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We prove the superstability of quadratic double centralizers and of quadratic multipliers on
Banach algebras by fixed point methods. These results show that we can remove the conditions
of being weakly commutative and weakly without order which are used in the work of M. E.
Gordji et al. (2011) for Banach algebras.

1. Introduction

In 1940, Ulam [1] raised the following question concerning stability of group homomor-
phisms: under what condition does there exist an additive mapping near an approximately additive
mapping? Hyers [2] answered the problem of Ulam for Banach spaces. He showed that for
two Banach spaces X and Y, if ε > 0 and f : X → Y such that

∥
∥f

(

x + y
) − f(x) − f

(

y
)∥
∥ ≤ ε, (1.1)

for all x, y ∈ X, then there exist a unique additive mapping T : X → Y such that

∥
∥f(x) − T(x)

∥
∥ ≤ ε, (x ∈ X). (1.2)
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The work has been extended to quadratic functional equations. Consider f : X → Y to be
a mapping such that f(tx) is continuous in t ∈ R, for all x ∈ X. Assume that there exist
constants ε ≥ 0 and p ∈ [0, 1) such that

∥
∥f

(

x + y
) − f(x) − f

(

y
)∥
∥ ≤ ε

(‖x‖p + ∥
∥y

∥
∥
p)
, (x ∈ X). (1.3)

Th. M. Rassias in [3] showed with the above conditions for f , there exists a unique R-linear
mapping T : X → Y such that

∥
∥f(x) − T(x)

∥
∥ ≤ 2ε

2 − 2p
‖x‖p, (x ∈ X). (1.4)

Găvruţa then generalized the Rassias’s result in [4].
A square norm on an inner product space satisfies the important parallelogram

equality

∥
∥x + y

∥
∥
2 +

∥
∥x − y

∥
∥
2 = 2

(

‖x‖2 + ∥
∥y

∥
∥
2
)

. (1.5)

Recall that the functional equation

f
(

x + y
)

+ f
(

x − y
)

= 2f(x) + 2f
(

y
)

(1.6)

is called quadratic functional equation. In addition, every solution of functional eqaution
(1.6) is said to be a quadratic mapping. A Hyers-Ulam stability problem for the quadratic
functional equation was proved by Skof [5] for mappings f : X → Y, where X is a normed
space and Y is a Banach space. Cholewa [6] noticed that the theorem of Skof is still true
if the relevant domain X is replaced by an abelian group. Indeed, Czerwik in [7] proved
the Cauchy-Rassias stability of the quadratic functional equation. Since then, the stability
problems of various functional equation have been extensively investigated by a number of
authors (e.g, [8–13]).

One should remember that the functional equation is called stable if any approximately
solution to the functional equation is near to a true solution of that functional equation, and is
super superstable if every approximately solution is an exact solution of it (see [14]). Recently,
the first and third authors in [15] investigated the stability of quadratic double centralizer:
the maps which are quadratic and double centralizer. Later, Eshaghi Gordji et al. introduced
a new concept of the quadratic double centralizer and the quadratic multipliers in [16], and
established the stability of quadratic double centralizer and quadratic multipliers on Banach
algebras. They also established the superstability for those which are weakly commutative
and weakly without order. In this paper, we show that the hypothesis on Banach algebras
being weakly commutative and weakly without order in [16] can be eliminated, and prove
the superstability of quadratic double centralizers and quadratic multipliers on a Banach
algebra by a method of fixed point.
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2. Stability of Quadratic Double Centralizers

A linearmapping L : A → A is said to be left centralizer onA if L(ab) = L(a)b, for all a, b ∈ A.
Similarly, a linear mapping R : A → A satisfying R(ab) = aR(b), for all a, b ∈ A is called
right centralizer on A. A double centralizer on A is a pair (L,R), where L is a left centralizer, R
is a right centralizer and aL(b) = R(a)b, for all a, b ∈ A. An operator T : A → A is said to be
a multiplier if aT(b) = T(a)b, for all a, b ∈ A.

