 with 1 defined by (4) by an elementary
computation, thereby completing the proof of Proposition 2. In
addition, when returning to the variable v, becomes 2 defined by
(10), and the previous discussion essentially yields the ordering given
in Remark 1. QED

Remark 5 The fact, mentioned in Remark 2, that 6o < (3 with 63 defined
by (11) follows easily from (27). In fact for v > 0, vw- c + e >_ c, we
obtain from (27)

Gz(w’,v’) > ab{e(o + e)/v’ + (o +/32)v’- 2e7} _> 0

since e(c + e)(ec +/32) e2")/2 _) 0. As a consequence we obtain

G2(w’, v’) >_ 0 for (w’, v’) E [3’, oc) x [c/3’, oe) or equivalently G(w, v) >_ 0
for [w, v) E [0, ) x [3, oc), so that 53 0 since G(% 0) 0 and G(3’, v) is
increasing in v in the relevant region.
We conclude this note by mentioning that the present work was

motivated by the problem of strict localization of L2 and related
estimates for the complex Ginzburg-Landau equation

Otu Au -t- (1 -+- iu)Au (1 + i#)u g0(lul)

where u is a complex function defined in space time R + , in the case
where the non-linearity go(P) behaves as (log p) for large p. The crux of
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the argument is an application ofPropositions and 2 in the special case
a=0,/3> c > 2 [2].
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