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Let L = −(∂2/∂x2 + (2α + 1/x)(∂/∂x) + x2(∂2/∂t2)); (x, t) ∈ (0,+∞) × R, where α ≥ 0. Then L can
generate a hypergroupwhich is called Laguerre hypergroup, andwe denote this hypergroup byK.
In this paper, we will consider the Littlewood-Paley g-functions on K and then we use it to prove
the Hölmander multipliers on K.

1. Introduction and Preliminaries

In [1], the authors investigated Littlewood-Paley g-functions for the Laguerre semigroup. Let

Lα =
d∑

i=1

xi
∂2

∂x2i
+ (αi + 1 − xi) ∂

∂xi
, (1.1)

where α = (α1, . . . , αd), xi > 0, then define the following Littlewood-Paley function Gα by

Gαf(x) =
(∫∞

0

∣∣t∇αP
α
t f(x)

∣∣2dt
t

)1/2

, (1.2)

where∇α = (∂t,
√
x1∂x1 , . . . ,

√
xd∂xd) and P

α
t is the Poisson semigroup associated toLα. In [1],

the authors prove that Gα is bounded on Lp(μα) for 1 < p < ∞. In this paper, we consider the
following differential operator

L = −
(

∂2

∂x2
+
2α + 1
x

∂

∂x
+ x2 ∂

2

∂t2

)
; (x, t) ∈ (0,+∞) × R, (1.3)
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where α ≥ 0. It is well known that it can generate a hypergroup (cf. [2, 3] or [4]). We will
define Littlewood-Paley g-functions associated to L and prove that they are bounded on
Lp(K) for 1 < p < ∞. As an application, we use it to prove the Hömander multiplier theorem
on K.

Let K = [0,∞) × R equipped with the measure

dmα(x, t) =
1

πΓ(α + 1)
x2α+1dxdt, α ≥ 0. (1.4)

We denotes by Lpα(K) the spaces of measurable functions on K such that ‖f‖α,p < +∞, where

‖f‖α,p =
(∫

K

∣∣f(x, t)
∣∣p dmα(x, t)

)1/p

, 1 ≤ p <∞,

‖f‖α,∞ = esssup(x,t)∈K
∣∣f(x, t)

∣∣.

(1.5)

For (x, t) ∈ K, the generalized translation operators T (α)
(x,t) are defined by

T
(α)
(x,t)f

(
y, s
)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
2π

∫2π

0
f
(√

x2 + y2 + 2xy cos θ, s + t + xy sin θ
)
dθ, if α = 0,

α

π

∫2π

0

∫1

0
f
(√

x2 + y2 + 2xyr cos θ, s + t + xyr sin θ
)
r
(
1 − r2)α−1 drdθ, if α > 0.

(1.6)

It is known that T (α)
(x,t) satisfies

‖T (α)
(x,t)f‖α,p ≤ ‖f‖α,p. (1.7)

Let Mb(K) denote the space of bounded Radon measures on K. The convolution on Mb(K)
is defined by

(
μ ∗ ν)(f) =

∫

K×K
T
(α)
(x,t)f

(
y, s
)
dμ(x, t)dν

(
y, s
)
. (1.8)

It is easy to see that μ ∗ν = ν ∗μ. If f, g ∈ L1
α(K) and μ = fmα, ν = gmα, then μ ∗ν = (f ∗g)mα,

where f ∗ g is the convolution of functions f and g defined by

(
f ∗ g)(x, t) =

∫

K
T
(α)
(x,t)f

(
y, s
)
g
(
y,−s)dmα

(
y, s
)
. (1.9)

The following lemma follows from (1.7).
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Lemma 1.1. Let f ∈ L1
α(K) and g ∈ Lpα(K), 1 ≤ p ≤ ∞. Then

‖f ∗ g‖α,p ≤ ‖f‖α,1‖g‖α,p. (1.10)

(K, ∗, i) is a hypergroup in the sense of Jewett (cf. [5, 6]), where i denotes the involution
defined by i(x, t) = (x,−t). If α = n−1 is a nonnegative integer, then the Laguerre hypergroup
K can be identified with the hypergroup of radial functions on the Heisenberg group Hn.