Throughout this paper, let A be a complex Banach algebra. Recall that a mapping
L : A → A is a quadratic left centralizer if L is a quadratic homogeneous mapping, that is L
is quadratic and L(λa) = λ2L(a), for all a ∈ A and λ ∈ C, and L(ab) = L(a)b2, for all a, b ∈ A.
A mapping R : A → A is a quadratic right centralizer if R is a quadratic homogeneous
mapping and R(ab) = a2R(b), for all a, b ∈ A. Also, a quadratic double centralizer of
an algebra A is a pair (L,R) where L is a quadratic left centralizer, R is a quadratic right
centralizer and a2L(b) = R(a)b2, for all a, b ∈ A (see [16] for details).

It is proven in [8]; that for the vector spaces X and Y and the fixed positive integer k,
the map f : X → Y is quadratic if and only if the following equality holds:

2f
(
kx + ky

2

)

+ 2f
(
kx − ky

2

)

= k2f(x) + k2f
(

y
)

. (2.1)

We thus can show that f is quadratic if and only if for a fixed positive integer k, the following
equality holds:

f
(

kx + ky
)

+ f
(

kx − ky
)

= 2k2f(x) + 2k2f
(

y
)

. (2.2)

Before proceeding to the main results, we will state the following theorem which is useful to
our purpose.

Theorem 2.1 (The alternative of fixed point [17]). Suppose that we are given a complete
generalized metric space (X, d) and a strictly contractive mapping T : X → X with Lipschitz
constant L. Then for each given x ∈ X, either d(Tnx, Tn+1x) = ∞, for all n ≥ 0, or else exists a
natural number n0 such that

(1) d(Tnx, Tn+1x) < ∞, for all n ≥ n0,

(2) the sequence {Tnx} is convergent to a fixed point y∗ of T ,

(3) y∗ is the unique fixed point of T in the set Λ = {y ∈ X : d(Tn0x, y) < ∞},
(4) d(y, y∗) ≤ (1/(1 − L)d)(y, Ty), for all y ∈ Λ.

Theorem 2.2. Let fj : A → A be continuous mappings with fj(0) = 0 (j = 0, 1), and let φ : A6 →
[0,∞) be continuous in the first and second variables such that

∥
∥
∥
∥
fj(λa + λb + cd) + fj(λa − λb + cd) − 2λ2

[

fj(a) + fj(b)
]

−2
[
(

1 − j
)(

fj(c)d2
)1−j

+ j
(

c2fj(d)
)j
]

+ u2f0(v) − f1(u)v2
∥
∥
∥
∥
≤ (a, b, c, d, u, v),

(2.3)
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for all λ ∈ T = {λ ∈ C : |λ| = 1} and, for all a, b, c, d, u, v ∈ A, j = 0, 1. If there exists a constant m,
0 < m < 1 such that

φ(a, b, c, d, u, v) ≤ 4m Min
{

φ

(
a

2
,
b

2
,
c

2
, d,

u

2
,
v

2

)

, φ

(
a

2
,
b

2
, c,

d

2
,
u

2
,
v

2

)}

, (2.4)

for all a, b, c, d, u, v ∈ A, then there exists a unique double quadratic centralizer (L,R) on A
satisfying

∥
∥f0(a) − L(a)

∥
∥ ≤ 1

4(1 −m)
φ(a, a, 0, 0, 0, 0), (2.5)

∥
∥f1(a) − R(a)

∥
∥ ≤ 1

4(1 −m)
φ(a, a, 0, 0, 0, 0), (2.6)

for all a ∈ A.

