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In an answer to a question raised by chemist Mendeleev, A. Markov proved that if
p(z) =0az is a real polynomial of degree n, then

max Ip’(x)l _<n max [p(x)l.
-l<x<l -l<x<l

The above inequality which is known as Markov’s Inequality is best possible and becomes
equality for the Chebyshev polynomial T,,(x)= cos n cos-1 x.
Few years later, Serge Bernstein needed the analogue ofthis result for the unit disk in the

complex plane instead of the interval [-1, 1] and the following is known as Bernstein’s
Inequality.

Ifp(z) =0az is a polynomial of degree n then

max Ip’(z)[ <_ nmax [p(z)l.

This inequality is also best possible and is attained forp(z) Azn, A being a complex number.
The above two inequalities have been the starting point of a considerable literature in

Mathematics and in this article we discuss some of the research centered around these
inequalities.
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1. INTRODUCTION

Some years after the chemist Mendeleev invented the periodic table ofthe
elements he made a study ofthe specific gravity ofa solution as a function
ofthe percentage ofthe dissolved substance [81]. This function is ofsome
practical importance: for example it is used in testing beer and wine for
alcoholic content, and in testing the cooling system ofan automobile for
concentration of anti-freeze; but present-day physical chemists do not
seem to find it as interesting as Mendeleev did. Nevertheless Mendeleev’s
study led to mathematical problems of great interest, some ofwhich are
even today inspiring research in Mathematics.
An example of the kind of curve that Mendeleev obtained is in Fig.

(alcohol in water, percentage by weight). He noticed that the curves could
be closely approximated by successions ofquadratic arcs and he wanted
to know whether the corners where the arcs joined were really there, or
just caused by errors of measurement. In mathematical terms, this
amounts to considering a quadratic polynomial P(x) --px2 4- qx + r with
Ie(x)l _< for -1 < x < 1, and estimating how large can Ie’(x)l be on
-1 < x < (for details, how the Mendeleev’s problem in Chemistry
amounts to this mathematical problem in polynomials, see ([11]).
Surprisingly Mendeleev himself was able to solve this mathematical
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problem and proved that ]P/(x)] < 4; and this is the most that can be said,
since when P(x)= 2x2 we have Ie(x)l _< for -1 < x < and
IU(+l)[=4. By using this result Mendeleev was able to convince
himself that the corners in his curve were genuine; and he was presum-
ably right, since his measurements were quite accurate (they agree with
modern tables to three or more significant figures).

Mendeleev told his result to a Russian mathematician A.A. Markov,
who naturally investigated the corresponding problem in a more general
setup, that is, for polynomials of arbitrary degree n. He [77] proved the
following result which is known as Markov’s Theorem.

THEOREM 1.1 Ifp(x) -n=0 ax is a realpolynomial ofdegree n and
[p(x)l _< on [-1, 1] then

[p(x)[ <_ n2 for -l_<x_< 1. (1.1)

The inequality is best possible and is attained at only x 4-1 only when
p(x)-- +/-Tn(x), where T,(x) (the so-called Chebyshev polynomial of the

first kind) is cos(n cos-1 x) (which actually is a polynomial, since cos nO is
a polynomial in cos 0). Infact

Vn(X)

It was several years later around 1926 when a Russian mathematician
Serge Bernstein needed the analogue ofTheorem 1.1 for the unit disk in
the complex plane instead of the interval [-1,1]. He wanted to know if
p(z) is a polynomial ofdegree at most n (by a polynomial ofdegree at most
n we mean an expression ofthe form "---0 az, a being complex and z a
complex variable) with Ip(z)l < for Izl _< 1, then what is maxlp’(z)l for

Izl _< ? The answer to this is given by the following which is known as
Bernstein’s inequality [9].

THEOREM 1.2
then

Ifp(z) -]n=0 auz is a polynomial ofdegree at most n,

max [p’ (z)] < n max IP(z) l. (1.2)
Izl_<l Izl_<

The result is bestpossible and the equality holdsforp(z)- Az, A being a
complex number.
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The above Bernstein’s inequality has an analogue for trigonometric
polynomials which states that if t(O) -’--n aei is a trigonometric
polynomial (possibly with complex coefficients) ofdegree n, It(0)] _< for
0 _< 0 < 27r then for 0 < 0 < 27r,

It’(0)[ _< n. (1.3)

In (1.3) equality holds if and only if t(O)- eiVcos(n0- o0, where " and
c are arbitrary real numbers.
Note that a trigonometic polynomial t(O) j-]n=_n cueiuO (possibly

with complex coefficients) is said to be real if c ?_.
Inequality (1.3) is also known as Bernstein’s inequality although

Bernstein [9] proved (1.3) with 2n, in place ofn. His proofwas based on a
variational method. Inequality (1.3) in the present form first appeared in
print in a paper of Feket6 [38] who attributes the proof to Fejer [36].
Bernstein [10] attributes the proofto E. Landau (see [37,99]). Alternative
proofs of the inequality (1.3) have been supplied by F. Riesz [94],
M. Riesz [95], de la Vall6e Poussin [106], Rogosinski [96] and others,
and each of these methods has led to interesting extensions of the
inequality (1.3).

If p(z)- }-]=oaz is a polynomial of degree at most n, then
t(O)=p(ei) is a trigonometric polynomial of degree n with It(O)l <_ 1,
real 0, hence applying (1.3) to t(O)-p(ei) one can get Theorem 1.2.

Bernstein needed the above inequalities in order to answer the
following question of best approximation raised by de la Vall6e Poussin
in the early part of this century; Is it possible to approximate every
polygonal line by polynomials of degree n with an error of o(1 In) as n
becomes large? (The result that the approximation can be carried out
with an error of o(1 In) was proved by de la Vall6e Poussin himself).

This problem has played an important role in the development of the
theory of approximation and was answered in the negative by Bernstein

[9]. He in fact showed that the best approximation of the function Ixl in
the interval [-1, 1] by a polynomial of degree 2n > 0, lies between
(x/ 1)/4(2n 1) and 2/r(Zn + 1).

Inequalities of Markov and Bernstein type are fundamental for the
proof of many inverse theorems in polynomial approximation theory
(see [31,68,74,80,103]). For instance, Telyakovskii (see [82]) writes:
"Among those that are fundamental in approximation theory are the



MARKOV AND BERNSTEIN INEQUALITIES 353

extremal problems connected with the inequalities for the derivatives of
polynomials The use of inequalities of this kind is a fundamental
method in proofs of inverse problems of approximation theory.
Frequently further progress in inverse theorems has depended on first
obtaining a corresponding generalizaton or analogue of Markov’s and
Bernstein’s inequalities".

Several monographs and papers have been published in this area (see
[11,30,82,91,93,104]), and it is not possible to include all of them here.
The papers that we have referred to have many references on these topics.

This paper has seven sections, including Section 1, which is an
introduction. In Section 2, we discuss some of the generalizations and
refinements ofthe Bernstein and Markov inequalities while in Section 3,
Bernstein type inequalities for polynomials having no zeros in a circle
have been studied. Section 4 deals with the Bernstein type inequalities
for polynomials having all their zeros in a circle. Section 5 is devoted to
the Bernstein type inequalities for polynomials satisfyingp(z) z p(1/z)
and for the polynomials satisfying p(z) zn {p(1/) }. In Section 6, we
give some Bernstein type inequalities in the LP-norm which generalize
some of the inequalities discussed in Sections 1-5. Lastly, in Section 7,
we mention Bernstein type inequalities for wavelets, Bernstein-Markov
type inequalities in normed spaces and other related results.

