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Let L = —(0%/0x% + 2a + 1/x)(0/0x) + x2(0%/0t?)); (x,t) € (0,+o0) x R, where & > 0. Then L can
generate a hypergroup which is called Laguerre hypergroup, and we denote this hypergroup by K.

In this paper, we will consider the Littlewood-Paley g-functions on K and then we use it to prove
the Holmander multipliers on K.

1. Introduction and Preliminaries
In [1], the authors investigated Littlewood-Paley g-functions for the Laguerre semigroup. Let
2

d
0 0
ﬂa = ;xia—x% + ([Xi +1- xi)a_xi, (11)

where a = (ay,...,a4), x; >0, then define the following Littlewood-Paley function G, by

Gaf(x) = (f |V, P £ (x) z%yﬂ, (1.2)

where V, = (0;,1/X10x,, - - ., 1/Xa0x,) and P/ is the Poisson semigroup associated to £,. In [1],
the authors prove that G, is bounded on L (u,) for 1 < p < oo. In this paper, we consider the
following differential operator

L:_< P 2a+10 L&

o x ox ¥ at2>; (x,t) € (0,+00) xR, (1.3)
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where a > 0. It is well known that it can generate a hypergroup (cf. [2, 3] or [4]). We will
define Littlewood-Paley g-functions associated to L and prove that they are bounded on
LP(K) for 1 < p < oo. As an application, we use it to prove the Homander multiplier theorem
on K.

Let K = [0, o0) x R equipped with the measure

1

2a+1 >
—Jrr(a D) x*dxdt, a>0. (1.4)

dmg(x,t) =

We denotes by L} (K) the spaces of measurable functions on K such that || f ||a,p < 400, where

1/p
1, = ([ 170l dmaen) ", 1<p<os

(1.5)
[1flleo = €SSSUP ek |f(x,8)|.
For (x,t) € K, the generalized translation operators T( ) are defined by
T(“)
t)f (v,s)
1 20T
o f<\/x2+y2+2xycos9,s+t+xysin9> dae, if a=0,
0
- a 2 A1 o
—j j f(\/x2 +y? +2xyrcosH,s + t + xyr sinG) r(1-r>)"" drde, if a>0.
T 0
(1.6)
It is known that T((;')t) satisfies
ITEA,, < 1F (17)

Let M, (K) denote the space of bounded Radon measures on K. The convolution on M, (K)
is defined by

(o) (N = [ T8 £, durDids(y,s). a8)

Itis easy to see that v =v*p. If f, g € LL(K) and p = fm,, v = gm,, then puxv = (f x g)m,,
where f * g is the convolution of functions f and g defined by

(F*8) ) = [ T 7 (v, 9) (=) dma () (1)

The following lemma follows from (1.7).
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Lemma 1.1. Let f € LL(K) and g € Lh(K), 1< p < oo. Then

IS *8llayp < 1Sl l18]lsp- (1.10)

(K, *,1) is a hypergroup in the sense of Jewett (cf. [5, 6]), where i denotes the involution
defined by i(x, t) = (x,—t). If & = n—1 is a nonnegative integer, then the Laguerre hypergroup
K can be identified with the hypergroup of radial functions on the Heisenberg group H".

The dilations on K are defined by

O, (x,t) = <rx, r2t>, r>0. (1.11)

It is clear that the dilations are consistent with the structure of hypergroup. Let

fr(x,t) =7 (2“+4>f<r r2> (1.12)

Then we have

1 frllay = 1Fllg - (1.13)

We also introduce a homogeneous norm defined by ||(x,t)|| = (x* + 41‘2)1/4 (cf. [7]). Then we

can defined the ball centered at (0, 0) of radius 7, that is, the set B, = {(x,t) e K: ||(x,t)|| < r}.
Let f € LL(K). Set x = p(cos 0)'/2, t = 1/2p? sin 0. We get

ar/2
1
1/2 1 2. 2a+3 a

ij(x,t)dmu(x,t) = F(a+1) ﬂ/z.[ < (cos 0) /5P sm9>p (cos 0)* dpdo.