The dilations on K are defined by

δr(x, t) =
(
rx, r2t

)
, r > 0. (1.11)

It is clear that the dilations are consistent with the structure of hypergroup. Let

fr(x, t) = r−(2α+4)f
(
x

r
,
t

r2

)
. (1.12)

Then we have

‖fr‖α,1 = ‖f‖α,1. (1.13)

We also introduce a homogeneous norm defined by ‖(x, t)‖ = (x4 + 4t2)1/4 (cf. [7]). Then we
can defined the ball centered at (0, 0) of radius r, that is, the set Br = {(x, t) ∈ K : ‖(x, t)‖ < r}.

Let f ∈ L1
α(K). Set x = ρ(cos θ)1/2, t = 1/2ρ2 sin θ. We get

∫

K
f(x, t)dmα(x, t) =

1
2πΓ(α + 1)

∫π/2

−π/2

∫∞

0
f

(
ρ(cos θ)1/2,

1
2
ρ2 sin θ

)
ρ2α+3(cos θ)α dρdθ.

(1.14)

If f is radial, that is, there ia a function ψ on [0,∞) such that f(x, t) = ψ(‖(x, t)‖), then
∫

K
f(x, t)dmα(x, t) =

1
2πΓ(α + 1)

∫π/2

−π/2
(cos θ)α dθ

∫∞

0
ψ
(
ρ
)
ρ2α+3 dρ

=
Γ((α + 1)/2)

2
√
π Γ(α + 1)Γ(α/2 + 1)

∫∞

0
ψ
(
ρ
)
ρ2α+3 dρ.

(1.15)

Specifically,

mα(Br) =
Γ((α + 1)/2)

4
√
π(α + 2)Γ(α + 1)Γ(α/2 + 1)

r2α+4. (1.16)

We consider the partial differential operator

L = −
(

∂2

∂x2
+
2α + 1
x

∂

∂x
+ x2 ∂

2

∂t2

)
. (1.17)
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L is positive and symmetric in L2
α(K), and is homogeneous of degree 2 with respect to the

dilations defined above. When α = n − 1, L is the radial part of the sublaplacian on the
Heisenberg group Hn. We call L the generalized sublaplacian.

Let L(α)
m be the Laguerre polynomial of degree m and order α defined in terms of the

generating function by

∞∑

m=0

smL
(α)
m (x) =

1

(1 − s)α+1
exp
(
− xs

1 − s
)
. (1.18)

For (λ,m) ∈ R ×N, we put

ϕ(λ,m)(x, t) =
m! Γ(α + 1)
Γ(m + α + 1)

eiλte−(1/2)|λ|x
2
L
(α)
m

(
|λ|x2

)
. (1.19)

The following proposition summarizes some basic properties of functions ϕ(λ,m).

Proposition 1.2. The function ϕ(λ,m) satisfies that

(a) ‖ϕ(λ,m)‖α,∞ = ϕ(λ,m)(0, 0) = 1,

(b) ϕ(λ,m)(x, t) ϕ(λ,m)(y, s) = T
(α)
(x,t)ϕ(λ,m)(y, s),

(c) Lϕ(λ,m) = |λ|(4m + 2α + 2)ϕ(λ,m).

Let f ∈ L1
α(K), the generalized Fourier transform of f is defined by

f̂(λ,m) =
∫

K
f(x, t)ϕ(−λ,m)(x, t)dmα(x, t). (1.20)

It is easy to show that

(
f ∗ g) (̂λ,m) = f̂(λ,m)ĝ(λ,m),

f̂r(λ,m) = f̂
(
r2λ,m

)
.

(1.21)

Let dγα be the positive measure defined on R ×N by

∫

R×N
g(λ,m)dγα(λ,m) =

∞∑

m=0

Γ(m + α + 1)
m! Γ(α + 1)

∫

R
g(λ,m)|λ|α+1dλ. (1.22)

Write Lpα(K̂) instead of Lp(R ×N, dγα). We have the following Plancherel formula:

‖f‖α,2 = ‖f̂‖L2
α(K̂), f ∈ L1

α(K) ∩ L2
α(K). (1.23)
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Then the generalized Fourier transform can be extended to the tempered distributions. We
also have the inverse formula of the generalized Fourier transform.

f(x, t) =
∫

R×N
f̂(λ,m)ϕ(λ,m)(x, t)dγα(λ,m) (1.24)

provided f̂ ∈ L1
α(K̂).

In the following, we give some basic notes about the heat and Poisson kernel whose
proofs can be found in [8]. Let {Hs} = {e−sL} be the heat semigroup generated by L. There is
a unique smooth function h((x, t), s) = hs(x, t) on K × (0,+∞) such that

Hsf(x, t) = f ∗ hs(x, t). (1.25)

We call hs is the heat kernel associated to L. We have

hs(x, t) =
∫

R

(
λ

2 sinh(2λs)

)α+1
e−(1/2)λ coth(2λs)x

2
eiλtdλ,

hs(x, t) ≤ Cs−α−2e−(A/s)‖(x,t)‖
2
.