2. SOME GENERALIZATIONS AND REFINEMENTS OF
MARKOV’S THEOREM AND BERNSTEIN’S INEQUALITY

We begin with the following theorem of A.A. Markov [77] which has
already been stated in Section (see Theorem 1.1).

THEO,EM 2.1 If p(x)= -n=OaX is a real polynomial of degree
at most n, Ip(x)l < for -1 < x <_ 1, thenfor -1 <_ x < 1,

Ip’(x)l _< n2. (2.1)

The result is best possible and the equality is attainedfor p(x)- +Tn(x),
where Tn(x) is the Chebyshev polynomial of thefirst kind.

Clearly we can also assert that if Ip(x)l _< M on [-1, t] then
IF(x)[ _< Mn2 on [-1, 1]. Having now found an upper bound for Ip’(x)l,
it would be natural to go on and ask for an upper bound for Ip((x)l
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where k _< n. Iterating Markov’s theorem yields that if ]p(x)l _< M then
Ip(k)(x)l <_ n2k, but this inequality is not sharp. V.A. Markov (the brother
of A.A. Markov) considered the problem of determining exact bounds
for [p(k)(x)l on [-1,1]. His results appeared in a Russian journal in
the year 1892; a German version of this remarkable paper was later
published in Mathematische Annalen. Among other things he [78] proved

THEOREM 2.2
--1 _<x_< 1,

Under the hypothesis of Theorem 2.1, we have for

nE(n2- 12) (n2- (k- 1)2)Ip(k) (x)I _< (2.2)1.3.5...(2k-1)

for every k 1,2,..., n.
The right hand side of this inequality is exactly equal to Tn(g)(1) where

Tn(x)- cos(n cos-1 x) is the Chebyshev polynomial of the first kind and
thus this inequality is sharp.

It was shown by Duffin and Schaeffer [29] that for (2.2), it is enough
to assume that Ip(x)l_< at the (n+ 1) points x=cos(kTr/n); k=
0, 1,..., n. In particular they [29] showed

THEOREM 2.3
such that

Ifp(x) is a polynomial of degree n with real coefficients

Ip(cos’Tr/x)l <_ (u O, 1,2,...,n) (2.3)

then also (2.2) holds.

Obviously it is interesting to ask if there are (n + 1) other points in the
interval (-1, 1) such that if Ip(x)l _< at these points then also (2.2) holds.
Duffin and Schaeffer [29] gave a negative answer to this question. In fact
they showed that if E is any closed subset of (-1, 1) which does not
contain all the points cos uTr/n; u--0, 1,2,...,n, then there is a
polynomial of degree n which is bounded by on E but for which (2.2)
does not hold.
The above refined Theorem 2.2 ofDuffin and Schaeffer [29] is known

as Duffin-Schaeffer’s inequality and has interesting applications in
Numerical Analysis (see [8]). Bojanov and Nikolov [13] proved Duffin-
Schaeffer type inequality for ultraspherical polynomials and Bojanov
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and Rahman [14] established some related extremal problems for
algebraic polynomials.
The paper of Markov [78] contains several interesting results besides

Theorem 2.2. Among many other things, it contains

THEOREM 2.4 Let p(x)= []n=0 az be as in Theorem 2.1. Then for
<_ u <_ n, we have

and

if (n u) is even,

if (n u) is odd,

max Ip/  (x)l T()(1).
-l<x<l

Erd6s [35] showed that it is possible to improve upon Theorem 2.1 if
the zeros ofp(x) lie in N \ (-1, 1). In this connection he [35] proved

THEOREM 2.5 Let p(x) be as in Theorem 2.1 and let all the zeros ofp be
real and lie in N\(- 1, 1). Then

Ip’(x) _< 1- for -l<x<l.

The above inequality becomes equality only at 4-1 for

nn
p(x) e’ l’n-1) (1 + x)(1 x)n-l,

2n(n
nn

p(x) e’’ l’n-1) (1 + x)n-1 (1- x),
2n(n

respectively.
Erd6s [35] also proved

THEOREM 2.6 Letp(x) be apolynomialofdegree at most n, andlp(x)l <
for -1 < x < 1. Ifp(x) is realfor real x andp(z) 0for Izl < 1, z c, then

Ip’(x)l <_ 4x//(1 -Ixl)2, for x E [-1, 1].



356 N.K. GOVIL AND R.N. MOHAPATRA

It has been shown that in the above theorem, x/ cannot be replaced
by a function of n tending to infinity more slowly.
Markov type inequalities for constrained polynomials were obtained

by Erd61yi [32,33]. Inequalities for derivatives of polynomials with real
zeros were obtained by Szabados [101] and Szabados and Varma [102].
A conjecture of Szabados was later proved by Borwein [15] where he
showed that for every polynomial ofdegree less than or equal to n, with k
zeros in (-1, 1) and (n k) zeros in IR \ (-1, 1),

max Ip(x) [.max Ip’(x)] <_ 9n(k + 1)_l<xl-l<x<l

To formulate a general Markov-Bernstein inequality, Erd61yi and
Szabados [34] conjectured an inequality which was later established by
Borwein and Erd61yi [19] (see the paper for other interesting accounts).
Some related extremal problems for polynomials were solved by Bojanov
and Rahman [14].
Markov type inequalities for curved majorants were obtained by

Varma [107,108]. Extremal polynomials for weighted Markov inequal-
ities have been obtained by Mohapatra et al. [83] and extremal
polynomial for Markov inequality on R for the Hermite weight has
been obtained by Li et al. [73].

Recently there has appeared a paper of Arsenault and Rahman [2]
which contains many interesting results and historical development of
the estimates of Markov type. (For further discussion and literature
related to Markov and Bernstein type inequalities, see also [16,91,62])
As mentioned in Section 1, in order to answer a question ofde la Vall6e

Poussin on best approximation which he raised in the early part of this
century, Bernstein [9] proved and made considerable use ofthe following

THEOREM 2.7 If t(O)= -]nu=_n aei is a trigonometric polynomial
(possibly with complex coefficients) ofdegree n, It(0)t <_ for 0 < 0 < 27r,
then

It’(0)l <_ n, (2.4)

with equality holding if and only if t(O)= ei’cos(n0- c), where 3’ and c
are arbitrary real numbers.

As mentioned in Section 1, Bernstein [9] in fact proved (2.4) with 2n,
in place of n and the inequality (2.4) in the present form first appeared
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in print in a paper of Feket6 [38] who attributes the proof to Fejer [36].
Inequality (2.4) is also known as Bernstein’s inequality.

If p(x)--_n=oa,x’ is a polynomial of degree n (possibly with
complex coefficients) on (-1, 1) then p(cos0) is a trigonometric
polynomial of degree n and so by Bernstein’s inequality (2.4) we have
Ip’(cosO)sinO[ < n, which is equivalent to Ip’(x)l < n(1 -x2)-/2 for
-1 < x < 1. We thus have

THEOREM 2.8 Ifp(x) Yn=0 ax is apolynomial ofdegree n (possibly
with complex coefficients) and }p(x)l <_ for -1 <_ x <_ 1, then

n
Ip’(x)l _<, -1 < x < 1. (2.5)

x/’l x2

The equality is attained at the points x=x=cos[(2u-1)Tr/2n],
<_ u <_ n, if and only ifp(x)= 3,T,(x), where I’1-- and so (2.5) is best

possible.

