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An important property is established for higher-order weakly generalized adjacent epiderivatives.
This corrects an earlier result by Wang and Li (2009).

1. Introduction

The concept of higher-order weakly generalized adjacent epiderivatives is introduced, and
an important property is given for the derivatives in [1].

Proposition 1.1. Let E be a nonempty convex subset of X, x, x0 ∈ E, y0 ∈ F(x0). Let F − y0 is
C-convexlike on E, ui ∈ E, vi ∈ F(ui) + C, i = 1, 2, . . . , m − 1. If the set q(x − x0) := {y ∈ Y |
(x − x0, y) ∈ G − T

�(m)
epi(F)(x0, y0, u1 − x0, v1 − y0, . . . , um−1 − x0, vm−1 − y0)} fulfills the weak

domination property for all x ∈ E, then

F(x) − y0 ⊂ d
�(m)
w F

(
x0, y0, u1 − x0, v1 − y0, . . . , um−1 − x0, vm−1 − y0

)
(x − x0) + C. (1.1)

For other notations and definitions, one may refer to [1].
While proving Proposition 1.1 in [1], the authors used the assumption that the F − y0

is C-convexlike (see [2, 3]) on a convex set Ewhich implies cone(epi(F)−(x0, y0)) is a convex
cone. In fact, the assumption may not hold. The following example shows that the case and
Proposition 1.1 may not hold, where one only takesm = 2.
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Example 1.2. Let X = Y = R, C = R+, E = [−1, 2] ⊂ R. Consider a set-valued map F : E → 2Y

defined by

F(x) =

⎧
⎨

⎩

{
y ∈ Y | y ≥ 0

}
, if x ∈ (−1, 2],

{−1}, if x = −1.
(1.2)

Take (x0, y0) = (0, 0) ∈ graph(F), u = 1,v = 0 ∈ F(1) +C. Naturally, F −y0 be C-convexlike on
E, but cone(epi(F) − (x0, y0)) is not a convex cone.

On the other hand, for any x ∈ E, q(x−x0) := {y ∈ Y | (x−x0, y) ∈ G−T�(2)
epi(F)(x0, y0, u−

x0, v − y0)} = C fulfills the weak domination property. Thus, the assumptions of
Proposition 1.1 are satisfied. But, for x = −1 ∈ E,

F(−1) − y0 = {−1},

d
�(m)
w F

(
x0, y0, u − x0, v − y0

)
(−1 − x0) + C = C,

(1.3)

which shows that the inclusion of (1.1) does not hold here.

2. Properties of Higher-Order Weakly Generalized
Adjacent Epiderivatives

In this section, one presents an important property of higher-order weakly generalized
adjacent epiderivatives which is a correction of [1, Proposition 3.14]. Firstly, one gives a
notation of generalized cone-convex set-valued maps.

Definition 2.1. Let F : E → 2Y be a set-valued map, x0 ∈ E, (x0, y0) ∈ graph(F). F is said to be
generalized C-convex at (x0, y0) on E, if cone(epi F − (x0, y0)) is convex.

Remark 2.2. If F is C-convex on convex set E (see [4]), then, F is generalized C-convex at
(x0, y0) ∈ graph(F) on E. But the converse may not hold. The following example shows the
case.

Example 2.3. Let E = [−1, 1] ⊂ R, C = R+. Consider a set-valued map F : E → 2R defined by

F(x) =
{
y ∈ R | y ≥ x2/3

}
, ∀x ∈ E. (2.1)

Take (x0, y0) = (0, 0) ∈ graph(F). Then F is generalized C-convex at (x0, y0) on E, but
F is not C-convex on E.
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Proposition 2.4. Let E be a nonempty convex subset ofX, x, x0 ∈ E, y0 ∈ F(x0). Let F be generalized
C-convex at (x0, y0) on E, ui ∈ E, vi ∈ F(ui) + C, i = 1, 2, . . . , m − 1. If the set q(x − x0) := {y ∈
Y | (x − x0, y) ∈ G − T

�(m)
epi(F)(x0, y0, u1 − x0, v1 − y0, . . . , um−1 − x0, vm−1 − y0)} fulfills the weak

domination property for all x ∈ E, then, for any x ∈ E, one obtains

F(x) − y0 ⊂ d
�(m)
w F

(
x0, y0, u1 − x0, v1 − y0, . . . , um−1 − x0, vm−1 − y0

)
(x − x0) + C. (2.2)

Proof. The proof follows on the lines of [1, Proposition 3.14] by using generalized C-convex
instead of C-convexlike.

Remark 2.5. In [1, Remark 3.15], one should use “generalized cone-convex” instead of “cone-
convexlikeness”. In [1, Theorems 4.5, 4.7, 5.2], one should use “(F,G) is generalized C × D-
convex at (x0, y0, z0) on a nonempty subset E” instead of “(F,G) is C × D-convexlike on a
nonempty convex subset E”.
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