(1.14)
If f is radial, that is, there ia a function ¢ on [0, o0) such that f(x,t) = ¢(||(x, t)]]), then

a/2 o pus3
x,t)dmg(x, t f cosG“dQJ x5 d
[ feondmatet) = s [ (conoy a0 [ ") ap
(1.15)
['((a+1)/2) j 20+3
™2 d
N T T A
Specifically,
ma(Br) - r((“ + 1)/2) r2a+4 (116)

4\/m(a+2)[(a+ 1) (a/2+1)

We consider the partial differential operator

® 2a+10 262
L=- <ax2+ p a_x+ 6t2> (1.17)
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L is positive and symmetric in L2(K), and is homogeneous of degree 2 with respect to the
dilations defined above. When o = n — 1, L is the radial part of the sublaplacian on the

Heisenberg group H". We call L the generalized sublaplacian.

Let L be the Laguerre polynomial of degree m and order a defined in terms of the

generating function by

< 1 xs
Sle(ﬁ) X) = ex <_ >
mz:;) ( ) (1 _ S)lx+1 P 1-s

For (\,m) € R x N, we put

_mlT(a+1) Gy _ampxe; @ 2
P (50 = gy ey oL ().

The following proposition summarizes some basic properties of functions ¢ ).
Proposition 1.2. The function ¢ ) satisfies that
(@) llpomlly e = P0m(0,0) =1,

(b) Pom) (1) ) (Y, S) = Teep @m (Y, 5),
(¢) Loom = |A|(4m + 2 + 2)(/)(1,,,1).

Let f € LL(K), the generalized Fourier transform of f is defined by
Fm) = fK £GP (x, el ().

It is easy to show that

(f *g)"(\,m) = fF(L, m)g(\, m),

Frdm) = f(r22,m).

Let dy, be the positive measure defined on R x N by

o]

3 I'm+a+1) ail
J‘RXN g(A, m)dy.(\, m) = mZ::O—m! Tl Jy g(A, m)| A" dA.

Write L} (K) instead of LP(R x N, dy,). We have the following Plancherel formula:

Ifllez = 1fll 2y f € La(K) N L3(K).

(1.18)

(1.19)

(1.20)

(1.21)

(1.22)

(1.23)
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Then the generalized Fourier transform can be extended to the tempered distributions. We
also have the inverse formula of the generalized Fourier transform.

fxt) = IR . F O, m)@(m) (3, £)dya (A, m) (1.24)

provided f € LL(K).

In the following, we give some basic notes about the heat and Poisson kernel whose
proofs can be found in [8]. Let { H*} = {e~5} be the heat semigroup generated by L. There is
a unique smooth function h((x,t), s) = hs(x,t) on K x (0, +oo) such that

HEf(x,t) = f % hy(x, 1). (1.25)

We call h; is the heat kernel associated to L. We have

_/\, a+1 , .
hs (x’ t) — J‘ ( ) e—(l/Z)Acoth(ZJ\s)x el)Ltd)L,
R

hy(x,t) < Cs 2~ A/NEDIF,

Let {P5} = {e™5VL } be the Poisson semigroup. There is a unique smooth function p((x, t), s) =
ps(x,t) on K x (0, +00), which is called the Poisson kernel, such that

Pef(x,t) = f xps(x,t). (1.27)
The Poisson kernel can be calculated by the subordination. In fact, we have

ps(x, t)

) a+l P —(2a+5)/4
= j_i F(a + ;)I <sin);m> <<52 + x%cotm) + (ut)Z)
J 0

1.2
xcos<<a+§> arctan<2—M>>d)L 0
2 s2 + x2\ coth A ’
—(a+5/2)
P <Cs(s NG pl?)
The heat maximal function M is defined by
My f(x,t) = sup|H* f (x,t)| = sup|(f * hs) (x, 1)]. (1.29)
s>0 s>0

The Poisson maximal function Mp is defined by

Mpf(x,t) = su0p|Psf(x,t)| = su0p|(f * ps) (x, 1)) (1.30)
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The Hardy-Littlewood maximal function is defined by

My (x,1) = sup— (B)f T (£ @ 9)dme(y,) = sup(|f| «b) e, (13D

r>0 M

where b(x, t) = (1/(ma(B1))) x5, (x, 1).
The following proposition is the main result of [8].

