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The aim of the present paper is to establish some fractional q-integral inequalities on the specific
time scale, �t0 = {t : t = t0q

n, n a nonnegative integer} ∪ {0}, where t0 ∈ �, and 0 < q < 1.

1. Introduction

The study of fractional q-calculus in [1] serves as a bridge between the fractional q-
calculus in the literature and the fractional q-calculus on a time scale �t0 = {t : t = t0qn,
n a nonnegative integer} ∪ {0}, where t0 ∈ �, and 0 < q < 1.

Belarbi and Dahmani [2] gave the following integral inequality, using the Riemann-
Liouville fractional integral: if f and g are two synchronous functions on [0,∞), then

Jα
(
fg

)
(t) ≥ Γ(α + 1)

tα
Jαf(t)Jαg(t), (1.1)

for all t > 0, α > 0.
Moreover, the authors [2] proved a generalized form of (1.1), namely that if f and g

are two synchronous functions on [0,∞), then

tα

Γ(α + 1)
Jβ
(
fg

)
(t) +

tβ

Γ
(
β + 1

)Jα
(
fg

)
(t) ≥ Jαf(t)Jβg(t) + Jβf(t)Jαg(t), (1.2)

for all t > 0, α > 0, and β > 0.



2 Journal of Inequalities and Applications

Furthermore, the authors [2] pointed out that if (fi)i=1,2,...,n are n positive increasing
functions on [0,∞), then

Jα
(

n∏

i=1

fi

)

(t) ≥ (
Jαf(1)

)1−n n∏

i=1

Jαfi(t), (1.3)

for any t > 0, α > 0.
In this paper, we have obtained fractional q-integral inequalities, which are quantum

versions of inequalities (1.1), (1.2), and (1.3), on the specific time scale �t0 = {t : t = t0qn,
n a nonnegative integer} ∪ {0}, where t0 ∈ �, and 0 < q < 1. In general, a time scale is an
arbitrary nonempty closed subset of the real numbers [3].

Many authors have studied the fractional integral inequalities and applications. For
example, we refer the reader to [4–6].

To the best of our knowledge, this paper is the first one that focuses on fractional q-
integral inequalities.

2. Description of Fractional q-Calculus

Let t0 ∈ � and define

�t0 =
{
t : t = t0q

n, n a nonnegative integer
} ∪ {0}, 0 < q < 1. (2.1)

If there is no confusion concerning t0, we will denote �t0 by �. For a function f : � → �, the
nabla q-derivative of f is

∇qf(t) =
f
(
qt
) − f(t)

(
q − 1

)
t

(2.2)

for all t ∈ � \ {0}. The q-integral of f is

∫ t

0
f(s)∇s =

(
1 − q

)
t
∞∑

i=0

qif
(
tqi

)
. (2.3)

The fundamental theorem of calculus applies to the q-derivative and q-integral; in particular,

∇q

∫ t

0
f(s)∇s = f(t), (2.4)

and if f is continuous at 0, then

∫ t

0
∇qf(s)∇s = f(t) − f(0). (2.5)
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Let �t1 , �t2 denote two time scales. Let f : �t1 → � be continuous let g : �t1 → �t2 be
q-differentiable, strictly increasing, and g(0) = 0. Then for b ∈ �t1 ,

∫b

0
f(t)∇qg(t)∇t =

∫g(b)

0

(
f ◦ g−1

)
(s)∇s. (2.6)

The q-factorial function is defined in the following way: if n is a positive integer, then

(t − s)(n) = (t − s)
(
t − qs

)(
t − q2s

)
· · ·

(
t − qn−1s

)
. (2.7)

If n is not a positive integer, then

(t − s)(n) = tn
∞∏

k=0

1 − (s/t)qk

1 − (s/t)qn+k
. (2.8)

The q-derivative of the q-factorial function with respect to t is

∇q(t − s)(n) =
1 − qn

1 − q
(t − s)( n−1), (2.9)

and the q-derivative of the q-factorial function with respect to s is

∇q(t − s)(n) = −1 − qn

1 − q

(
t − qs

)(n−1)
. (2.10)

The q-exponential function is defined as

eq(t) =
∞∏

k=0

(
1 − qkt

)
, eq(0) = 1. (2.11)

Define the q-Gamma function by

Γq(ν) =
1

1 − q

∫1

0

(
t

1 − q

)ν−1
eq
(
qt
)∇t, ν ∈ �+ . (2.12)

Note that

Γq(ν + 1) = [ν]qΓq(ν), ν ∈ �+ , where [ν]q :=
1 − qν

1 − q
. (2.13)

The fractional q-integral is defined as

∇−ν
q f(t) =

1
Γq(ν)

∫ t

0

(
t − qs

)(ν−1)
f(s)∇s. (2.14)
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Note that

∇−ν
q (1) =

1
Γq(ν)

q − 1
qν − 1

t(ν) =
1

Γq(ν + 1)
t(ν). (2.15)

More results concerning fractional q-calculus can be found in [1, 7–9].

