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Criteria for nonsquareness and locally uniform nonsquareness of Orlicz-Bochner function spaces
equipped with Luxemburg norm are given. We also prove that, in Orlicz-Bochner function
spaces generated by locally uniform nonsquare Banach space, nonsquareness and locally uniform
nonsquareness are equivalent.

1. Introduction

A lot of nonsquareness concepts in Banach spaces are known (see [1]). Nonsquareness are
important notions in geometry of Banach space. One of reasons is that these properties are
strongly related to the fixed point property (see [2]). The criteria for nonsquareness and
locally uniform nonsquareness in the classical Orlicz function spaces have been given in [3, 4]
already. However, because of the complicated structure of Orlicz-Bochner function spaces
equipped with the Luxemburg norm, the criteria for nonsquareness and locally uniform
nonsquareness of them have not been found yet. The aim of this paper is to give criteria
for nonsquareness and locally uniform nonsquareness of Orlicz-Bochner function spaces
equipped with Luxemburg norm.

Let (X, || - ||) be a real Banach space. S(X) and B(X) denote the unit sphere and unit
ball, respectively. Let us recall some geometrical notions concerning nonsquareness. A Banach
space X is said to be nonsquare if for any x, y € S(X) we have min{||(x+v) /2|, ||(x-y)/2||} <
1. A Banach space X is said to be uniformly nonsquare if there exists & > 0 such that for any
x,y € S(X), min{||(x +y)/2|,||(x —y)/2||} <1- 6. A Banach space X is said to be locally
uniformly nonsquare if for any x € S(X), there exists 6, > 0 such that min{||(x +y)/2]|, || (x -
y¥)/2||} <1 - 64, where y € S(X).
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Let R be set of real numbers. A function M : R — R* is called an N-function if M is
convex, even, M(0) = 0, M(u) > 0 (u#0) and lim, ,o(M(u)/u) = 0, and lim,, _.o(M (1) /u)
= oo.
Let (T,%, ) be a nonatomic measurable space. p denotes right derivative of M.

Moreover, for a given Banach space (X, || - ||), we denote by Xr the set of all strongly u-
measurable function from T to X, and for each u € X7, we define the modular of u by

o) = fGM<||u<t>||>dt. (L1)

Put

Ly = {u(t) € Xr: fG M(|[Au(t)||)dt < oo for some A > o}. (1.2)

The linear set Ly endowed with the Luxemburg norm

Jull = inf{ A >0 pM<%> <1} (1.3)

is a Banach space. We say that an Orlicz function M satisfies condition A, (M € A;) if there
exist K > 2 and ug > 0 such that

MQu) < KM(u) (u>up). (1.4)

First let us recall a known result that will be used in the further part of the paper.

Lemma 1.1 (see [3]). Suppose M € A,. Then

pm(un) — 0= |lunll — 0, pm(un) — 1 [lunl| — 1(n — o0). (1.5)

2. Main Results
Theorem 2.1. Ly is nonsquare if and only if
(a) M € Ay;
(b) X is nonsquare.
In order to prove the theorem, we give a lemma.

Lemma 2.2. If X is nonsquare, then for any x,y # 0, we have

lell + [l [| = min{{|c + ], [|x = ]|} > 0. 2.1)
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Proof.

Case 1. If ||x|| < |ly|l, then

Il [l
ool < o 1o+ (1= )l
vl [l
(2.2)
< lxll =+ [l + ||y [ = Nl
=[xl + Iy |
or
[l =yl < Il + [|y]l- (2:3)
Case 2. If ||x|| > |ly||, then
[l Jxll
X+ <=5 x+ +
levsl < |35 +o) + (g 1) - Iod
(2.4)
<[yl + Myl + Il =l
= [l + [l I
or
[l =yl < llxll + [l - (25)
This implies ||x|| + [|y|| — min{||x + y||, [[x — y||} > 0. This completes the proof. O

