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We present a generalized and sharp version of Shafer’s inequality for the inverse tangent function
and a new lower bound of Carlson’s inequality by means of a third order estimate of the inverse
cosine function.

1. Introduction

For x > 0, it is known in the literature that

3
X Carctan x. (1.1)

1+2v1+x2

This inequality was first presented without proof by Shafer [1]. Three proofs of it were later
given in [2]. Shafer’s inequality (1.1) was recently sharpened and generalized by Qi et al. in
[3].

In view of inequality (1.1), we now ask: for each a > 0, what is the largest number b
and what is the smallest number ¢ such that the inequalities

b
- <arctan x < _* (1.2)

1+avl+x? 1+avl+x?

are valid for all x > 0? Theorem 2.1 below answers this question.
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For 0 < x < 1, it is known in the literature that

CVI-x e VAV (13)
2v2+V/1+x (1+x) " '

The inequalities (1.3) were established by Carlson [4] (see also [5, page 246]). Carlson’s
inequalities (1.3) were recently sharpened and generalized by and Guo and Qi in [6, 7]. In
view of the first inequality in (1.3), the following question has been asked: for each v > 0,
what is the largest number A and what is the smallest number y such that the inequalities

AV - v1-
—x S arccos x S u (14)
v+vV1l+x v+vV1l+x

are valid for all 0 < x < 1? In [8], Chen and Mortici answered this question. Also in [8], the
authors proved that for all 0 < x <1, the inequalities

Va-/1-x Va-1-x
/g Sarccosx < —————— (1.5)
a+(1+x) p+(1+x)

hold with best possible constants

3
2*/‘; 7 = 0.0105708962..., p=0. (1.6)

In view of the second inequality in (1.3), we now define the function P(x) by

_ 14
_ % <x<l. (1.7)

P(x)

We are interested in finding the values of the parameters p, g and r such that P(x) is the
best 3rd order approximation of arccos x in a neighborhood of the origin. This is addressed
in Theorem 3.1. Motivated by the result of Theorem 3.1, we establish a new lower bound for
the inverse cosine function in Theorem 3.2.

The following lemma is needed in our present investigation.

Lemma 1.1 (see [9-11]). Let —oo <a<b < oo, and f,g: [a,b] — R be continuous on [a,b] and
differentiable in (a,b). Suppose ¢'#0 on (a,b). If f'(x)/ g (x) is increasing (decreasing) on (a,b),
then so are

f@-f@] o @ -fO)]

. 1.8
[g(x) - g(a)] [g(x) - g(b)] 49

If f'(x)/ g (x) is strictly monotone, then the monotonicity in the conclusion is also strict.
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2. Generalized and Sharp Shafer’s Inequality

Theorem 2.1. The largest number b and the smallest number c required by inequality (1.2) are:

when 0<a<mo/2, b=(xr/2)a, c=1+a,

when /2 <a<2/(xr-2), b=<4<a2—1>>/a2, c=1+a,
(2.1)
when 2/(r-2)<a<?2, b=<4<a2—l>>/a2, c=(r/2)a,

when2<a<oo, b=1+a, c=(x/2)a.

Proof. For x = 0, inequality (1.2) holds for all values of b and c. For x > 0 and for a > 0,
inequality (1.2) is equivalent to

1+ av1+x?)arctanx
, o (Lraviee)arctans )
x
Consider the function f(x) defined by
(1 +avl+ x2> arctan x
fx) = < ;x>0 2.3)
f(0):=1+a.
By an elementary change of variable
x=tant, 0<t< %, (24)
we obtain
t(1 + asect) a
=q(t) = —— t< =
fe0 =8® tant o O<it< 27 (2.5)
f(0)=g(0):=1+a.
Differentiating with respect to ¢ yields
Si;’Zt'(t)— ~h(t), O<t<Z (2.6)
sinf—tcosts ¢ ! 2’
where
2t — sin(2¢
h(t) sin(2t) 2.7)

- 2(sint —tcost)’
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For0<t<ua/2, let

hi(t) = 2t —sin(2t), hy(t) = 2(sint — tcost). (2.8)
Then,
H(t i
,1( ) _ 2sint (2.9)
h, (t) t
is strictly decreasing on (0,sr/2). By Lemma 1.1, the function
hi(t) _ hi(t) - hi(0)
h(t) = = 2.10
D= ) ™ @) ~m0) =1
is strictly decreasing on (0,sr/2), and we have
s . , T
3=, lim k() <h(t) < limh(s) =2, Vie (o, 5). 2.11)

We split into several cases.
Casel. 0<a</2.