(1.26)

Let {Ps} = {e−s
√
L } be the Poisson semigroup. There is a unique smooth function p((x, t), s) =

ps(x, t) on K × (0,+∞), which is called the Poisson kernel, such that

Psf(x, t) = f ∗ ps(x, t). (1.27)

The Poisson kernel can be calculated by the subordination. In fact, we have

ps(x, t)

=
4s√
π

Γ
(
α +

5
2

)∫∞

0

(
λ

sinhλ

)α+1((
s2 + x2λ cothλ

)2
+ (2λt)2

)−(2α+5)/4

× cos
((

α +
5
2

)
arctan

(
2λt

s2 + x2λ cothλ

))
dλ,

ps(x, t) ≤ C s
(
s2 + ‖(x, t)‖2

)−(α+5/2)
.

(1.28)

The heat maximal functionMH is defined by

MHf(x, t) = sup
s>0

∣∣Hsf(x, t)
∣∣ = sup

s>0

∣∣(f ∗ hs
)
(x, t)

∣∣. (1.29)

The Poisson maximal functionMP is defined by

MPf(x, t) = sup
s>0

∣∣Psf(x, t)
∣∣ = sup

s>0

∣∣(f ∗ ps
)
(x, t)

∣∣. (1.30)
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The Hardy-Littlewood maximal function is defined by

MBf(x, t) = sup
r>0

1
mα(Br)

∫

Br

T
(α)
(x,t)

(∣∣f
∣∣)(y, s

)
dmα

(
y, s
)
= sup

r>0

(∣∣f
∣∣ ∗ br

)
(x, t), (1.31)

where b(x, t) = (1/(mα(B1)))χB1(x, t).
The following proposition is the main result of [8].

Proposition 1.3. MB MP andMB are operators on K of weak type (1, 1) and strong type (p, p) for
1 < p ≤ ∞.

The paper is organized as follows. In the second section, we prove that Littlewood-
Paley g-functions are bounded operators on L

p
α(K). As an application, we prove the

Hörmander multiplier theorem on K in the last section.
Throughout the paper, we will use C to denote the positive constant, which is not

necessarily same at each occurrence.

2. Littlewood-Paley g-Function on K

Let k ∈ N, then we define the following G-function and g∗
λ-function

gk
(
f
)2(x, t) =

∫∞

0

∣∣∣∂ksPsf(x, t)
∣∣∣
2
s2k−1ds,

g∗
k

(
f
)2(x, t) =

∫∞

0

(∫

K
s−(α+1)

(
1 + s−2‖(y, r)‖4

)−k∣∣∣∣∂sP
sT

(α)

(y,r)f(x, t)
∣∣∣∣
2

dmα

(
y, r
)
)
ds.

(2.1)

Then, we can prove

Theorem 2.1. (a) For k ∈ N and f ∈ L2(K), there exists Ck > 0 such that

‖gk
(
f
)‖α,2 = Ck‖f‖α,2. (2.2)

(b) For 1 < p <∞ and f ∈ Lp(K), there exist positive constants C1 and C2, such that

C1‖f‖α,p ≤ ‖gk
(
f
)‖α,p ≤ C2‖f‖α,p. (2.3)

(c) If k > (α + 2)/2 and f ∈ Lp(K), p > 2, then there exists a constant C > 0 such that

‖g∗
k(f)‖α,p ≤ C‖f‖α,p. (2.4)
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Proof. (a)When k ∈ N, by the Plancherel theorem for the Fourier transform on K,

‖gk
(
f
)‖2α,2 =

∫

K

(∫∞

0

∣∣∣∂ksPsf(x, t)
∣∣∣
2
s2k−1ds

)
dmα(x, t)

=
∫∞

0

(∫

R×N

∣∣∣
(
∂ksP

sf
)
(̂λ,m)

∣∣∣
2
dγα(λ,m)

)
s2k−1ds

=
∫∞

0

(∫

R

∞∑

m=0

Γ(m + α + 1)
m!Γ(α + 1)

∣∣∣
(
∂ksP

sf
)
(̂λ,m)

∣∣∣
2
|λ|α+1dλ

)
s2k−1ds.