Proof. From (2.4), it follows that

lim
i

4−iφ
(

2ia, 2ib, 2ic, d, 2iu, 2iv
)

= 0, (2.7)

for all a, b, c, d, u, v ∈ A. Putting j = 0, λ = 1, a = b, c = d = u = v = 0 and replacing a by 2a
in (2.3), we get

∥
∥f0(2a) − 4f0(a)

∥
∥ ≤ φ(a, a, 0, 0, 0, 0), (2.8)

for all a ∈ A. By the above inequality, we have

∥
∥
∥
∥

1
4
f0(2a) − f0(a)

∥
∥
∥
∥
≤ 1

4
φ(a, a, 0, 0, 0, 0), (2.9)

for all a ∈ A. Consider the set X := {g : A → A | g(0) = 0} and introduce the generalized
metric on X:

d
(

h, g
)

:= inf
{

C ∈ R
+ :

∥
∥g(a) − h(a)

∥
∥ ≤ Cφ(a, a, 0, 0, 0, 0), ∀a ∈ A}

. (2.10)

It is easy to show that (X, d) is complete. Now, we define the linear mapping Q : X → X by

Q(h)(a) =
1
4
h(2a), (2.11)

for all a ∈ A. Given g, h ∈ X, let C ∈ R
+ be an arbitrary constant with d(g, h) ≤ C, that is

∥
∥g(a) − h(a)

∥
∥ ≤ Cφ(a, a, 0, 0, 0, 0), (2.12)
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for all a ∈ A. Substituting a by 2a in the inequality (2.12) and using (2.4) and (2.11), we have

∥
∥
(

Qg
)

(a) − (Qh)(a)
∥
∥ =

1
4
∥
∥g(2a) − h(2a)

∥
∥

≤ 1
4
Cφ(2a, 2a, 0, 0, 0, 0)

≤ Cmφ(a, a, 0, 0, 0, 0),

(2.13)

for all a ∈ A. Hence, d(Qg,Qh) ≤ Cm. Therefore, we conclude that d(Qg,Qh) ≤ md(g, h),
for all g, h ∈ X. It follows from (2.9) that

d
(

Qf0, f0
) ≤ 1

4
. (2.14)

By Theorem 2.1, Q has a unique fixed point L : A → A in the set X1 = {h ∈
X, d(f0, h) < ∞}. On the other hand,

lim
n→∞

f0(2na)
4n

= L(a), (2.15)

for all a ∈ A. By Theorem 2.1 and (2.14), we obtain

d
(

f0, L
) ≤ 1

1 −m
d
(

Qf0, L
) ≤ 1

4(1 −m)
, (2.16)

that is, the inequality (2.5) is true, for all a ∈ A. Now, substitute 2na and 2nb by a and b
respectively, put c = d = u = v = 0 and j = 0 in (2.15). Dividing both sides of the resulting
inequality by 2n, and letting n goes to infinity, it follows from (2.7) and (2.3) that

L(λa + λb) + L(λa − λb) = 2λ2L(a) + 2λ2L(b), (2.17)

for all a, b ∈ A and λ ∈ T. Putting λ = 1 in (2.17) we have

L(a + b) + L(a − b) = 2L(a) + 2L(b), (2.18)

for all a, b ∈ A. Hence L is a quadratic mapping.
Letting b = 0 in (2.17), we get L(λa) = λ2L(a), for all a, b ∈ A and λ ∈ T. We can show

from (2.18) that L(ra) = r2L(a) for any rational number r. It follows from the continuity of f0
and φ that for each λ ∈ R, L(λa) = λ2L(a). So,

L(λa) = L

(
λ

|λ| |λ|a
)

=
λ2

|λ|2
L(|λ|a) = λ2

|λ|2
|λ|2L(a) = λ2L(a), (2.19)
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for all a ∈ A and λ ∈ C(λ/= 0). Therefore, L is quadratic homogeneous. Putting j = 0, a = b =
u = v = 0 in (2.3) and replacing 2nc by c, we obtain

∥
∥
∥
∥

f0(2ncd)
4n

− f0(2nc)
4n

d2
∥
∥
∥
∥
≤ 1

2
4−nφ(0, 0, 2nc, d, 0, 0). (2.20)