Proof of Theorem 2.1. (a) Necessity. Suppose that M ¢ A,, then there exist u € S(Lps) and 6 > 0
such that pp(u) =1-6 < 1. Pickc>Osuchthat E = {t € T : ||u(t)|| < ¢} is not a null set. Since
M ¢ A,, there exist sequence {r, },.; and disjont subsets {E, };-; of E such that

Ty > 2nc, M((l + l)r,,) > 2"M<<1 + i)m), 2"M<<1 + i)m)yEn =27"6.
n 2n 2n

(2.6)
Therefore, if we define v = 3,77, 1, xE,, then for any I > 1, we have
[ee] [ee] 1 " 1
pm(Iv) = 3 pu(Irne,) > ZPM<<1 ’ E)””‘E") Zz PM(( )”’XE )
n=1 n=m
< n 1 < n -n
zgnz M<<1+%>rn>‘ul:"n=’§12 2716 = oo, (2.7)

pm(©) = D M(rp)UEy < D M(ry + ¢)uE, < ZM((l + %)rn),uEn = 6.
n=1 n=1 n=1
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This yields
=3
ol =1,  pmu£0)<pp(u)+ D M(ry+c)pE, =1-6+6=1. (2.8)
n=1
Hence, |[u+v| < 1.But ||lu+9| +||lu—-2v| < |]2u|| = 2, and we deduce that |[u+v| = |lu-v| = 1.

Moreover, we have ||(1/2)(u +v) + (1/2)(u-v)|| =1and ||(1/2)(u+v) - (1/2)(u-0)|} =1,

a contradiction with nonsquareness of L.

If (b) is not true, then there exist x,y € S(X) such that ||x|| = |ly|l = [|(1/2)(x + y)|| =

[1(1/2)(x - y)||. Pick & > 0 such that [. M(a)dt = 1. Put
u(t)=a-x-xr(t), o(t)=a -y yr(t).

Then we have

pu) = | Mlaxipdt = [ M@t =1,

pm(v) = LM(”&(y”)dt = L M(a)dt = 1.

It is easy to see u, v € S(Ly1). We know that

u(t) + v(t) =a'x+y'

u(t)-o(t)  x-
2 2 -

2 2

xr (o), L.

Hence, we have

() (e 5
(15%) |

It is easy to see (1/2)(u +v), (1/2)(u —v) € S(Lm), a contradiction!
Sufficiency. Suppose that there exists u, v € S(Lps) such that

a- x_yH>dt=J M(a)dt = 1.
2 T

1
Jull = ol = | 3+ ) -1

Jge-o

We will derive a contradiction for each of the following two cases.

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)
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Case 1. uy({t €T : lu®)||£0}Nn{teT:|lo®)|#£0}) =0.Let G= {t € T : ||u(t)|| #0}. Hence, we
have

3P0+ 5om@) = 5 [ Muar 3 [ M ar
=5 | M) oo 5 [ M+ ol

> L, M<% u(t) + v(t)||)dt + L\G M<%||u(t) + v(t)||)dt (2.14)

_ L M(%llu(t) ; v(t)||>dt

:PM<%(M+U))-

Since M € A,, we have pp(1) = pm(v) = 1. Hence, par((1 +v)/2) < 1. This implies ||(u +
v)/2]| < 1, a contradiction!

Case 2. u({t € T : lu)|#0} n{t € T : ||lv()||#0}) > 0. By Lemma 2.2, without loss of
generality, we may assume that there exists Ty C {t € T : ||[u(t)||#0} N {t € T : ||v(t)|| #0} such
that |Ju(®)|| + lo@®)|| > [|u(t) + v(#)||, t € Ty and uT; > 0. Therefore,

3o+ 3pn()= 3 [ M@t + 3 | Mot
- f M@ty + 2 M@
;2 2
T

> f M(%||u(t>||+%nvmn)dn T\TlMG””(t)”*%””(””)dt (2.15)

> fn M(%Hu(t) + v(t)||>dt + . M(%Hu(t) + v(t)||>dt

o (M22),

Since M € A, we have pp(u) = pm(v) = 1. Hence, pm((u + v)/2) < 1. This implies
[[(# +v)/2]| <1, acontradiction! O
Theorem 2.3. L is locally uniformly nonsquare if and only if

(a) M e Az,‘

(b) X is locally uniformly nonsquare.
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In order to prove the theorem, we give a lemma.