3. Main Results

In this section, we will state our main results and give their proofs.

Theorem 3.1. Let f and g be two synchronous functions on �t0 . Then for all t > 0, ν > 0, we have

∇−ν
q

(
fg

)
(t) ≥ Γq(ν + 1)

t(ν)
∇−ν

q f(t)∇−ν
q g(t). (3.1)

Proof. Since f and g are synchronous functions on �t0 , we get

(
f(s) − f

(
ρ
))(

g(s) − g
(
ρ
)) ≥ 0 (3.2)

for all s > 0, ρ > 0. By (3.2), we write

f(s)g(s) + f
(
ρ
)
g
(
ρ
) ≥ f(s)g

(
ρ
)
+ f

(
ρ
)
g(s). (3.3)

Multiplying both side of (3.3) by (t − qs)(ν−1)/Γq(ν), we have

(
t − qs

)(ν−1)

Γq(ν)
f(s)g(s) +

(
t − qs

)(ν−1)

Γq(ν)
f
(
ρ
)
g
(
ρ
)

≥
(
t − qs

)(ν−1)

Γq(ν)
f(s)g

(
ρ
)
+

(
t − qs

)(ν−1)

Γq(ν)
f
(
ρ
)
g(s).

(3.4)

Integrating both sides of (3.4) with respect to s on (0, t), we obtain

1
Γq(ν)

∫ t

0

(
t − qs

)(ν−1)
f(s)g(s)∇s +

1
Γq(ν)

∫ t

0

(
t − qs

)(ν−1)
f
(
ρ
)
g
(
ρ
)∇s

≥ 1
Γq(ν)

∫ t

0

(
t − qs

)(ν−1)
f(s)g

(
ρ
)∇s +

1
Γq(ν)

∫ t

0

(
t − qs

)(ν−1)
f
(
ρ
)
g(s)∇s.

(3.5)
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So,

∇−ν
q

(
fg

)
(t) + f

(
ρ
)
g
(
ρ
) 1
Γq(ν)

∫ t

0

(
t − qs

)(ν−1)∇s

≥ g
(
ρ
)

Γq(ν)

∫ t

0

(
t − qs

)(ν−1)
f(s)∇s +

f
(
ρ
)

Γq(ν)

∫ t

0

(
t − qs

)(ν−1)
g(s)∇s.

(3.6)

Hence, we have

∇−ν
q

(
fg

)
(t) + f

(
ρ
)
g
(
ρ
)∇−ν

q (1) ≥ g
(
ρ
)∇−ν

q

(
f
)
(t) + f

(
ρ
)∇−ν

q

(
g
)
(t). (3.7)

Multiplying both side of (3.7) by (t − qρ)(ν−1)/Γq(ν), we obtain

(
t − qρ

)(ν−1)

Γq(ν)
∇−ν

q

(
fg

)
(t) +

(
t − qρ

)(ν−1)

Γq(ν)
f
(
ρ
)
g
(
ρ
)∇−ν

q (1)

≥
(
t − qρ

)(ν−1)

Γq(ν)
g
(
ρ
)∇−ν

q f(t) +

(
t − qρ

)(ν−1)

Γq(ν)
f
(
ρ
)∇−ν

q g(t).

(3.8)

Integrating both side of (3.8) with respect to ρ on (0, t), we get

∇−ν
q

(
fg

)
(t)

∫ t

0

(
t − qρ

)(ν−1)

Γq(ν)
∇ρ +

∇−ν
q (1)

Γq(ν)

∫ t

0
f
(
ρ
)
g
(
ρ
)(
t − qρ

)(ν−1)∇ρ

≥
∇−ν

q f(t)

Γq(ν)

∫ t

0

(
t − qρ

)(ν−1)
g
(
ρ
)∇ρ +

∇−ν
q g(t)

Γq(ν)

∫ t

0

(
t − qρ

)(ν−1)
f
(
ρ
)∇ρ.