The above theorem which was also proved by Bernstein [9] at the
same time as Theorem 2.7 (with 2n instead of n) gives an estimate for
Ip1(x)[ that is much better than Markov’s when x is not near +l, but it
does not yield Markov’s theorem directly since it tells us nothing
about Ip’(x)l when x is near +1. However Markov’s Theorem 2.1 can
nevertheless be deduced from Bernstein’s Theorem 2.7, and for this, note
that if we apply Bernstein’s inequality (2.4) to the polynomial q(O)=
p(cos 0)sin 0, we get

[p(1)[ <_ (n + 1) max [p(x) Ix/i x2.
Ixl_<l

Now replacing the polynomial p by the polynomial pu(X)=p(ux),
for a fixed u E [-1, 1], we obtain

[p(u)[ Ipu(1)[ <_ (n + 1) max [p(ux)[v/1 x2

Ixl_<l

< (n + 1)max Ip(ux)lv/1 (ux)2

Ixl_<l

(n + 1) max Ip(x)lv/1 x2

Ixl_<lul

< (n + 1)max Ip(x)lv/1 x2,
Ixl_<l
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that is,

max Ip(x)l (n + 1) max Ip(x)lV/1- x2,
-l<x<l -l<x<l

which is known as Schur’s inequality, and, if we combine Bernstein’s
inequality (Theorem 2.8) with this Schur’s inequality (when applied to
the polynomial p’(x)), the Markov’s inequality follows. For further
generalizations of Schur’s inequality, see [7].
As mentioned in Section 1, if p(z) n-=0 az is a polynomial of

degree n where z is a complex variable, then t(O) p(ei) is a trigonometric
polynomial ofdegree n with It(0)l <_ for0 < 0 < 27r; hence applying (2.4)
to t(O) p(ei) we get the following, also known as Bernstein’s inequality
(see Theorem 1.2).

THEOREM 2.9
then

Ifp(z) ’nu:0 a,z" is a polynomial ofdegree at most n,

max Ip’(z)l nmax IP(z)l. (2.6)
Izl_<l Izl_<l

The equality here holdsfor p(z)= )kzn, )k being a complex number.

Note that by maximum modulus principle, maxlzl<llp(z)l--
maxlzl=lp(z)l and so if we denote IIp[I =maxlzl=lP(Z)l, the inequality
(2.6) can be written equivalently as

IIp’ll nllpll. (2.7)

Now we present proofs of Theorems 2.7 and 2.9. Note that
Theorem 2.7 clearly yields Theorems 2.8 and 2.9.
The first proof that we present here is due to de Bruijn [26] (see [88]).

It requires the following lemmas.

LEMMA 2.1 Ifp(z) is apolynomial ofdegree n with all its zeros in [z[ _< 1,
and ifq(z) znp(1/), thenfor [z >_ 1,

Iq’(z)l < Ip’(z)l. (2.8)

Proof Sincep(z) has all its zeros in Izl 1, the polynomial q(z) will have
all its zeros in Izl >_ 1, and because Ip(z)l Iq(z)l on Izl 1, applying
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maximum modulus principle to q(z)/p(z) which is analytic in ]z] _> we

get that the polynomial q(z)- Ap(z) has no zeros outside the unit circle
for every A with IA] > 1. By Gauss-Lucas theorem the polynomial
qt(z) Apt(z) also does not vanish outside the unit circle for every A with

IAI > 1, which implies that [qt(z)l _< Ipt(z)] for [z[ >_ 1, and the Lemma 2.1
is established.

LEMMA 2.2 Ifp(z) is a polynomial of degree n such that [p(z)] _< for
]z[ _< and ifq(z) znp(1/), thenfor [z[ _> 1,

[pt(z)[ + [q’(z)[ < n[z]n-1. (2.9)

Proof Consider the polynomial pl(z)=p(z)- Az", [A[ >_ 1. Rouch6’s
theorem implies that the zeros ofpl(z) lie inside the unit circle, and so
by Gauss-Lucas theorem, p] (z) pt(z) Anzn-1 also has all its zeros
inside the unit circle and hence ]p’(z)[ _< nlz[-1 for ]z] _> 1. Therefore it
is possible to choose arg A such that for [A[ > 1,

[p’ (z)l [p’(z)- Xz"-n[ I lnlzl (2.10)

If ql (z) znpl(1/), then clearly

[qt (z)[ [qt (z)[, (2.11)

and therefore on applying Lemma 2.1 to the polynomialpl(z) which has
all its zeros inside the unit circle, we get

[q’(z)[ [q’ (z)[ < [P’l (z)[ [Alnlz["-- [p’(z)[,

which implies

Ip’(z)l + Iq’(z)l [Alnlzl"-a,

and letting [A 1, this yields for Iz[ >_ 1,

[p’(z)[ + [q’(z)[ < nlzl"-1,

which is (2.9).
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Proof of Theorem 2.9 This follows trivially from Lemma 2.2.

To prove Theorem 2.7, first note that it is sufficient to prove the
theorem for real trigonometric polynomials. For if t(O) is a trigonometric
polynomial (not necessarily real) of degree n, and if 00 is a real number
such that It’(Oo)l max0 _< 0 < 2rl t’(0)l we may choose a complex constant
A, IAI-1, such that At’(Oo) is positive. Clearly Re{At(0)} is a real
trigonometric polynomial, so assuming that Theorem 2.7 has been
proved for real trigonometric polynomials, we get

d
Re{At(0)} _< n max IRe{At(0)}[ < n max It(0)[.

0_<0<27r 0<0<27r

In particular,

IRe{At’(00)}l <_ n max It(0)l
0_<0<27r

and since At(Oo) > 0, the above inequality is equivalent to

{At’(0o)} < n max It(0)l,
0_<0<2r

which implies

max It’(O)l <_ n max It(O)l
0_<0<27r 0<0<27r

and thus we have proved that if the Bernstein inequality (Theorem 2.7)
holds for the real trigonometric polynomials it holds for the complex
trigonometric polynomials as well.
To prove Theorem 2.7 for real trigonometric polynomials, let

t(O) -’]nu=_n cueiuO, cu -u be a trigonometric polynomial of degree
n, It(0)l _< for real 0, and let eint(O)--p(ei), 0 being real. Then
p(z) zn -]=-n cz is a polynomial ofdegree 2n. Ifq(z) z2n(p(1
then q(ei0) e2inp(eiO) e2ine-inO t(O) einO t(O) p(ei), for all real 0.
Also for Iz[ 1, [p(z)[ Ip(ei)[ [eint(O)[ It(0)[ < 1, and so by max-
imum modulus principle, [p(z)[ < for Iz[ < 1. By Lemma 2.2, we
therefore get

<_ 2n,
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which implies

lint(O) + {(0)1 <_ n. (2.12)

Since t(O) is real, (2.12) in fact gives

nZt2(O) + (t’(0))2 _< n2, (2.13)

an inequality sharper than (2.4) for real trigonometric polynomials. In
the general case in which the trigonometric polynomial t(O) is complex,
we cannot say that the sum of the absolute magnitudes of the two
terms on the left is at most n2. This can be seen from the example
t(O)=ein. In-equality (2.13) was first explicitly stated by van der
Corput and Schaake [23] although it is implicit in an earlier inequality
due to Szeg6 [103].
We now present another proof of Theorem 2.9, which is due to

O’Hara [85]. His proof depends on the following lemma.