By (2.7), the right hand side of the above inequality tends to zero as n → ∞. It follows from
(2.15) that L(cd) = L(c)d2, for all c, d ∈ A. Therefore L is a quadratic left centralizer. Also,
one can show that there exists a unique mapping R : A → A which satisfies

lim
n→∞

f1(2na)
4n

= R(a), (2.21)

for all a ∈ A. The same manner could be used to show that R is a quadratic right centralizer.
If we substitute u and v by 2nu and 2nv in (2.3) respectively, and put a = b = c = d = 0, and
divide both sides of the obtained inequality by 8n, then we get

∥
∥
∥
∥
u2 f0(2

nv)
2n

− f1(2nu)
2n

v2
∥
∥
∥
∥
≤ 8−nφ(0, 0, 0, 0, 2nu, 2nv). (2.22)

Passing to the limit as n → ∞, and again from (2.7), we conclude that u2L(v) = R(u)v2, for
all u, v ∈ A. Therefore (L,R) is a quadratic double centralizer onA. This completes the proof
of this theorem.

Now, we establish the superstability of double quadratic centralizers on Banach
algebras as follows.

Corollary 2.3. Let 0 < m < 1, p < 2 with 2p−2 ≤ m, let fj : A → A be continuous mappings with
fj(0) = 0 (j = 0, 1), and let

∥
∥
∥fj(λa + λb + cd) + fj(λa − λb + cd) − 2λ2

[

fj(a) + fj(b)
]

− 2
[
(

1 − j
)(

fj(c)d2
)1−j

+ j
(

c2fj(d)
)j
]

+u2f0(v) − f1(u)v2
∥
∥
∥

≤ (‖a‖p + ‖b‖p + ‖c‖p + ‖u‖p + ‖v‖p)‖d‖p,

(2.23)

for all λ ∈ T = {λ ∈ C : |λ| = 1} and, for all a, b, c, d, u, v ∈ A, j = 0, 1. Then (f0, f1) is a double
quadratic centralizer on A.

Proof. The result follows from Theorem 2.2 by putting φ(a, b, c, d, u, v) = (‖a‖p + ‖b‖p + ‖c‖p +
‖u‖p + ‖v‖p)‖d‖p.
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3. Stability of Quadratic Multipliers

Assume thatA is a complex Banach algebra. Recall that a mapping T : A → A is a quadratic
multiplier if T is a quadratic homogeneous mapping, and a2T(b) = T(a)b2, for all a, b ∈ A (see
[16]). We investigate the stability of quadratic multipliers.

Theorem 3.1. Let f : A → A be a continuous mapping with f(0) = 0 and let φ : A4 → [0,∞) be
a function which is continuous in the first and second variables such that

∥
∥
∥f(λa + λb) + f(λa − λb) − 2λ2

[

f(a) + f(b)
]

+ c2f(d) − f(c)d2
∥
∥
∥ ≤ φ(a, b, c, d), (3.1)

for all λ ∈ T and all a, b, c, d ∈ A. Suppose exists a constant m, 0 < m < 1, such that

φ(2a, 2b, 2c, 2d) ≤ 4mφ(a, b, c, d), (3.2)

for all a, b, c, d ∈ A. Then there exists a unique multiplier T on A satisfying

∥
∥f(a) − T(a)

∥
∥ ≤ 1

4(1 −m)
φ(a, a, 0, 0), (3.3)

for all a ∈ A.