(3.9)

Obviously,

∇−ν
q

(
fg

)
(t) ≥ 1

∇−ν
q (1)

∇−ν
q f(t)∇−ν

q g(t) =
Γq(ν + 1)

t(ν)
∇−ν

q f(t)∇−ν
q g(t) (3.10)

and the proof is complete.

The following result may be seen as a generalization of Theorem 3.1.

Theorem 3.2. Let f and g be as in Theorem 3.1. Then for all t > 0, ν > 0, μ > 0 we have

t(ν)

Γq(ν + 1)
∇−μ

q

(
fg

)
(t) +

t(μ)

Γq
(
μ + 1

)∇−ν
q

(
fg

)
(t) ≥ ∇−ν

q f(t)∇−μ
q g(t) +∇−μ

q f(t)∇−ν
q g(t). (3.11)
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Proof. By making similar calculations as in Theorem 3.1 we have

(
t − qρ

)(μ−1)

Γq
(
μ
) ∇−ν

q

(
fg

)
(t) +∇−ν

q (1)

(
t − qρ

)(μ−1)

Γq
(
μ
) f

(
ρ
)
g
(
ρ
)

≥
(
t − qρ

)(μ−1)

Γq
(
μ
) g

(
ρ
)∇−ν

q f(t) +

(
t − qρ

)(μ−1)

Γq
(
μ
) f

(
ρ
)∇−ν

q g(t).

(3.12)

Integrating both side of (3.12) with respect to ρ on (0, t), we obtain

∇−ν
q

(
fg

)
(t)

∫ t

0

(
t − qρ

)(μ−1)

Γq
(
μ
) ∇ρ +

∇−ν
q (1)

Γq
(
μ
)
∫ t

0
f
(
ρ
)
g
(
ρ
)(
t − qρ

)(μ−1)∇ρ

≥
∇−ν

q f(t)

Γq
(
μ
)

∫ t

0

(
t − qρ

)(μ−1)
g
(
ρ
)∇ρ +

∇−ν
q g(t)

Γq
(
μ
)

∫ t

0

(
t − qρ

)(μ−1)
f
(
ρ
)∇ρ.

(3.13)

Thus, (3.11) holds for all t > 0, ν > 0, μ > 0, so the proof is complete.

Remark 3.3. The inequalities (3.1) and (3.11) are reversed if the functions are asynchronous
on �t0 (i.e., (f(x) − f(y))(g(x) − g(y)) ≤ 0, for any x, y ∈ �t0).

Theorem 3.4. Let (fi)i=1,...,n be n positive increasing functions on �t0 . Then for any t > 0, ν > 0 we
have

∇−ν
q

(
n∏

i=1

fi

)

(t) ≥
(
∇−ν

q (1)
)1−n n∏

i=1

∇−ν
q fi(t). (3.14)

Proof. We prove this theorem by induction.
Clearly, for n = 1, we have

∇−ν
q

(
f1
)
(t) ≥ ∇−ν

q

(
f1
)
(t), (3.15)

for all t > 0, ν > 0.
For n = 2, applying (3.1), we obtain

∇−ν
q

(
f1f2

)
(t) ≥

(
∇−ν

q (1)
)−1∇−ν

q

(
f1
)
(t)∇−ν

q

(
f2
)
(t), (3.16)

for all t > 0, ν > 0.
Suppose that

∇−ν
q

(
n−1∏

i=1

fi

)

(t) ≥
(
∇−ν

q (1)
)2−n n−1∏

i=1

∇−ν
q fi(t), t > 0, ν > 0. (3.17)
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Since (fi)i=1,...,n are positive increasing functions, then (
∏n−1

i=1 fi)(t) is an increasing function.
Hence, we can apply Theorem 3.1 to the functions

∏n−1
i=1 fi = g, fn = f . We obtain

∇−ν
q

(
n∏

i=1

fi

)

(t) = ∇−ν
q

(
fg

)
(t) ≥

(
∇−ν

q (1)
)−1

∇−ν
q

(
n−1∏

i=1

fi

)

(t)∇−ν
q

(
fn
)
(t). (3.18)

Taking into account the hypothesis (3.17), we obtain

∇−ν
q

(
n∏

i=1

fi

)

(t) ≥
(
∇−ν

q (1)
)−1

((
∇−ν

q (1)
)2−n

(
n−1∏

i=1

∇−ν
q fi

)

(t)

)

∇−ν
q

(
fn
)
(t) (3.19)

and this ends the proof.
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