LEMMA 2.3 IfP(z) is any complex polynomial ofdegree at most n, and
Zl, z2, zn are the zeros ofz + 1, thenfor every complex number t,

P(t) +- e(tz)--tP’ t) - n
2zv

(Zu 1)2.
(2.14)

Proof For a complex number t, define the function

Qt(z) (P(tz) P(t))/(z- 1), z -Qt(1) tP’(t).

Then Qt(z) is a polynomial of degree at most (n-1). Applying
Lagrange’s interpolation formula to Qt(z), with Zl,Z2,... ,z as inter-
polation nodes, one gets

Or(z) Ot(z)(zn + 1)=1Ot(z,)(Zn + 1)Z
: (z- Z)zn- : (z z)

Also, since Qt(1)-- P’(t), this gives

tP’(t) _1 Ot(z)2z
n,= (z-l)

12zP(tz) 1 2zP(t)
=, (z )2 =, (z )2. (2. s)
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To complete the proof, we must show that

n
p(t) P(t) 2z

2 n
u=l (zu- 1)2’

or equivalently,

n_ 2z
2 ,= (z, 1)2’

(2.1 6)

which follows easily on applying (2.15) to P(t)= n, and noting that
n --1 for u-- 2,.. n and thesince Zv is a zero of z + 1, therefore z

proof of Lemma 2.3 thus follows.

Another Proof of Theorem 2.9
complex z,

By Lemma 2.3, we have for any

Izp’(z)l + p(zz)p(z)
nv=l

2zu
(z-

< Ip(z)[ + Ip(zz)[
’--1

2Zu
(Zu 1)2

If Zo is a point on Iz[ such that [p’(zo)[ maxlz lp’(z)[, then

n 2zIp’(zo)l < [p(z0)l /-n: [P(ZZ)l[(z- 1)2

n 2zmax Ip(z) + max Ip(z) )2
<

2 Izl=l n Izl=l = (z

max Ip(z) + max Ip(z)
2 Izl-a 121-1 n

u=l (zu- 1)2J

since as is easy to verify that

2zu
(z- 1)2 2 sin2 0/2’
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if z- ei (Note that z for u-- 1, 2,..., n being zeros of z" + 1, lie on

]z[- 1), we get

n n
Ip’(z0)l _< max Ip(z) + max IP(Z)

Izl=l Izl=l
n max IP(z)l

by (2.16)

which proves Theorem 2.9.

For another proof of Theorem 2.7, see [82, p. 532].
In 1928, Szeg6 [103] proved Theorem 2.9 under a much weaker

hypothesis, namely maxlz lRep(z)[ < for Izl- 1. He in fact proved

THZOREM 2.10 Ifp(z) -n=0 a,z is a polynomial of degree n with

IRep(z)l <_ for Iz[ <_ l, then Ip’(z)l <_ n for Izl <_ 1. Equality holds for
Ip(z) zn, Il .
Here we present a proof due to Malik [76] which is based on the

application ofthe following result ofde Bruijn [26], whose proofwe omit.

LEMMA 2.4 Let C be a circular domain in the z-plane and A an arbitrary
point set in the w-plane. If the polynomial p(z) of degree n satisfies
p(z) w E Afor every z C, thenfor every z and in C,

tp, (z) + p(z)
zp’ (z) A. (2.17)

F/ n

Here by a circular domain we mean the interior (or exterior) ofa circle or

a half-plane.

Proof of Theorem 2.10 Let C be the unit disk Izl < and let A be the
strip -1 < Rew <_ 1. Since by hypothesis IRep(z)[ <_ for Izl <_ 1, the
image of the unit disk [z < under the mapping w =p(z) is contained
in the strip A, and therefore by Lemma 2.4, if Iz] < 1, tl _< 1, then
(t/n)p’(z)+p(z)- z (p’(z))/n A. Setting t= 1, we see that a disk of
radius Ip’(z)l/n and center p(z)- z p’(z)/n (which also belongs to A; for
this, take 0), must be contained in -1 < Re w <_ for any z with [z < 1.
Since the maximum modulus of such a disk cannot exceed 1, we-get for
any z with [z] < 1, [p’(z)/n <_ 1, which is equivalent to Ip’(z)l _< n for Izl _<
and so the Theorem 2.10 is established.
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Theorem 2.10 was also proved by Mohapatra et al. [86] for which they
first proved

THEOREM 2.11 Suppose A is any complex number with [A[ and let
7-1, 72,..., 7"n be the nth roots ofA. Ifp(z) is apolynomial ofdegree at most

n, thenfor all z on the unit circle [z[ 1,

n

p(z) zp’(z) + z--,P (z)
=1

(2.18)

and

2

=n. (2.19)

We omit the proof of this theorem. Note that (2.19) is a special case of
(2.18) when p(z) zn.

If we replace A by -A in (2.18) and subtract the resulting inequality
from (2.18) we obtain the identity that ifp(z) is a polynomial of degree
at most n then for all z on the unit circle [z[ 1,

n2Ap’(z) _1 -,p(7") zn-

Zn-1 n
u=l

z 7"

n Izn_[_A2
n
u=l

z au
(2.20)

where 0.1, 0"2,..., 0"n are the nth roots of-A.
Using (2.18), (2.19) and (2.20), they gave simple proofs of Theorem

2.10 and of some other results.

Proof of Theorem 2.10 Equating real parts in (2.20) and using triangle
inequality along with (2.19) we get

z-i-_ )p’(z)] _< n ]a] [Rep(z)l + n ]a] [Rep(z)l. (2.21)

Let Zo be such that Ip’(zo)l =maxlzl= llP’(Z)[. Then for some e with

lel- 1, p’(zo)--Ip’(zo)le-e maxlzl= lpt(z)[. Theorem 2.10 now follows
from (2.21) by putting Z-Zo and A z)-l/e.
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By using Theorem 2.11, they also proved

THEOREM 2.12 If p(z) is a polynomial of degree at most n,
q(z) znp(1/), then

max(lp’(z)l + Iq’(z)l) nmax Ip(z)l. (2.22)
Izl=a Izl=l

We omit the proof of this theorem. Note that (2.22) is an improved
form of Lemma 2.2 which states that for [z 1,

[p’(z) + Iq’(z) <_ n max IP(Z) l.
Izl=l

The following theorem which is an improvement of Theorem 2.9 is
also due to Mohapatra et al. [86].

THEOREM 2.13 LetZl,Z2,...,z2nbeany2nequallyspacedpointsonthe
unit circle, say Zv ueiur/n, [u 1, < u < 2n. Then for any polynomial
p(z) ofdegree at most n, we have

Izl: max,oa Ip(z)[ + maxeven
[p(zu) (2.23)

As an application ofTheorem 2.11, one can also obtain the following
refinement of Bernstein’s inequality given by Frappier et al. [43,
Theorem 8].

THEOREM 2.14 Ifp(z) is a polynomial ofdegree at most n, then

max Ip’(z)l _< n max Ip(ei/n)l (2.24)
Izl= <u<2n

i.e., in (1.2) or in (2.6), Ilpll--maxlzl= lp(z)l can be replaced by the
maximum of lp(z)l in the (2n)th roots ofunity.