(2.5)

Since

(
∂ksP

sf
)
(̂λ,m) = f̂(λ,m)

(
−
√
(4m + 2α + 2)|λ|

)k
e−s

√
(4m+2α+2)|λ|, (2.6)

we get

‖gk
(
f
)‖2α,2

=
∫∞

0

(∫

R

∞∑

m=0

Γ(m + α + 1)
m!Γ(α + 1)

∣∣∣f̂(λ,m)
∣∣∣
2
((4m + 2α + 2)|λ|)ke−2s

√
(4m+2α+2)|λ||λ|α+1dλ

)
s2k−1ds.

(2.7)

By

∫∞

0
e−2s

√
(4m+2α+2)|λ|s2k−1ds = Ck((4m + 2α + 2)|λ|)−k, (2.8)

we have

‖gk
(
f
)‖2α,2 = Ck

∫

R

∞∑

m=0

Γ(m + α + 1)
m!Γ(α + 1)

∣∣∣f̂(λ,m)
∣∣∣
2
|λ|α+1dλ = Ck‖f‖2α,2. (2.9)

Therefore

‖gk
(
f
)‖α,2 = Ck‖f‖ α,2. (2.10)

(b) As {Ps} is a contraction semigroup (cf. Proposition 5.1 in [3]), we can get
‖gk(f)‖α,p ≤ C2‖f‖α,p (cf. [9]). For the reverse, we can prove by polarization to the identity
and (a) (cf. [10]).

(c)We first prove

∫

K
g∗
k

(
f
)2(x, t)ψ(x, t)dmα(x, t) ≤ C

∫

K
g1
(
f
)2(x, t)MBψ(x, t)dmα(x, t), (2.11)

where 0 ≤ ψ ∈ Lqα(K) and ‖ψ‖α,q ≤ 1, 1/q + 2/p = 1.
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Since k > (α + 2)/2, we know

∫

K
(1 + ‖(y, r)‖4)−kdmα

(
y, r
)
<∞. (2.12)

By Proposition 1.3,

∫

K
g∗
k

(
f
)2(x, t)ψ(x, t)dmα(x, t)

=
∫

K

(∫∞

0

∫

K
s−(α+1)

(
1 + s−2‖(y, r)‖4

)−k∣∣∣∣∂sP
sT

(α)

(y,r)f(x, t)
∣∣∣∣
2

dmα

(
y, r
)
ds

)
ψ(x, t)dmα(x, t)

=
∫∞

0

∫

K
s−(α+1)

∣∣∂sPsf
(
y, r
)∣∣2
(∫

K
T
(α)
(x,t)

(
1 + s−2‖(y, r)‖4

)−k
ψ(x, t)dmα(x, t)

)
dmα

(
y, r
)
ds

≤ C
∫

K
g1
(
f
)2(

y, r
)
MBψ

(
y, r
)
dmα

(
y, r
)

≤ C‖g1
(
f
)‖2α,p‖MBψ‖α,q ≤ C‖f‖2α,p.

(2.13)

Therefore ‖g∗
k
(f)‖

α,p
≤ C‖f‖α,p. This gives the proof of Theorem 2.1.

We can also consider the Littlewood-Paley g-function that is defined by the heat
semigroup as follows: let k ∈ N, we define

GH
k

(
f
)2(x, t) =

∫∞

0

∣∣∣∂ksHsf(x, t)
∣∣∣
2
s2k−1ds,

GH,∗
k

(
f
)2(x, t) =

∫∞

0

(∫

K
s−(α+1)

(
1 + s−2‖(y, r)‖4

)−k∣∣∣∣∂sH
sT

(α)

(y,r)f(x, t)
∣∣∣∣
2

dmα

(
y, r
)
)
ds.

(2.14)

Similar to the proof of Theorem 2.1, we can prove

Theorem 2.2. (a) For k ∈ N and f ∈ L2(K), there exists Ck > 0 such that

‖GH
k (f)‖

α,2 = Ck‖f‖α,2. (2.15)

(b) For 1 < p <∞ and f ∈ Lp(K), there exist constants C1 and C2, such that

C1‖f‖α,p ≤ ‖GH
k

(
f
)‖

α,p
≤ C2‖f‖α,p. (2.16)

(c) If k > (α + 2)/2 and f ∈ Lp(K), p > 2, then ‖GH,∗
k (f)‖

α,p
≤ C‖f‖α,p.