Proof. It follows from (3.2) that

limn→∞
φ(2na, 2nb, 2nc, 2nd)

4n
= 0, (3.4)

for all a, b, c, d ∈ A. Putting λ = 1, a = b, c = d = 0 in (3.1), we obtain

∥
∥f(2a) − 4f(a)

∥
∥ ≤ φ(a, a, 0, 0), (3.5)

for all a ∈ A. Thus

∥
∥
∥
∥
f(a) − 1

4
f(2a)

∥
∥
∥
∥
≤ 1

4
φ(a, a, 0, 0), (3.6)

for all a ∈ A. Now we set X := {h : A → A | h(0) = 0} and introduce the generalized metric
on X as

d
(

g, h
)

:= inf
{

C ∈ R
+ :

∥
∥g(a) − h(a)

∥
∥ ≤ Cφ(a, a, 0, 0), ∀a ∈ A}

. (3.7)

It is easy to show that (X, d) is complete. Consider the mapping Φ : X → X defined by
Φ(h)(a) = 1/4h(2a), for all a ∈ A. By the same reasoning as in the proof of Theorem 2.2, Φ is
strictly contractive on X. It follows from (3.6) that d(Φf, f) ≤ (1/4). By Theorem 2.1, Φ has a
unique fixed point in the set X1 := {h ∈ X : d(f, h) < ∞}. Let T be the fixed point of Φ. Then
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T is the unique mapping with T(2a) = 4T(a), for all a ∈ A such that there exists C ∈ (0,∞)
satisfying

∥
∥T(x) − f(x)

∥
∥ ≤ Cφ(a, a, 0, 0), (3.8)

for all a ∈ A. On the other hand, we have limn→∞d(Φn(f), T) = 0. Thus

limn→∞
1
4n

f(2nx) = T(x), (3.9)

for all a ∈ A. Hence

d
(

f, T
) ≤ 1

1 −m
d
(

T,Φ
(

f
)) ≤ 1

4(1 −m)
. (3.10)

This implies the inequality (3.3). It follows from (3.1), (3.4) and (3.9) that

∥
∥
∥T(λa + λb) + T(λa − λb) − 2λ2T(a) − 2λ2T(b)

∥
∥
∥

= limn→∞
1
4n

∥
∥
∥T(2n(λa + λb)) + T(2n(λa − λb)) − 2λ2T(2na) − 2λ2T(2nb)

∥
∥
∥

≤ limn→∞
1
4n

φ(2na, 2nb, 0, 0) = 0,

(3.11)

for all a, b ∈ A. Thus

L(λa + λb) + L(λa − λb) = 2λ2L(a) + 2λ2L(b), (3.12)

for all a, b ∈ A and λ ∈ T. Letting b = 0 in (3.14), we have L(λa) = λ2L(a), for all a, b ∈ A
and λ ∈ T. Now, it follows from the proof of Theorem 2.1 and continuity of f and φ that T is
C-linear. If we substitute c and d by 2nc and 2nd in (3.1), respectively, and put a = b = 0 and
we divide the both sides of the obtained inequality by 8n, we get

∥
∥
∥
∥
c2
f(2nd)

4n
− f(2nc)

4n
d2

∥
∥
∥
∥
≤ φ(0, 0, 2nc, 2nd)

8n
. (3.13)

Passing to the limit as n → ∞, and from (3.4) we conclude that c2T(d) = T(c)d2, for all
c, d ∈ A.

Using Theorem 3.1, we establish the superstability of quadratic multipliers on Banach
algebras.
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Corollary 3.2. Let 0 < m < 1, p < 2/3 with 23p−2 ≤ m, and f : A → A be a continuous mapping
with f(0) = 0, and let

∥
∥
∥f(λa + λb) + f(λa − λb) − 2λ2

[

f(a) + f(b)
]

+ c2f(d) − f(c)d2
∥
∥
∥ ≤ (‖a‖p + ‖ab‖p)‖c‖p‖d‖p,

(3.14)

for all λ ∈ T = {λ ∈ C : |λ| = 1} and, for all a, b, c, d ∈ A. Then f is a quadratic multiplier on A.

Proof. The results follows from Theorem 3.1 by putting φ(a, b, c, d) = (‖a‖p + ‖b‖p)‖c‖p‖d‖p.
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