In both Theorems 2.9 and 2.10, equality holds ifand only ifp(z) Azn,
A being a complex number, i.e. ifp(z) n=0 az, then we have equality
if and only if a0-al =a2 an-1-0. Therefore if any of the ai,

i- 0, 1,2,..., n is non-zero, then it should be possible to improve on
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the bound in Bernstein’s inequality. This fact was observed by Frappier
et al. [43], who proved

THEOREM 2.15

forR> l,
Let p(z) be a polynomial of degree at most n, then

[Ip(Rz)-P(z)ll + Van(R)lp(O)l (R"- 1)IIPlI, (2.25)

where

3n(R) (R 1)(Rn-1 + Rn-2){Rn+l -- Rn (El .qt_ 1)R + (n 1)}
Rn+l -- Rn (El- 1)R + (n- 3)

(2.26)

if n k 2, and ’01(R)--R- 1. The coefficient of ]p(0)l is the best possible
for each R.

Dividing both sides of (2.25) by (R- 1) and letting R - 1, we obtain

COROLLARY 2.1 Ifp(z) is a polynomial ofdegree at most n, then

IIp’ll + e,lp(O)l nllpll, (2.27)

where n 2n/(n + 2),/fn > 2, whereas e 1. The coefficient of lp(O)l is

the best possiblefor each n.

For more results in this direction, see [100]
In order to prove the above inequalities, Frappier et al. [43] developed

a method based on convolutions of analytic functions (see also [97]).
Their method also gives the dependence of IIP’I[ on the coefficient [all and
for this, they proved

THEOREM 2.16 For a polynomialp(z) ofdegree at most n, we have

IIp’ll + Cnlp’(O)l nllp[I, (2.28)

where C O, C2 1, c3 1/x/, whereasfor n >_ 4, C is the unique
root of the equation

f(x) 16n 8(3n + 2)x2 16x + (n + 4)x4 0,

lying in (0, 1). The coefficient of [p(O)[ is the bestpossiblefor each n.
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Since fix) (4 + 4x x2)(4n 4nx (n + 4)x2), Frappier [40] found
that the coefficient en appearing in Theorem 2.16 is in fact

cn n > 4. (2.29)
n+4 n

Also, he proved the following more general

THEOREM 2.17 Let p(z) -n=0 az, n >_ 4 be a polynomial ofdegree
at most n. IfO <_ B <_ Cn, then

[Ip’ll +
4n 4nB (n + 4)B:z

laol + Bla nllPll. (2.30)
2(n + 2)

For B =0, the above inequality reduces to (2.27) while for B cn,
it reduces to (2.28).

Frappier [41] also proved the following, where IIP’[I depends on a2.

THEOREM 2.18
n >_ 6, then

Ifp(z) -n=o az is apolynomial ofdegree at most n,

[Ip’ll + dnla=l nllPll,

where dn is the unique root ofthe equation

5 x54n- (12n + 4)x2 x + (5n + 7)x4 (n + 6) X6 0.
16

3. BERNSTEIN TYPE INEQUALITES FOR POLYNOMIALS
WITH NO ZEROS IN A CIRCLE

We begin with Bernstein’s inequality mentioned in Sections land 2 which
states that ifp(z) is a polynomial of degree at most n, then

IIp’ll nllpll, (3.1)

where as earlier, [Ipll maxlzl =11p(z)[.
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Since the equality in (3.1) holds if and only if p(z)= zn (, being
a complex number) which has all its zeros at the origin, one would expect
a relationship between the bound n and the distance of the zeros of the
polynomial from the origin. This fact was observed by Erd6s [35] who
conjectured that if the polynomial p(z) has no zeros in Izl < 1, then

IIP’II <- (n/2)llPll. This conjecture was proved in the special case whenp(z)
has all its zeros on Izl independently by Polya and by Szeg6 (see [72]).
In the general case the conjecture was proved for the first time by Lax [72],
who proved

THEOREM 3.1 Ifp(z) is apolynomial ofdegree n, p(z) COfor [z < 1, then

n
IIp’ll Ilpll. (3.2)

The result is best possible and the equality in (3.2) holds for any poly-
nomial which has all its zeros on Iz[ 1.

Simpler proofs of this result were later given by de Bruijn [26] and
Aziz and Mohammed [6]. For some generalizations of Lax’s result,
Theorem 3.1 for entire functions of exponential type, see [12,44,
45,63,89].

It was proposed by Professor R.P. Boas to obtain inequalities
analogous to (3.1) for polynomials having no zeros in [z] < K, K> 0
and the following partial result in this connection was proved by
Malik [76].

THEOREM 3.2 Ifp(z) is a polynomial ofdegree at most n having no zeros
in ]z] < K, K_> 1, then

IIp’[I
1+

[Ipll. (3.3)

The result is best possible with equality holdingforp(z)= (z + K)n.

For quite some time it was believed that ifp(z) 0 in ]zl < K, K< 1,
then the inequality analogous to (3.3) should be

n
IIp’ll + gn IlPll, (3.4)
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till Professor E.B. Saff gave the example p(z) (z 1/2)(z + 1/2) to counter
this belief. As can be easily verified for this polynomial, the left hand
side of (3.4) is approximately 2.1666 while the right hand side is

[2/(1+(1/2)2)]1[p112.144<2.1666 and so (3.4)in general does not
hold true.
For polynomials of degree n and having no zeros in Izl < K, K_< 1,

Govil [51] proved that

n
IIp’ll < I[pll (3.5)Kn _l_ Kn_

Obviously the above bound is of interest only if Kn+Kn-1 > 1. For
another result in this direction see [52].

Govil and Rahman [63] generalized Theorem 3.2 of Malik [76] for
any order derivative of the polynomial p(z) and proved

THEOREM 3.3 Ifp(z) is apolynomial ofdegree at most n, having no zeros

in Iz[ < K, K >_ 1, then

lip<s/II < n(n 1)... (n s + 1)
+ g Ilpll. (3.6)

For s- 1, (3.6) obviously reduces to (3.3).
Another generalization of(3.3) was later given by Chan and Malik [22]

who proved

THEOREM 3.4 If p(z) ao + n=az is a polynomial of degree
at most n, p(z) # 0 in [z < K, K >_ 1, then

n
Ilp’ll +g IlPll. (3.7)

The equality in (3.7) is attained for p(z)=(zU+KU)n/’, n being a

multiple of#.

The inequality (3.7) in the case #=2 can also be found in [53,
Lemma 4].