Proposition 1.3. Mp Mp and Mg are operators on K of weak type (1,1) and strong type (p, p) for
1<p<oo.

The paper is organized as follows. In the second section, we prove that Littlewood-
Paley g-functions are bounded operators on L} (K). As an application, we prove the
Hoérmander multiplier theorem on K in the last section.

Throughout the paper, we will use C to denote the positive constant, which is not
necessarily same at each occurrence.

2. Littlewood-Paley g-Function on K

Let k € N, then we define the following G-function and g}-function

gk(f)z(x,t) = L sPf(x,t) | k=14,

) . o " 5 (2.1)
$(f) (x, 1) =I J‘ s~ <1 +572(y, )l ) osP°T" | f(x, t)‘ dmy(y,r) )ds
0 K (v7)
Then, we can prove
Theorem 2.1. (a) For k € Nand f € L?(K), there exists Cy > 0 such that
gk (F Nl = Crll fll - (2.2)
(b) For 1 <p < o and f € LP(K), there exist positive constants Cy and C,, such that
Cillfll,, < lge(H)ll,, < Callfll,, (23)

(¢)Ifk> (a+2)/2and f € LP(K), p > 2, then there exists a constant C > 0 such that

18k (Nl < Cllf Nl pr (2.4)



Journal of Inequalities and Applications 7

Proof. (a) When k € N, by the Plancherel theorem for the Fourier transform on K,

IsHa= [ ([

2
KPS f(x, t) | SZk"lds> dmg (x, 1)

) f : (J ReN [ (o) | are (A'm)>52k_lds (2.5)
= f <IR ;% (3kP° ) (1, m) '2|/\|“+1d/\> 14s,
Since
(P 1) m) = Fm) (—M)ke—sm, 26)
we get
I8k (N)Iz
I <me & mTrZaa:S) [ m) [ a2+ D ape /e |A|“”d)u>s2k-lds.
(27)
By
f:o =25V m 2 DN 21 1o — ) (4 + 2a + 2)[A]) 7, (2.8)
we have
eI, = G [ 3Rt FmWan = G 29)
Therefore
18k (F)lla2 = Crll FIl 2 (2.10)

(b) As {P°} is a contraction semigroup (cf. Proposition 5.1 in [3]), we can get
llgx (O, b S < Glfl, » (cf. [9]). For the reverse, we can prove by polarization to the identity
and (a) (cf. [10]).

(c) We first prove

J'K () (x, B (x, t)ydmg(x, ) < C fK g1(f)(x, ) Mpg(x, tydmg (x, 1), (2.11)

where 0 < ¢ € LI(K) and ||¢s|| ., <1,1/q+2/p = 1.

a,q —
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Since k > (a +2)/2, we know
-k
[ a1 dma(wr) < oo 212)
K
By Proposition 1.3,

L%Uﬂ%%@ﬁwwnﬂ

(oo

[oe] « ~ *k
= fo J;( 5™ @ |3, P f (y,7) |2 <J‘K T((x,)t) <1 +572(y,r) ||4> q;(x,t)dma(x,t)>dma (y,r)ds

s (a)
aSP T(y,r)f(x/ t)

dea (y, 1) ds> @(x,t)dma(x,t)

: CJK &1(£)’ (v, r) My (y, r)dma(y, 7)

<Cligi (M3, IMpgll, , < CIFIZ,
(2.13)

Therefore || g; (f) ||a,p < C”f”vc,p' This gives the proof of Theorem 2.1. O

We can also consider the Littlewood-Paley g-function that is defined by the heat
semigroup as follows: let k € N, we define

2
6’;H5f(x, t)| s21ds,

Wﬁfmw=f

o _k 2
GkH’* (f)z(x, t) = I J‘ g~ (a+]) <1 +572(y, r)||4> O H T f(x,t)| dmy(y,7) )ds.
0 K (vr)
(2.14)
Similar to the proof of Theorem 2.1, we can prove
Theorem 2.2. (a) For k € Nand f € L?(K), there exists Cy > 0 such that
16 (Pllp = Crll fll - (2.15)