By Theorem 2.2, we can get (cf. [10])
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Corollary 2.3. Let k ∈ N and f ∈ L2(K), if GH
k (f) ∈ Lp(K), 1 < p < ∞, then f ∈ Lp(K) and there

exists C > 0 such that

C‖f‖α,p ≤ ‖GH
k

(
f
)‖

α,p
. (2.17)

3. Hörmander Multiplier Theorem on K

In this section, we prove the Hörmander multiplier theorem on K. The main tool we use is
the Littlewood-Paley theory that we have proved.

We first introduce some notations. Assume Ψ is a function defined on R ×N, then let
Δ−Ψ(λ, 0) = Ψ(λ, 0) and form ≥ 1,

Δ−Ψ(λ,m) = Ψ(λ,m) −Ψ(λ,m − 1),

Δ+Ψ(λ,m) = Ψ(λ,m + 1) −Ψ(λ,m).
(3.1)

Then we define the following differential operators:

Λ1Ψ(λ,m) =
1
|λ| (mΔ−Ψ(λ,m) + (α + 1)Δ+Ψ(λ,m)),

Λ2Ψ(λ,m) =
−1
2λ

((α +m + 1)Δ+Ψ(λ,m) +mΔ−Ψ(λ,m)).

(3.2)

We have the following lemma.

Lemma 3.1. Let g(λ,m) = ((4m + 2α + 2)|λ|)e−(4m+2α+2)|λ|sh(λ,m), where k ∈ N, h(λ,m) is a
([(α + 1)/2] + 1) times differentiable function on R

2 and satisfies

∣∣∣∣∣

(
Λ1 + 2

(
Λ2 +

∂

∂λ

))j
h(λ,m)

∣∣∣∣∣ ≤ Cj((4m + 2α + 2)|λ|)−j (3.3)

for j = 0, 1, 2, . . . , [(α + 1)/2] + 1. Then one has

∣∣∣∣
(
Λ1 + 2

(
Λ2 +

∂

∂λ

))
g(λ,m)

∣∣∣∣ ≤ Cmax
{

1
|λ|s , 1 +

m

|λ|s
}
e−ε(4m+2α+2)|λ|s, (3.4)

where 0 < ε < 1 and s > 0.

Proof. Without loss of the generality, we can assume that λ > 0. whenm = 0, we have

Λ1 + 2
(
Λ2 +

∂

∂λ

)
= 2

∂

∂λ
. (3.5)
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It is easy to calculate

∣∣∣∣
∂

∂λ
g(λ, 0)

∣∣∣∣ ≤ C
1
λs
e−ε(4m+2α+2)λs. (3.6)

Whenm ≥ 1, we have

Λ1 + 2
(
Λ2 +

∂

∂λ

)
= 2
(
∂

∂λ
− m

λ
Δ−1

)
. (3.7)

Since

(
∂

∂λ
− m

λ
Δ−1

)
g(λ,m) = ((4m + 2α + 2)|λ|)e−(4m+2α+2)|λ|s

(
∂

∂λ
− m

λ
Δ−1

)
h(λ,m)

+
∂

∂λ

{
((4m + 2α + 2)|λ|)e−(4m+2α+2)|λ|s

}
h(λ,m)

− m

λ
Δ−1f(m)g(m − 1),

(3.8)

we get

∣∣∣∣
(
∂

∂λ
− m

λ
Δ−1

)
g(λ,m)

∣∣∣∣ ≤ C
(
1 +

m

λs

)
e−ε(4m+2α+2)λs. (3.9)

Then Lemma 3.1 is proved.

Then we can prove Hörmander multiplier theorem on the Laguerre hypergroup K.

Theorem 3.2. Let h(λ,m) be a ([(α + 1)/2] + 1) times differentiable function on R
2 and satisfies

∣∣∣∣∣

(
Λ1 + 2

(
Λ2 +

∂

∂λ

))j
h(λ,m)

∣∣∣∣∣ ≤ Cj((4m + 2α + 2)|λ|)−j (3.10)

for j = 0, 1, 2, . . . , [(α+1)/2]+1 and T is an operator which is defined by T̂f(λ,m) = h(λ,m)f̂(λ,m),
then T is bounded on Lpα(K), where 1 < p <∞.