It can be shown that if p(z)# 0 in [z < K, K_> then the equality
in (3.3) can hold ifand only iflal/ao[ n/Kand hence it should be possible
to improve upon (3.3) if [a/ao[ <_ cn/K where 0 _< e _< 1. This fact was
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observed by Govil et al. [64] who obtained a bound in terms of the
coefficients a0, al and a2. They proved

THEOREM 3.5 Ifp(z) -’]=o az is a polynomial ofdegree at most n,
p(z) 0 in Izl < K, g >_ 1, then

nlaol + g21al
IIPlI"IIP’II ( + g2)n[aol + 2g2lall (3.8)

furthermore

n ) (1 -IAI)(1 / K21AI) + K(n- 1)1#-IIP’II < + .,./ (1 -IAI)(1 K+ K2 + KIAI) / K(n- 1)1#- A2I
[Ipll,

(3.9)

where

, Kal 2K2
a2

nao n n 1) ao

Both the above inequalities are best possible. For even n, the equality
in (3.8) holds for

a0 (zei0, + Kei)n/Z(zei, + Ke_ic)n/9.p(z) -where 7 and a are arbitrary real numbers. Whether n is even or odd,
equality holds in (3.9) for

ao (z + K)nl (z9. na- nl ) (n-nl)/2
p(z) +2Kz+K2

if nl is an integer such that n/3 < n < n, (n- n) is even, and (3n- n)/
(n + n) _< a _< 1.
Although Malik’s inequality (3.3) is best possible, the drawback ofthis

result is that the bound depends only upon the modulus of the zero of
smallest modulus and not on the moduli ofother zeros. For example, for
both the polynomials p(z)- (z + K) and p(z)= (z + K)(z + K+ g)n-,
K_> 1, > 0, Malik’s inequality (3.3) will give the same bound and for this
reason it will obviously be of interest to obtain a bound which depends
upon the location of all the zeros rather than just on the location of the
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the zero of smallest modulus. This was done by Govil and Labelle [61]
who proved

THEOREM 3.6 Let p(z) a, I-In= (z z), a, = O, be a polynomial of
degree n. If [z,[ >_ K, >_ 1, < u < n, then

Ilp’ll _< n g- g- IIP[I. (3,0)
u=l u=l

In (3.10) the equality holdsforp(z)=(z + K)n, K>_ 1.

As can be easily verified, inequality (3.10) is in fact equivalent to

n{IIp’ll -< / (2/n)-]n=l[1/gu 1]
Ilpll. (3.11)

IfK >_ K, K >_ for < u < n, then clearly

= Ku- ,= K, +K’

so that the bound in (3.10) (or in (3.11)) is in general at least as sharp as in
(3.3). In fact, excepting the case when the polynomialp(z) has all its zeros
on Izl K, K> 1, the bound obtained by (3.10) (or by (3.11)) is always
sharper than the bound obtainable from Malik’s inequality (3.3). If
K, for some u, _< u _< n, theri the inequality (3.10) (or (3.11)) reduces
to Lax’s inequality (3.2). The statement ofthe Theorem 3.6 might suggest
that one needs to know all the zeros ofthe polynomial but it is not so. No
doubt the usefulness ofthe theorem will be heightened if the polynomial
is given in terms of the zeros. If in particular, the polynomial p(z) is the
product of two or more polynomials having zeros in Izl _> K1 > 1,

Izl _> K > 1, etc., each of norm _< 1, then p(z) would be of norm _< 1,
and one would have a better estimate for I1# by (3.10) (or (3.11)) than
from (3.3).
Another refinement of Lax’s result (Theorem 3.1) was given by Aziz

and Dawood [5].

Ifp(z) is apolynomial ofdegree at most n having no zerosTHEOREM 3.7
in Izl < 1, then

n
I[p’ll < ([Ipl[- min [p(z)l }. (3.12)
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The result is best possible and equality holds for p(z)= ozn--/ where
I 1=1 1,

The above result ofAziz and Dawood [5] was generalized by Govil [57]
who proved

THEOREM 3.8 Ifp(z) is a polynomial ofdegree at most n having no zeros

in Izl < K, K >_ 1, then

n(n 1)... (n s / 1) ,f Ilpll min [p(z) .f< (3.13)

The above theorem sharpens Theorem 3.4 due to Govil and Rahman
[63]. For s 1, Theorem 3.8 clearly reduces to

THEOREM 3.9 Ifp(z) is apolynomial ofdegree at most n, having no zeros
in Izl < K, K> 1, then

IIp’[I
1/ (llp[[- i=/:]p(z)[). (3.14)

Here the equality is attainedfor p(z) (z / K)’.

It is clear that the above theorem sharpens Theorem 3.2 due to Malik
[76] and for K it reduces to Theorem 3.7 due to Aziz and Dawood [5].

4. BERNSTEIN TYPE INEQUALITIES FOR POLYNOMIALS WITH
ALL THEIR ZEROS IN A CIRCLE

We again begin with Bernstein’s inequality (Theorem 1.2) that ifp(z) is
a polynomial of degree at most n, IlPll maxlzl lP(Z)l, then

IIp’ll _< nllpll, (4.1)

with equality holding for the polynomials p(z) Az", A being a complex
number.

In case the polynomialp(z) has all its zeros in ]z _< 1, then as is evident
fromp(z) Az (A a complex number) it is not possible to improve upon
the bound in (4.1). Hence ifp(z) has all its zeros in ]z] _< 1, it would be of
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interest to obtain an inequality in the reverse direction and this was done
by Tur/tn [105], who proved

THEOREM 4.1

Izl < 1, then
Ifp(z) is a polynomial ofdegree n having all its zeros in

n
IIp’ll Ilpll. (4.2)

The result is best possible and the equality holds for all polynomials of
degree n which have all their zeros on Izl 1.

It will obviously be of interest to obtain an inequality analogous to
(4.2) for polynomials having all their zeros in Iz[ < K, K> 0. Malik [76]
considered the case when K <_ 1, and using Theorem 3.2, he obtained

THEOREM 4.2 Ifp(z) is a polynomial ofdegree n, having all its zeros in

[z] <_ K< 1, K> O, then

IIp’I[ >-1/ I[pll. (4.3)

Here the equality holdsfor the polynomialp(z) (z + K)n.
A simple and direct proof of this result was later given by Govil [54]

which is as follows.
If p(z) a, 1-In= (z z) is a polynomial of degree n having all its

zeros in Izl _< K _< 1, then

’ei0)
p(ei0) eiO p’(eiO) ( ei ) ul> Re ( ’ Re

\ei0 z >
\ P(el) ; u=l

/ K’

that is,

( nK)[p(ei)[’Ip’(ei)[ >- +
where 0 is real. Choosing 0o such that [p(ei)l maxo <_ o < 2lp(ei) [, we get

IP’(e)l -> + o_<o<max Ip(ei) l,

from which (4.3) follows.
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The above argument does not hold for K> 1, for then Re(ei/(ei z))
may not be greater than or equal to 1/(1 + K).

Govil [54] also settled the case when K> 1, by proving

THEOREM 4.3 Ifp(z) is a polynomial ofdegree n having all its zeros in

Iz] < K, K >_ 1, then

n
[Ip’ll

1%- Kn Ilpll. (4.4)

The result is best possible and the equality holds for the polynomial
p(z) (z" +
A simpler proof of this result was later given by Datt [24].
Note that for K> 1, the extremal polynomial turns out to be of the

form (z + Kn) while for K< 1, it has the form (z + K)". Thus is a critical
value of this parameter for the problem under consideration and one
should not expect the same kind of reasoning to work for both K<
and K> 1.

Govil [55] later generalized Theorem 4.3 for functions of exponential
type. The generalization of Turfin’s result (Theorem 4.1) for functions
of exponential type was done by Rahman [90].
The following refinement of Theorem 4.2 was done by Giroux

et al. [50].

THEOREM 4.4
< v <_ n, then

Let p(z) an Hn__l (z Zu) be of degree n. If [z[ _< 1,

[Ip’ll ( 1%- ]zu )Ilpll. (4.5)
p--1

There is equality in the above inequality if the zeros are allpositive.

A generalization of the above Theorem 4.4 was obtained by Aziz [3].