Lemma 2.4. If X is locally uniformly nonsquare, then

(a) Forany x#0, r1 > rp >0, we have

infillx| + ly[| - min{{lx + y[l. x - yll} : x € X2 < fly[ < i} >0 (2.16)

7

(b) If x,, — x, then lim,,_, ,6(x,,) = 6(x), where

6(x) = inf{llxll + |lyl| - min{[lx+y[l, 2 -y} : x € X, < [lyl| < 71} (2.17)

Proof. (a) Since X is locally uniformly nonsquare, we have 77, > 0 and 7, = A7y, where A > 0
and

e = inf{[lx] + [y ]| - minlx+ y[l, [|x =y} - <l = [ly[| > 0}. (2.18)

In fact, since X is locally uniformly nonsquare, we have

e = inf{ x| + |ly|| - min{ [l +yl, [lx =y} - fxll = [|y[| > 0}

= ||x|] ~inf{2 - min{
y

Max = inf{[PAx]] + [|y|| - min{|lAx +y

1 —min{
Ay

= L-inf{flxl + [ly[| - min{{lx+ y]], |

X y
_—— x| = >0t >0,
- MH} Il = vl }

Ax =y}« )l = [ly[| > 0}

x .y
—_— + —|,
el vl H

7

(2.19)

oL
X )Ly

7

=1 inf{||x|| +
Yy

2

Sy NEEE
X _/\y X = _/\y

x =y} lIxl = [lyl >0}

=L 1y
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<1_%> Y +||||y|||I
“Q%) vl

Y )l
< lxll =Nyl + Nyl + Nyl = mayn =

< lxll + |yl = 701ty

Case 1. If ||x|| > [yl then

[l + vl <

or
[l =yl < llxll + [yl = 16l
Case 2. If ||x|| < |ly||, then

[Edl H < |x||>
xX+y +
eyl < “nyn i) I

<l + Nl = 72 + [y | = Il
= lxll + [yl = 7
< llxll + [yl = 7

or
[l =yl < Ml + [y ]| = 715

Therefore, we get, the following inequality

ilylf{||x|| +[ly|| = min{{[x +y|, [|x - y||} : x € X} > min{ne, /jxpx 712} >

holds.

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(b1) Suppose that limsup,, _, _6(x,) > 6(x), where x, — x (n — oo). Then there exist
a > 0 and subsequence {n} of {n}, such that 6(x,) —6(x) > a. By definition of 6(x), there exist

Yo € X such that

. a
Il + flyoll = min{llx + woll, [|x = woll} <6(0) + 5, ri < |lwoll <72

We will derive a contradiction for each of the following two cases.

(2.25)
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Case 1. [|x + yoll = [lx = yol|. Since x, — x (1 — o), there exists 1o such that ||x,, - x|| < a/8.
Therefore,
%ol + 190l = 1% + woll < llll + 1wy = X1l + |0l = [l %, + w0l
< llxll + lloem = xI =+ [yl = (Il + yoll = [1xn, = 1)
= llxll+ {|yoll = [ + o[ + 2llxn, — x|
< 6(x) + g + 212, — || (2.26)
<O(x)+ g +2- g

=06(x) + ga.

This implies 6 (x,,) < 6(x) + (3/8)a, a contradiction!

Case 2. ||x —yol| # ||x + yo||- Without loss of generality, we may assume ||x — yol| > ||x + yol| + 7,
where r > 0. Since x, — x (n — o0), there exists ng such that ||x,,—x|| < min{(1/8)a, (1/8)r}.
Therefore, we have

|25 = ol = || = yo + xn, — x|

> || = yol| = llxn, — x|l

1
> - yoll - o7,

(2.27)
[l + yol| = [| + yo + xn, — ]|
< [l + ol + ll2cn, — x|
< x>+ !
< vol| + g
This implies
1 1 1
I~ 3ol 2 e =yoll = 2r 2 e yoll #7272 v goll + 2r 2 e w0l 229)
Similarly, we have
3
%o || + ||wo| = || + wol| < 6(x) + g% (2.29)
Therefore, we have
. 3
N2, | + |0 || = min{ || xn, + yol|, |20 — vo||} < 6(x) + g (2.30)