By (2.6) and (2.11), ¢'(t) < 0 on (0,7 /2). Therefore, the function g(t) is strictly
decreasing on [0,7r/2). As x = tant is strictly increasing for t € [0,or/2), we see that the
function f(x) is strictly decreasing for x € [0, o0), and we have

. <1 +avl+ x2> arctan x 2.12)
a=f(e0) < f(x) = : <f0)=1+a, VYx>0. 2.
Hence, inequality (1.2) holds for x > 0 with best possible constants
b=—a, c=1+a. (2.13)

Case?2. w/2<a<?2.

By (2.11), the function h(t) is strictly decreasing from (0, v /2) onto (or/2,2). Therefore,
for each a with /2 < a < 2, there exists a unique ¢ = ¢(a) € (0,r/2) such that h(¢) = g, that
is,

2¢ —sin(2¢)

2oing - gcos) " .
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or equivalently

&  a+cosé
sing 1+acosg’

(2.15)

Moreover, it follows from (2.6) that ¢'(t) < 0 on (0,¢), and g'(¢) > 0 on (¢, r/2). Therefore, the
function g(t) is strictly decreasing on (0, ¢) and strictly increasing on (¢, v /2), thus it takes its
unique minimum g(¢) att = ¢. Write (2.5) as

t(a+ cost)

a
O<t< —. 2.16
sint ' st< 2 ( )

g(t) =

Substituting t = ¢ into (2.16) and using (2.15), we get

Gmin = g(§) = % {e (0,%>, (2.17)
or equivalently,
y*+a(2-g)y+a*-g=0, wherey =cos¢. (2.18)
From discriminant
A=(a(2-g8))"-4(a*-g) 20, (2.19)
we obtain
g> 4‘“272‘1) (2.20)

So to summarize, we have

g =1+a, g(3)= lm g)=Ta (2.21)

t— (/2)"

g(t) decreases strictly on (0,¢) with minimum value gmin = g(¢) = 4(a®> - 1)/a? att = ¢ =
arccos[(a* — 2)/a], and increases strictly on (¢, 7/2).

Subcase 2.1. 1+ a = g(0) > g(or/2) = (or/2)a, thatis, r/2 <a <2/(xr -2):
We have

t(1 + asect)

4(a®> -1
HED g < g - e

T
2 = <g0)=1+a, 0<t< > (2.22)
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which, by the elementary change of variable (2.4), can be transformed into

_ 1+aVlt a2 ¢
4(a 1) _ ftand) < f(x) = < +avl+x >arc anx O -1+a xs0 (223)

Hence, inequality (1.2) holds with best possible constants

4(a*>-1)
2

b= , c=1+a. (2.24)

Subcase 2.2. 1+ a=g(0) < g(or/2) = (or/2)a, thatis, 2/(r -2) <a<2:
We have

4 —

=8e)sglt) = tant t—(r/2)” 2

which, by the elementary change of variable (2.4), can be transformed into

4(a2 - 1+ av1+x?)arctanx
-1, = f(tan¢) < f(x) = < ) < f(o0) = %a, x > 0. (2.26)
a?
Hence, inequality (1.2) holds with best possible constants
4((12 - 1) ar
RS ¢c=za. (2.27)

Case 3. 2<a < oo.

By (2.6) and (2.11), g'(t) > 0 on (0,a/2). Therefore, the function g(t) is strictly
increasing on [0,sr/2). As x = tant is strictly increasing for t € [0,7r/2), we see that the
function f(x) is strictly increasing for x € [0, o), and we have

<1 +avl+ x2> arctan x - (2.28)
l+a=f(0) < f(x)= p” <f(oo)=5a, Vx> 0. .
Hence inequality (1.2) holds for x > 0 with best possible constants
b=1+a, c=%a (2.29)

The proof of Theorem 2.1 is complete. O
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Remark 2.2. We would like to remark on three special cases of Theorem 2.1.
(i) Leta = /2. Then b = 7% /4 and ¢ = 1 + (7r/2). Thus inequality (1.2) becomes

(7%/2)x (2+m)x

27\/1—2 <arctanx < x> 0. (230)
+Jr +Xx

2+ 7wVl + a2 B

(ii) Let a = 2/(or —2). Then b = (4 — or) and ¢ = or/(or — 2). Thus inequality (1.2)
becomes

T - ) —2)x <arctanx < i (2.31)
(r-2)+2vV1+22 " T (r-2)+2vV1+ a2 '
(iii) Let a = 2. Then b = 3 and ¢ = . Thus inequality (1.2) becomes
_ %X <arctanx < — 2% x>0 (2.32)
1+2V1+22 T1+2v1+x2 '
Among inequalities (2.30)—(2.32), the upper bound
ax )
(r=2) +2V1+x2 (2.33)

is the best, in the sense that it is the smallest one among the three upper bounds in (2.30)-
(2.32). There is no strict comparison among the three lower bounds in (2.30)-(2.32).