THEOREM 4.5 Ifall the zeros of the polynomialp(z) an I-In,=1 (Z Z)
ofdegree n lie in [z <_ K, where K >_ 1, then

2 -,n K
Ilpll. (4.6)

+/,;n +

Equality in the above holds again for p(z)- z+Kn.
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Note that the inequality (4.6) is also a refinement of the inequality
(4.4). For some refinements of Theorems 4.5 and 4.3, see [56].
The following result which is a refinement of Turtn’s result

(Theorem 4.1) was given by Aziz and Dawood [5].

THEOREM 4.6

Izl _< 1, then
Ifp(z) is a polynomial ofdegree n having all itz zeros in

n
(4.7)

The equality here holdsfor p(z) oz -- , I1 I01
We conclude this section by stating the following theorem due to Govil

[57], which generalizes the above Theorem 4.6 of Aziz and Dawood [5].

THEOREM 4.7 Ifp(z) is a polynomial ofdegree n, having all its zeros in

Izl _< K, thenfor K< 1,

( n K) n
minlp(z)[. (4.8)Ilp’[I <- + [tell + Kn_l(1 + K)Izl=/c

IfK>_ 1, then

Ilp’ll > {)lp]] + i=nr [p(z)] }. (4.9)

Both the above inequalities are bestpossible. In thefirst case, the equality is
attainedfor p(z) (z + K)n and in the second casefor p(z)

5. BERNSTEIN TYPE INEQUALITIES FOR POLYNOMIALS
SATISFYING p (z) 2

n p(1/z) OR p(z) zn{p(1/) }

Ifp(z) -0az is a polynomial ofdegree n, it is obviously ofinterest
to obtain an inequality analogous to Bernstein’s inequality

IIp’ll nllpll, (5.)

for polynomials satisfying p(z)=_ znp(1/z) or p(z) =_ zn(p(1/g)}, and in
this direction the following result (see [54, Lemma 4, 86,98]), which is
easy to obtain, is well known.



376 N.K. GOVIL AND R.N. MOHAPATRA

THEOREM 5.1 Ifp(z) y]n=0 az is apolynomial ofdegree n satisfying
p(z) zn {p(1/E)), then

IIp’[I Ilpll. (5.2)

Let 1-I, denote the class of polynomials of degree n satisfying p(z)=_
z p(1/z). The class/n is interesting because for any polynomial p(z) of
degree n, the polynomial P(z)= z"p(z + l/z) is always in II,. It was
proposed by Professor Q.I. Rahman to obtain inequality analogous to
Bernstein’s inequality (5.1) for polynomials belonging to IIn, and in an
attempt to answer this question perhaps the first result in this direction
was proved by Govil et al. [60] who established the following partial
result.

THEOREM 5.2 Ifp(z) is a polynomial belonging to 1-In and having all its
zeros in the left half-plane or in the right half-plane, then

n
[Ip’ll -< Ilpll. (5.3)

It is not known if (5.3) is best possible, however by considering
p(z)-z+ 2iz/+ 1, n being even, they showed that if p(z) simply
belongs to II, then the bound in (5.3) cannot in general be smaller
than nx/.

Later Frappier et al. [43] considered the polynomial p(z) (1 + iz)2+
zn-2(z-k i)2. Note that this polynomial belongs to IIn and on Iz[ 1,
[p(z)[ _< ]1 + iz[ 2 + [z + il 2 [-i + z[ 2 + Iz + i[ 2 4, while [p’(i)[ 4(n 1)
and so [Ip’ll-> 4(n- 1). Thus Ilp’ll/llpll >- 4(n- 1)/4 (n- 1)> n//,
that is, if p(z) only belongs to 1-In, the bound in (5.3) should be some-
thing >_ (n 1) > n//, implying that by just assuming p I-In there is
nearly no improvement in the derivative estimate in (5.1). In the same
paper [43] by rather deep method they showed that ifp 1-In, then

IIp’ll <- (n- n)llPll, where n -+ 2/5 as n cx. (5.4)
Aziz [3] considered another subclass of IIn and proved

THEOREM 5.3 Let p(z) ;=o(a + i/3,)z", oz, _> 0, /3, >_ 0, u--

0, 1,2,..., n be a polynomial belonging to IIn. Then

n
IIp’ll Ilpll. (5.5)
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The equality in (5.5) again holdsfor the polynomialp(z) zn + 2izn/2 + 1,
n being even.

As is easy to observe, the hypothesis of Theorem 5.3 is equivalent to
that p(z) belongs to IIn and that all the coefficients ofp(z) n=0 az
lie in the first quadrant of the complex plane. In fact, if all the
coefficients of a polynomial p(z) belonging to IIn lie in a sector of
opening 7r/2, say in, < argz <+ 7r/2, for some real , then the
polynomial P(z) e-ip(z) belongs to IIn and has all its coefficients lying
in the first quadrant of the complex plane. Since [IP[I Ilpll and

IIP’II IIp’ll, we may apply Theorem 5.3 to P(z) to get that ifp(z)E II
and has all its coefficients lying in a sector of opening at most 7r/2, then
also (5.5) holds. The following result that is equivalent to this statement
appears in [69].

THEOREM 5.4 Let p(z) n=0 az where a, cei +/vei, ce _> 0,
/3, >_ 0; u 0, 1,2,..., n, 0 _< Ib ] < 7r/2, be a polynomial of degree n.

Iffurther p(z) IIn, then

(5.6)

The result & best possible with equality holding for the polynomial
p(z) zn + 2izn/2 + 1, n being an even integer.

Following result of Datt and Govil [25] generalizes Theorem 5.4
and so also Theorem 5.3.

THEOREM 5.5 Letp(z) -,=0(a, + i/3,)z be apolynomial ofdegree n
belonging to IIn. If on Iz[= 1, the maximum of In=0az[ and
[=0/3z[ is attained at the same point, then

Ilp’ll -< [Ipll. (5.7)

The equality here holds again for p(z)= z"+ 2iz"/2 + 1, n being an even
integer.
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Another generalization of Theorem 5.4 has recently been given by
Govil and Vetterlein [65]. They in fact proved

THEOREM 5.6 If p(z) is a polynomial belonging to 1-I with all its

coefficients lying in a sector ofopening at most 7, where 0 < 7 < 27r/3, then

iip,[i
2

n
cos 7/2

lipll. (5.8)

The result is best possible for 0 <_ 7 <_ 7r/2, with equality holding for the
polynomialp(z) z + 2ei’ zn/2 + 1, n being even.

Although the class IIn of polynomials has been extensively studied
among others by Frappier and Rahman [42] and Frappier et al. [43], the
problem of obtaining a sharp inequality analogous to Bernstein’s
inequality (5.1) is still open. However, the following sharp inequality
in the reverse direction, which is easy to obtain, is due to Dewan and
Govil [27].

THEOREM 5.7 Ifp(z) is a polynomial belonging to IIn, then

n
Ilp’ll Ilpll. (5.9)

The result is best possible and the equality holdsforp(z)= (z + 1).

6. BERNSTEIN TYPE INEQUALITIES IN THE LP-NORM

We again recall Bernstein’s inequality, which states that if p(z)=
=0az" is a polynomial of degree n, and IIP[[ maxlzl [P(Z)l, then

[Ip’ll < nllp[I. (6.1)

In this section, we consider generalizations of this and of some other
inequalities discussed in earlier sections under the LP-norm.