This implies 6(x,,) < 6(x) + (3/8)a, a contradiction! Hence, limsup,, _, 6(x,) < 6(x).
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(b2) Suppose that lim inf, ., 6(x,) < 6(x), where x, — x (n — o0). Then there exist
b > 0 and subsequence {n} of {n}, such that 6(x) — 6(x,) > b. Since x, — x (n — o), then
there exist ng € N such that ||x,, — x,|| < (1/8)b, whenever n > ny. By definition of 6(xy,),
there exist 19 € X such that

. b
e I+ ol = min{{lxn + yoll, %m0 = yoll} < 6Cen) + 5, r2<lwoll 7. (231)
Therefore, we have
ll2ull + || o]l = min{{[xn + yol|, [[xn = yol|}

= |2y = Xy + %] + ||y0 || = min{||2n, — X, + X0 + V0

Xy = Xny + Xn — Yo|}

7

1 .
< o, || + gb + ||yo|| —mm{”xno + Yol|,

1
%y~ ol + b
(2.32)

. 1
= lleng | + lyoll = min{[xu, + yoll, llxn = woll} + 7P
1 1
< 5(xn0) + gb + Zb
3
<6(xn) + 5b

whenever n > ny. Since x, — x (n — o0), there exists n; > ng such that |17(x) — 7(xy,)| <
(1/8)b, where

1(x) = llxll + [|yol| - min{||x + yol|, [|x - yol| }- (2.33)
Hence, we have
1 1 1 7
1(xp,) > n(x) - §b >6(x) - gb > 6(xp,) +b- gb =06(xp,) + gb. (2.34)
This implies
. 7
1%, || + ||wo || = minf ||xn, + voll, || = vol|} > 6(xn,) + §b’ (2.35)

which contradict (2.32). Hence, lim inf,, _, ,6(x,) > 6(x).
Combing (b1) with (b2), we get lim,, _, ,6(x,,) = 6(x). This completes the proof. O
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Proof of Theorem 2.3. Necessity. By Theorem 2.1, M € A,. If (b) is not true, then there exist
x € S(X), {Yn}ne1 € S(X) such that [|(1/2)(x+y,)|| — land [|(1/2)(x—y,)|| = 1lasn — oo.
Pick & > 0 such that [ M(a)dt = 1. Put

u(t) =a-x-xr(t),v.(t) =a-y, - xr(t). (2.36)
Then we have

pu) = [ M(laxat = | M@t =1,

(2.37)
pm(vy) = ITM(||ayn||)dt = L M(a)dt = 1.
It is easy to see u, v, € S(Lpr). We know that
u(t)+v11(t) :a'x-i_yn XT(t)/ u(t)—Un(t) :a.x_yn XT(t) (238)

2 2 2 2

Moreover, we have M(a-||(x+y,)/2|) < M(a), M(a-||(x~y,)/2|) < M(a). By the dominated
convergence theorem, we have

lim M<D£' ‘x+yn )dt:f limM<a‘ X Yn )dtZJ‘ M(a)dt =1,
n—ow ) 2 rn—om 2 T
(2.39)
lim M<a~ ‘x_y" >dt= limM<a- —Yn )dt=J‘ M(a)dt = 1.
n—ow Jr 2 Tn—ow 2 T

Itis easy to see ppr((1/2)(u+v,)) — 1, pm((1/2)(u-v,)) — lasn — oo. By Lemma 1.1, we
have |[(1/2)(u + v,)|| — 1and ||(1/2)(u -v,)|| — 1asn — oo, a contradiction with locally
uniform nonsquareness of L.

Sufficiency. Suppose that there exist u € S(Lym), {vn}521 C S(Ly) such that [[(1/2)(u +
o)l — LI(1/2)(u—v,)|| - 1asn — oo. We will derive a contradiction for each of the
following two cases.