3. A New Lower Bound of Carlson’s Inequality

Theorem 3.1 below determines the values of the parameters p, g, and r which provides the
best function P(x) approximating arccos x.

Theorem 3.1. Let P(x) be defined by (1.7). Then for

a+2 a -2 a
P="p AT Ty GD
one has
-P 2 _
i 2TCCO8 X (x) _r 8' (3.2)
x—0 x3 672

In particular, the speed of the function P(x) approximating arccos x is given by the order estimate
O(x®)asx — 0.
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Proof. The power series expansion of arccos x — P(x) near 0 is

arccos x — P(x) = % —r+ (pr+qr-1)x

+<_12+1 Ll 1ol )z
SPTHSPr =S4T = 2qr = par )x
+<1 UL BN BN SN B M o

SPAT+ T+ 4T+ 2qr+ opr+ Spqr

1, 1 1\ ; 4
—5P r+§pr—6>x +O<x )

It is easy to check that for p, g, r as defined in (3.1), we have

3

2 7=0

pr+qr-1=0 (3.4)
1, 1 1, 1 a
2p r+2pr 2q r 2qr pqr =0,
and so

2)(1 = (7r+2)/? 2_g
arccos x — P(x) = arccos x — ('71-/ )( x) _ Jr

8+ o(x4) (x —0). (3.5)

1+ x) (r-2)/ 72 T 62
O
The next theorem provides a new lower bound for the inverse cosine function.
Theorem 3.2. For0<x <1,
2 1 _ (71'+2)/71'2
(r/2)(1 - x) < arccos x. (3.6)
(1+x)t7 2/
Proof. For x =1, inequality (3.6) clearly holds. We now consider the function
(r-2)/7?
Flx) = 35%) ATCCOS X < x<1. (3.7)
(1 _ x)(]l'+2)/71'2
By an elementary change of variable
x =cos(2t), 0<t< %, (3.8)

we have

V1 +x=+2cost, V1-x =+/2sint, (3.9)
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and F(x) can be rewritten as

Feo = fipy = L2 ) <i<” (3.10)
x) = = , <= .
(vasint)"" !
Differentiating with respect to ¢ yields, for 0 < t < /4,
r (Si“t)(ﬂz+2ﬂ2+(4;”:)(/cﬁs pT £(t) = 4t cos(2t) — ”72 sin(2t) + 2urt. (3.11)
Write
g(t) :=4tcos(2t) - %2 sin(2t) +2art, 0<t< % (3.12)

Motivated by the investigations in [12], we are in a position to prove g(t) > 0 for t € (0,7r/4).
Let

A, t=0,
g(t) a
= 7/ t _/ .
OV k@m - " o1
Jr
/"/ t= ZI

where A and p are constants determined with limits:

t 64— 1672 + 32
- g(t) - = e 0.6704721009...,
=0+ ¢((r/4) — t) o
i (3.14)
t _
p= lim 8() =R g arsazer.
(I

Using Maple we determine Taylor approximation for the function G(t) by the polynomial of
the first order:

128(4 -2 +2 16(4 -2 +2
ppy = BT ram), L6( v 2m) (315)
aT T
which has a bound of absolute error
3 2 _ _
gy o A A8 Z 128 192\ 000379422 (3.16)

a2
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for values t € [0,sr/4]. It is true that
G(t) - (Pi(t) —e1) 20, Pi(t) —e1>0, (3.17)

for t € [0,or/4]. Hence, for t € [0,or/4] it is true that G(t) > 0 and therefore g(t) > 0 and
f'(t) <0fort € (0, /4]. Therefore, the function f(t) is strictly decreasing on (0,7 /4]. As x =
cos(2t) is strictly decreasing on (0, /4], we see that F(x) is strictly increasing for x € [0, 1),
and hence

(1+ )2/ T arccos x

T Vx € [0,1). (3.18)
- X

2 =FO) <F(x) =
By rearranging terms in the last expression, Theorem 3.2 follows. O
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