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In this note, motivated by the question in (Aron and Lohman, Pacific J. Math. 127 (1987),
209-231), we obtain an explicit formula for the )‘-function in the real space T’(2122). From
this we see that the ),-function is continuous and attained at each point of the unit ball of
7:’(2122), the space of real-valued continuous 2-homogeneous polynomials on 122.
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Given a normed space E, Be denotes its closed unit ball, ext(Be) the set
of extreme points of Be, and Se the closed unit sphere of E. If x E Be, a
triple (e, y, A) is said to be amenable to x if e E ext(Be), y Be, 0 < A < 1,
and x- Ae + (1 A)y. In this case, we define

A(x) --sup{A" (e, y, A) is amenable to x}.

Eis said to have the A-property ifeach x Be admits an amenable triple.
If, in addition, inf{A: x Be} > 0, then E is said to have the uniform
A-property. For more details about A-property and A-functions in
Banach spaces we refer to [1,2,4,5].
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Aron-Lohman [1] introduced the A-function, and calculated expli-
citly the A-function for the classical spaces Cx(T), ll (X), l(X) and c(X).
They showed that every finite dimensional normed space has the uniform
A-property.
Choi-Kim [3] obtained an explicit formula for the norm of the real

space "])(2/22 )" Let a, b, c E R, la[ <_ 1, Ibl _< and Icl <_ 2. Suppose P(x, y)
ax2 + by2 + cxy p(21)for the real Banach space 12 Then

[[P(x, y)][ /f and only/f 4 c2 4(]a + b[- ab) (,)

Using (,) we also classified the extreme points of the unit ball of 79(2122)"
For the real Banach space 12

P(x, y) ax2 + by2 + cxy ext(Bp())

ifand only if

[al-lb[=l or O<[a[< 1, a--b, 4a2=4-c2 (**)

In this note, motivated by the question in [1], we obtain an explicit
formula for the A-function in the real space P(2/2 using (,) and (**).
From this we see that the A-function is continuous and attained at each
point ofthe unit ball ofP(212). Finally, we give an explicit formula for the
norm and the A-function in 79(2/22).
LEMMA Let P(x, y) ax2 + by2 + cxy in p(2/), [[PI[ -< 1. Then

A(ax2 + by2 + cxy)
A(sign(ab)min{[a[, [bl}x2 + max{[a[, [b[}y2 + [c[xy).

Proof It follows from the fact that the A-function is invariant with
respect to isometries.

THEOREM 2 Let P(x, y) ax2 + by2 + cxy in p(2/2), IIPII 1. Then

]a+b[- v/(a- b)2 +c2A(ax2 + by2 + cxy) - +-Therefore, the A-function & continuous andattainedat eachpoint ofBp()
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Proof By Lemma 1, may assume that la] _< ]bl-- b and c >_ 0.
Case IIPI[ < 1. First, (,) shows that

4 c2 > 4(a + b) 4ab. (1)
(A) Suppose that P(x, y) A(x2 + y2) + (1 A)Q(x, y) for some

0 < A _< and a E 79(2122), IlOll-< 1.
By Proposition 1.2(b) [1] we may assume Q 1. Then

Q(x,y)-- (-_)x2/ (be-.. )y2/ (1 C A)xY"
and (,) shows that

<2

and

c a+b-2A
_4 (2)4-

-A
-4

1-A

If a + b 2A > 0, then Eq. (2) is equivalent to 4 2 4(a + b) 4ab,
contrary to (1). Suppose a + b- 2A < 0. Solving Eq. (2), we get

1( V/ )A=5+ [a+b]+ (a-b)2/c2

Since A < min{(1 + a)/2, (1 + b)/2}-(1 + a)/2, we have

A=+Il([a+b[_v/(a b)2 + c2).
It is easy to check that

a+b 1( V/ ) l+a
2 <-/ la/bl- (a-b)2

/C2

Hence

sup{A: (X2 / y2, Q, A) is amenable to P}

=+1l([a+b[_v/(a -b)2+c2).
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(B) Suppose that P(x, y) A(-x2 y2) -k- (1 A)Q(x, y) for some
0 < A < and O E 7(2122), [tOll .
Then

Q(x,y)= _(+)x2+ (bl+. )yz+ (l_A)xyC
and (.) shows that

_<1,

and

4-(1 cA)2: 41a b_2[ 4(...+ .)(bl +_ ). (3)

Solving Eq. (3), we get

, =--- la / bl + (a-b)= / c=

Note that

1-b l([a+ bl+ v/(a b)2 -C2)2 <-
Since A<min{(1-a)/2,(1-b)/2}-(1-b)/2, P does not admit an
amenable triple (-x2

(C) Suppose that P(x, y)= (lx ly +/- 2v/1 lxy) + (1 A)Q(x,
y) for some 0 < A <_ 1, <_ <_ and
Then

Q x, y) x:2 -k- y2 _+_
A

and (.) shows that

b+l_lI-<1’ c+2Av/i _/2
<2
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c a- )d