Case 1. There exist gy > 0, 0y > 0 such that uG,, > &y, where G, = {t € T : ||v,(t)|| > 0p}. Put
/4
H,=13teT: 0y <|v,(H)|| <M —r (2.40)
0
We have

1= [ Moz [ M(oa0lDdt > = (G \ H). 241)
T 0

Gn \HVI



Journal of Inequalities and Applications 11

This implies p(G, \ H,) < (1/4)eo. Hence, pH,, > (1/2)g9. We define a function

7

. . . /4
nt) = ;r;%{”u(t)” + |ly|| = min{ ||u(®) + y||, |u@®) - y||} o0 < ||y|| < M 1<5>} (2.42)

on Ty, where Ty = {t € T : |lu(t)||#0}. By Lemma 2.4, we have 7(t) > 0 p-a.e on Ty. Let
h,(t) — u(t) p-a.e on Ty, where h,, is simple function. Hence,

7

. . 1/ 4
nna)=;r;g{||hn<t>||+||y||—mm{||hn<t>+y ha()-yll} : oo [lyll <M 1<g—0)} (2.43)

is y-measurable. By Lemma 2.4, we have 1, (t) — #(t) p-a.e on Ty. Then #(t) is y-measurable.
Using

* 1 1
T teTy: — t) < =
DiL:Jl{e 0 i+1<11()_i}, (2.44)
we get that there exists 79 > 0 such that puH < (1/8)go, where

H={teTy:n(t) <2n). (2.45)

LetE,=H,\H, E, = (H,n{t€T: u®)||#0}) \ H, E; = (H,n{teT : |lu(t)| =0}) \ H.1t
is easy to see E, = EL UE2, EL N E2 = ¢ and pE, > (3/8)eo. If t € E}, by Lemma 2.4, we have

[l + [[on (O] = min{[lue(t) + va (D), [|(E) = va (D)} 2 7(E) 2 27p0. (2.46)

Without loss of generality, we may assume that there exists F}, C E}. such that

1
pF, 2 5#5111/ )]l + [loa ()]l = 14(t) + vu ()] > 2110t € F. (2.47)

Moreover, for any u > v > 0, we have
1 1 1 1
EM(u) - M<§u> - I:EM(U) - M(zU):I

1 (“ (1/2)u 1 (° 1/2)v
=3 fo p(t)dt - f p(t)dt - 3 J; p(H)dt + J‘ p(t)dt

0 0

[ - o] [ o]

1 [ 1/2)u
=§fpmw—f p(t)dt

(1/2)v

(1/2)u

> pmw—L p(t)dt > 0.

J—<1/z>u+<1/z>v

(4

1/2)
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Hence, if t € E2, then
—1M v, (D)) + —1M v, (D)) 2 —1M 0p) - M(— 0 (2.49)
> (llon (1) > (llon () 2 2 (00) < > >U. :

Let F, = F} U E2. Then uF, > (1/8)&o. Therefore,

u+27)n>

- %LM(Hu(t)Il)dt - % L M(||o, (B)]])dt - LM<M>dt

%PM(”) + %PM(vn) - PM(

2
) L [%Mﬂlu(t)li) + 2 M(lo(d)l) - M(““(”;—”“)“N »
> L; EM(nu(t)n) + 2 Mloa(d)l) - M(M)] p

! ! [lu(t) + va(1)||
+ Lﬁ [EM(IIu(t)II) + 5M(||vn(t)||) _ M(f)]dt

2 [ MGt glowon) - m(FEGOD) far

[ 2 [3M0o + Moo - e (11O 2O g (250)