Proof. We just prove the theorem for 2 < p < ∞, for 1 < p < 2; we can get the result by the
dual theorem. By Theorem 2.2, Corollary 2.3 and the note that Tf ∈ L2(K), it is sufficient to
prove the following:

GH
2
(
Tf
)
(x, t) ≤ CGH,∗

1

(
f
)
(x, t), (x, t) ∈ K. (3.11)
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Let us = Hsf andUs = Hs(Tf), then we can get

Us+t = Gt ∗ us(x, t), (3.12)

where Ĝt(λ,m) = e−2(2m+α+1)|λ|th(λ,m).
Differentiating (3.12)with respect to t and s, then assuming that t = s, we can get

∂2sH
2s(Tf

)
= Fs ∗ ∂sHsf, (3.13)

where

F̂s(λ,m) = −((4m + 2α + 2)|λ|)e−(4m+2α+2)|λ|sh(λ,m). (3.14)

Therefore

∣∣∣∂2sH2s(Tf
)
(x, t)

∣∣∣ ≤
∫

K
Fs
(
y, r
)∣∣∣T (α)

(x,t)∂sH
sf
(
y, r
)∣∣∣dmα

(
y, r
)
. (3.15)

By the Cauchy-Schwartz inequality,

∣∣∣∂2sH2s(Tf
)
(x, t)

∣∣∣
2 ≤ A(s)

∫

K

(
1 + s−2‖(y, r)‖4

)−1∣∣∣T (α)
(x,t)∂sH

sf
(
y, r
)∣∣∣

2
dmα

(
y, r
)
, (3.16)

where

A(s) =
∫

K

(
1 + s−2‖(x, t)‖4

)
|Fs(x, t)|2dmα(x, t). (3.17)

In the following, we prove

A(s) ≤ Cs−α−3. (3.18)

We write

A(s) =
∫

‖(x,t)‖≤√s

(
1 + s−2‖(x, t)‖4

)
|Fs(x, t)|2dmα(x, t)

+
∫

‖(x,t)‖>√s

(
1 + s−2‖(x, t)‖4

)
|Fs(x, t)|2dmα(x, t)

= A1(s) +A2(s).

(3.19)
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For A1(s), we can easily get

A1(s) ≤ C
∫

K
|Fs(x, t)|2dmα(x, t) = C

∫

R×N

∣∣∣F̂s(λ,m)
∣∣∣
2
dγα(λ,m)

= C
∫

R×N
((4m + 2α + 2)|λ|)2e−(8m+4α+4)|λ|sh2(λ,m)dγα(λ,m)

≤ C
∫

R

∞∑

m=0

Γ(m + α + 1)
m!Γ(α + 1)

((4m + 2α + 2)|λ|)2e−(8m+4α+4)|λ|s|λ|α+1dλ

= Cs−α−4
∫

R

∞∑

m=0

Γ(m + α + 1)
m!Γ(α + 1)

((4m + 2α + 2)|λ|)2e−(8m+4α+4)|λ||λ|α+1dλ

≤ Cs−α−4
∞∑

m=0
(4m + 2α + 2)−2 ≤ Cs−α−4.

(3.20)

For A2(s), we have

A2(s) ≤ Cs−2
∫

K

(
4t2 + x4

)
|Fs(x, t)|2dmα(x, t)

= Cs−2
∫

K

∣∣∣
(
2it − |x|2

)
Fs(x, t)

∣∣∣
2
dmα(x, t)

= Cs−2
∫

R×N

∣∣∣∣
(
Λ1 + 2

(
Λ2 +

∂

∂λ

))
F̂s(λ,m)

∣∣∣∣
2

dγα(λ,m).

(3.21)

By Lemma 3.1,

(
Λ1 + 2

(
Λ2 +

∂

∂λ

))
F̂s(λ,m)

∣∣∣∣ ≤ Cmax
{

1
|λ|s , 1 +

m

|λ|s
}
e−ε(4m+2α+2)|λ|s, (3.22)

where 0 < ε < 1.
So

A2(s) ≤ Cs−2
∫

R×N
e−ε(8m+4α+4)|λ|sdγα(λ,m)

= Cs−α−4
∫

R×N
e−ε(8m+4α+4)|λ|dγα(λ,m)

≤ Cs−α−4.

(3.23)

Therefore (3.18) holds. Then

∣∣∣∂2sH2s(Tf
)
(x, t)

∣∣∣
2 ≤ Cs−α−4

∫

K

(
1 + s−2‖(y, r)‖4

)−1∣∣∣T (α)
(x,t)∂sH

sf
(
y, r
)∣∣∣

2
dmα

(
y, r
)
. (3.24)
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Integrating the both sides of the above inequality with s3ds, we have

GH
2 (x, t) ≤ CGH,∗

1

(
f
)
(x, t). (3.25)

Then Theorem 3.2 is proved.
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