Let 79n denote the set of all polynomials (over the complex field) of
degree at most n. Forp E 79n, define the norm ofp by

[IPlI- Ip(ei) dO 0 < 6< x.
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The limiting cases are Ilpll, the supremum norm, and

]lpll0 exp loglp(ei)ld0

Ifp E Pn, then it is well known that

(6.2)

The above inequality is best possible with equality holding for
p(z)-Azn, A being a complex number, and as is easy to see, the
Bernstein’s inequality (6.1) is the case t5 oo of this inequality. For

_< 8 < oo, the inequality was obtained by Zygmund [111] by using an
interpolation formula of M. Riesz. Lorentz [75] has derived this case of
(6.2) from Hardy-Littlewood-Polya order relation. For 0 < 8 < 1, the
inequality (6.2) was obtained by Mate and Nevai [79] with an extra
factor of (4e) 1/e on its right hand side. The inequality in the form as
mentioned in (6.2) was obtained by Arestov [1], who used subharmonic
functions and Jensen’s formula in order to arrive at this. Golitschek
and Lorentz [49] (also see [87,108]) gave a simpler proofofthis inequality
and also obtained its generalization.
For polynomials not vanishing in ]z < 1, de Bruijn [26] proved the

following generalization of Lax’s result, Theorem 3.1.

THEOREM 6.1 Ifp 79,. p(z) 0 in [z < 1, thenfor > 1,

IIp’ll < nc/llPl[, (6.3)

where c,5= 2-x/-r(1/26+ 1)/r(1/26+1/2). The result is sharp and the
equality holdsfor p(z) (c +/3zn), I1 I1,

To obtain Lax’s inequality (3.2) from (6.3), simply make 6 oo and
note that lim__,oo cle/ 1/2. Theorem 6.1 in the case 6 2 was proved by
Lax [72] himself. For an alternate proof of Theorem 6.1, see [89]. The
inequality (6.3) in fact holds for _> 0 and this was proved by Rahman
and Schmeisser [92]. A simpler proofand a generalization ofTheorem 6.1
was later given by Aziz [4].
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Dewan and Govil [28] considered the class of polynomials p(z)
satisfying p(z) zn {p(1/_) }, and proved

THEOREM 6.2 Ifp E T)n, and satisfies p(z) =_ zn {13(1/) }, thenfor t5 >_ 1,
the inequality (6.3) holds. The result is best possible and the equality holds
againforp(z)- (c +/3z"), [a[ [/3[.

Govil and Jain [59] proved the following more complete result.

THEOREM 6.3 Ifp Pn, and satisfies p(z) zn{p(1/) }, thenfor 5 >_ 1,

n
Ilp[l _< Iip’[[ _< n (6.4)

where c is the same as defined in Theorem 6.1.
Both the above inequalities are best possible and they both reduce to

equalityfor the polynomialp(z) (: + 1).

The above result of Govil and Jain [59] has recently been extended by
Govil [58] by showing that the inequality (6.4) in fact holds for 8 >_ 0.
Since lim_ c/ 1/2, we get on making 8 in (6.4) that if the
polynomial satisfies p(z) z"{p(1/) }, then

n
llp’ll llpll,

which is Theorem 5.1.
For polynomials not vanishing in Iz[ < K, K_> 1, Govil and Rahman

[63] proved

THEOREM 6.4 Ifp Pn, p(z) 0 m IZ[ < K, K >_ 1, then

_. ,1/ (6.5)IIp’ll < ,,-e IIp[l,

where E6 27r/f [K + ei[ 6 dO.

’l/e 1/(1 + K) onmaking , the inequality (6. 5)Sincelime_o .
reduces to Malik’s inequality (3.3). For K= 1, Theorem 6.4 reduces to
Theorem 6.1 of de Bruijn [26]. Theorem 6.4 is not sharp and the sharp
inequality does not seem to be obtainable even for 2.
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Gardner and Govil [47] have generalized the above result ofGovil and
Rahman [63] by proving

THEOREM 6.5 Let p(z) an I-In,=1 (z zv), an O, be a polynomial of
degree n. If [z[ >_ K > 1, < v < n, thenfor 5 >_ O,

,1/6 (6.6)IIp’ll Ilpll ,

where F6 {27r/f It0 + eil dO}, and to ( + nl y’]n= /(K 1) }.
The result is best possible in the case K- 1, < u < n, and the equality
holdsfor p(z) (1 + z)n.
The above result in the case 5 _> was also proved by Gardner and

Govil [46].
If K for some u, < u _< n then to-1 and (6.6) reduces to the

inequality (6.3) due to de Bruijn [26]. IfK _> Kfor some K_> 1, < u < n,
then as is easy to verify F6 < {27r/f02 ]g + ei16 dO} 16, and so the above
inequality reduces to the inequality (6.5) due to Govil and Rahman [63].
If in Theorem 6.5, we make 5-+, we get Theorem 3.7 due to Govil
and Labelle [61].

Closely related to the results considered above is the following theorem
of Gardner and Weems [48].

THEOREM 6.6 Ifp(z) ao + nu=m a,z" andp(z) :/: Ofor [z < K, where
K>_ 1, thenform>_ 1, 0 < 6< cx,

n
IIp’ll 

IIs0 + zll 
Ilpll , (6.7)

where

gm+l (m[am. lgm-1 + nla01SO \nlaol + mlamlgm+l J"

7. BERNSTEIN TYPE INEQUALITIES IN OTHER ENVIRONMENTS

In this section, we mention some of the areas where Bernstein type
inequalities are used and their applications. We begin with relation
between Bernstein and Nikolisky inequalities. Nikolisky proved that
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if _< p _< q _< c, then for any trigonometric polynomial tn of order n,

Iltnl[q c(p, q)n/P-/q[lt.[l,

where the norms are taken over [0,27r]. Bernstein and Nikolisky
inequalities play an important role in Fourier analysis and approxima-
tion theory, especially in converse and imbedding theorems. Recently,
inequalities of the same type have been obtained for various system of
functions by Ky [71]. In [71], Ky has shown how to obtain inequalities of
Nikolisky type from Bernstein type inequalities. He has also considered
arbitrary function systems in symmetric spaces. Borwein and Erd6lyi [17]
have considered Remez, Nikolisky and Markov type inequalities for
polynomials where the zeros are restricted to some specified intervals.
Lawrence Harris [66] has shown, how classical inequalities for the

derivative of polynomials can be proved for real and complex Hilbert
spaces using simple functional analytic arguments. He also shows a
relation between an inequality of norms for symmetric multilinear
mappings and van der Corput and Schaake inequality. His general
method which relies on a lemma of H6rmander yields extension of
inequalities for the derivatives of polynomials. In a subsequent paper
Harris [67] proved a Bernstein-Markov theorem for normed spaces.

Jia [70] has obtained a Bernstein type inequality associated with
wavelet decomposition and has used it to study the related nonlinear
approximation problem on the basis of shift invariant spaces of
functions. He has also given examples of piecewise polynomial spaces
to illustrate the general theory.
Dense Markov systems and related unbounded Bernstein inequalities

were considered by Borwein and Erd61yi [20]. An extension of such
theorems for rational systems is done in Borwein et al. [18].
Xioming [110] has obtained estimates of Bernstein basis functions

and Meyer-Konig and Zeller basis functions and used it to obtain new
rates of convergence of Durameyer operators and Meyer-Konig and
Zeller operators.

Application ofBernstein inequalities to analytic geometry, differential
equations and analytic functions have been carried out in [21,39]. The
main goal was to develop new techniques where Bernstein inequality can
be used to projections of analytic sets and apply this method to study
bifurcations and periodic orbits.
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