> L[ (PO ) g (12 n O
+I Z[EMq'Un(f)ll)—M(”vn(t >]

j M(qo)dt+f [ M(oy) - (%)]dt

- min{M(qo), 5M(o0) - M(%)
. 1 (o))} 1
> min{ M(1), EM(O‘Q) - M( ) 5o
By Lemma 1.1, we have pm(u) = pm(vn) = 1, pp((w +v,)/2) — 1asn — oo. This is in

contradiction with (1/2)pa (1) + (1/2)pm(vn) — pam (1 +v,) /2) > min{ M(10), (1/2) M (00) —
M(op/2)} - (1/8)e.
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Case 2. For any € > 0, 0 > 0, there exists N such that u{t € T : ||v,(t)|| > o} < € whenever
n > N. By the Riesz theorem, without loss of generality, we may assume that v, (t) — 0 p—
a.eonT. Using

{teT:|lu®t)+0} > {teT:

n=1

1 1
<l <3, @51)

we get that there exist > 0 such that uT; < (1/8)uTy, where
Ty ={teT:0<|lult)| <d}, To={teT:|u)|#0}. (2.52)

Since M is N-function, we can choose 0 < h < d such that (1/2)M(d) + (1/2)M(h) — M ((d +
h)/2) > 0. Since v,(t) — Ou— a.e on T, by the Egorov theorem, there exists Ny such that
lon()|| < h,t € F whenever n > Nj, where F C T, u(T \ F) < (1/8)uTy. Next, we will prove
thatif uy > up, > v, > v; >0, then

1 1 U + 01 1 1 Up + 0
SM(ur) + 5 M(o1) - M<T> > 5 M) + 5M(v2) - M<T> (2.53)
In fact, we have
U+ 0

3 M) + 3 M) - M( ) - | M) + 3 M) - M(12))|

2 2

- ey - (1 52) - [ ()

1 (™ (u1+01)/2 1 (o (u1+02) /2
—5 [ poa- [ pa- | Cpwar- [T pos
0 0 0 0
1 (%] 1 (%) (u1+Uz)/2 (u1+v1)/2
= [E J‘ p(Hdt - 5 J‘ p(Hdt| + J p(t)dt - J p(t)dt
0 0 0 0

1 U2 (u1+v2)/2
=-3 f p(t)dt + f p(t)dt

(u1 +’U1)/2

(2.54)

(u1+v2)/2 vy
> f p(t)dt — j p(t)dt > 0.

(u1+v1)/2 (v1+v2) /2
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Moreover, we have

%M(Hl) - M(#) - [%M(uz) - M(#)]

= [% f: p(t)dt - % f: P(t)dt] - U:M)/Z p(t)dt - J‘summ P(t)dt]

1 1751 (u1+v2)/2
=3 f p(t)dt - f p(t)dt

(u2+‘U2)/2

(u1+u2)/2 (u1+v2) /2
> [ - [ pwar 20,

up (u2+Uz)/2

(2.55)

By (2.54) and (2.55), we have

U+ 0

S M) + 3 M(oy) - M( M

)2 %M(uz) + %M(vz) - M(#) (2.56)

This shows thatift e T, =Ty \ (T; U (T \ F)), then

Mol + Men o) - 2 (OLION) 5 aray - 2m( 1), @)

It is easy to see uT, > (1/4)uTy. Therefore,

u+vn>

1 1
EPM(“) + EPM(Un) - PM( >

- % LMﬂlu(t)n)dt + % LM(nvn(t)n)dt - L M<“”<f>+2—vn<f>”>dt

- [ [aM0om + Mo - m (FEZEL)

1 1 n
> [ [3mauon + zmarono - s (OO gy 258)

> Lz [%M(Ilu(t)ll) + 3 M(loa()]) - M(M)] »

> LZ [%M(d) N %M(d) - M<d Jz“ h>]dt

1
- uTy,
ghho

> [%M(d) + %M(d) —M<d;h>

for n large enough. By Lemma 1.1, we have pp(u) =pm(vn) =1, pm((u+v,)/2) — lasn — oo,
which contradicts (1/2)pam(u) +(1/2)pam(vn) —pm((u+v,)/2) > [(1/2)M(d) + (1/2) M(d) -
M((d + h)/2)] - (1/4)uTy, for n large enough. This completes the proof. O
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Corollary 2.5. The following statements are equivalent:

(a) Ly s locally uniformly nonsquare if and only if Ly is nonsquare;

(b) X is locally uniformly nonsquare.
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