1-/
--4

I_A (4)

Solving Eq. (4), we get

4(1 -a)(1 -b)-c2

4((b a)l + 2 a b 4- cx/1 12)

Computation shows that

max
4(1 a)(1 b) c:

-1<t<1 4((b a)l / 2 a b 4- cx/1 12)
4(1 -a)(1 -b)-c2

4 min_l<t<l (b a)l + 2 a b 4- cv/1 2

4(1 -a)(1 -b)-c2

4((2-a- b) v/(a- b)2 +c2)
l(,a+ bl /(a-b)2+c2)2 4

(by (1))

at (a b) / /(a b)2 nt C2" Thus we have

11() _<- la + bl- v/(a- b)2 + c2

Computation shows that P admits an amenable triple

/(a- b)2 + C2
X2 nt-

b- a y2
/(a- b)2 nt- C2

(a- b)2 + c2
Q,- [la + bl-xy,

\
v/(a b)2 + c2)/"
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Hence

sup{," (lx2 ly2 -Jr- 2x/’l 12xy, Q,/k) is amenable to P, < _< }

=1 (,a_t_bl v/(a b) _1_C2)2 4

By the cases (A)-(C), we have

{11 }A(ax2 + by2 + cxy) max -t- ([a + b v/(a b)2 + c2)
=+11][a+b[_ v/(a_b)2+c2

Case 2 [[PI[ 1. First, (,) shows that

4 c2 4(a + b) 4ab.

(A’) Suppose that P(x, y) =/(x2 .qt_ y2) + (1 ,)Q(x, y) for some
0 < , < and Q E P(I), IlOll- 1.
Then

Q(x,y): (_-)x2 + (_-)y2 + (’i c)xy

and. (,) shows that

c
<2

and

4-(1-C’:X) 4la+l 2-2A 4(-)_ (bl.-_ ) (6)

If a + b 2, > 0, then Eq. (6) is equivalent to

A<_min{ l+a l+b
2 2b}=a+b2
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If a + b 2A < O, we have

a+b {l +a +b} +a
2

<A_<min
2 2 2

Solving Eq. (6), we get A (a + b)/2. Thus P does not admit an amenable
triple if a + b 2A < 0. Hence

sup{A" (X2 --y2, Q, A) is amenable to P}
a+b

(B’) Suppose that P(x, y) A(-x2 y2) _+_ (1 A)Q(x, y) for some
0 < A _< and Q E P(2/22 ), IIQII- 1.
Then

ca+)xg+(bl+)Y2+(l_A)xYQ(x,y) (1-
and (,) shows that

c
<2

and

4-
1-A

41a + b + 2A
1-A 4( +_ ) (bl +_ ) (7)

Solving Eq. (7), we get

A=I a+b

Hence

sup{A" (--X2 --y2, Q, A) is amenable to P} min{
(C’) Suppose that P(x, y)= A(/x2 -/y2 4- 2x/1 lZxy) + (1 A)Q(x,

y) for some 0 < A < 1, < < and Q E p(2122 ), IIQII 1.
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Then

and (,) shows that

c 4- 2Ax/1 12
<2

and

1-A
=4

a-Al b+Al
-A -A (8)

Solving Eq. (8), we get

a-b
and A<min{ 1-a 1-}:1 a+b

2-a-b 1-l’ 1+ 2

Computation shows that P admits an amenable triple

b a 21c1 a + b.’a-b
x2+ y2 + xy, Q,

2-a-b 2 a-b 2-a-b 2 ."
Hence

sup{A" (lx2 ly2 4- 2x/1 12xy, Q, A) is amenable to P, _< _< }
a+b
2

By the cases (A’)-(C’), we have

a+b a+b}A(ax2 + by2 + cxy) max
2 "’ 2

2 +- [[a + bI v/(a- b)2 + c] (by (5)).
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By the cases and 2, we have that

A(ax2 + by2 + cxy) - + [a + b v/(a- b)2 + c2

The above argument shows that the A-function is continuous and
attained at each point ofthe unit ball ofBp(_tg). This completes the proof.

Note that ifE is a finite dimensional normed space, then x E ext(Be) if
and only if A(x) 1. From this fact and Theorem 2, we can reclassify the
extreme points of the unit ball of 79(l]).
We can give an explicit relation between the norm and the A-function

in 79(e 122).
THeOgeM 3 Let P(x, y) ax + by2 + cxy in 79(2/22), [IP[[ _< 1. Then

[IP]I + 2A(P):1 + max{[a + b[, g/(a b)2 / C2}.
Proof By Lemma 1, we may assume that lal_< [bl--b and c>0.
From the proof of Lemma 2.1 [3] we get

[[P[[ =P(V/- ’a-bl/2v/(a-b)2-k c2,

+ [a-bl/2(a-b)+c)
(la+b,+ v/(a-b)2 +c2)/2,

which concludes the proof of the theorem combining Theorem 2.
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