(b) For 1 <p < o and f € LP(K), there exist constants Cy and Cy, such that

Cillfllap < NGE (Pl < Call fllp (2.16)

(¢)Ifk> (a+2)/2and f € LP(K), p > 2, then ”qu’*(f)”a,p < Clifll,-

By Theorem 2.2, we can get (cf. [10])
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Corollary 2.3. Let k € Nand f € L*(K), sz}kH (f) € LP(K), 1 < p < oo, then f € LP(K) and there
exists C > 0 such that

Cllflap < NGE (), (2.17)

3. Hormander Multiplier Theorem on K

In this section, we prove the Hérmander multiplier theorem on K. The main tool we use is
the Littlewood-Paley theory that we have proved.

We first introduce some notations. Assume W is a function defined on R x N, then let
A_¥(A,0) =¥(A,0) and form > 1,

AW(\,m) = (A, m) - ¥\, m-1),

(3.1)
AWA,m) =¥\, m+1)-¥(\,m).
Then we define the following differential operators:
M\, m) = ﬁ(mA_‘P()L,m) +(a+1)A ¥\, m)),
(3.2)

AW (N, m) = %(([x +m+1)A ¥\, m) + mA_W¥ (A, m)).

We have the following lemma.

Lemma 3.1. Let g(\,m) = ((4m + 2a + 2)|A|)e"4m+20+2Ms () m), where k € N, h(\,m) is a
([(a + 1) /2] + 1) times differentiable function on R? and satisfies

j .
‘ <A1 + 2<A2 + a%)) h(A, m)| < Cj((4m +2a +2)|A])” (3.3)
forj=0,1,2,...,[(a+1)/2] + 1. Then one has
|<A1 + 2<A2 + 3)) gL, m)| < Cmax{ Log.m }e-f<4m+2“+2>‘*|5 (3.4)
oA ’ - |Als” |Als !

where 0 < e < 1and s > 0.

Proof. Without loss of the generality, we can assume that A > 0. when m = 0, we have

0
A1+2<A2+a) =2

0

e (3.5)



10 Journal of Inequalities and Applications

It is easy to calculate

‘e%g(x, 0)| < C%Se‘s“’"*z“*z)“. (3.6)
When m > 1, we have
d )
A1+2<A2+a) =2<67—%A_1>. (37)

Since

0 m 0 m
&~ m — —(dm+2a+2)\Ms ( ¥ _ T
(a)L )LA_1>g(/\,m) ((4m +2a +2)|\))e <6/\ AA_1>h(/\,m)
+ 2 {((@m + 2a + 2) a2 D L (), m) (3.8)
oA
m
- IA—lf(m)g(m - 1)1
we get
0 m m
— < o —€(4m+2a+2)1\s. ]
|<6A A,l)g()u,m)|_C<1+J\S>e (3.9)
Then Lemma 3.1 is proved. O

Then we can prove Hormander multiplier theorem on the Laguerre hypergroup K.

Theorem 3.2. Let h(\,m) bea ([(a +1)/2] + 1) times differentiable function on R? and satisfies

‘ <A1 + 2<A2 + %))jh(l,m)

forj=0,1,2,...,[(a+1)/2]+1 and T is an operator which is defined by T}()L, m) = h(\, m)f(/l, m),
then T is bounded on L}(K), where 1 < p < oo.

< Ci((dm+2a +2)|A))7 (3.10)

Proof. We just prove the theorem for 2 < p < oo, for 1 < p < 2; we can get the result by the
dual theorem. By Theorem 2.2, Corollary 2.3 and the note that Tf € L?(K), it is sufficient to
prove the following:

GI(TF)(x,1) <CGI* (f)(x,1), (x,) €K. (3.11)
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Let u; = H°f and U® = H*(T f), then we can get

Ust = Gy * ug(x, t), (3.12)

where G;(\, m) = e 2@m+asDIMip () 477).
Differentiating (3.12) with respect to t and s, then assuming that f = s, we can get

OH*(Tf) = Fs x0,H"f, (3.13)
where

Fo(\, m) = —((4m + 2a + 2) |\ e @282 () ). (3.14)

Therefore

O2H> (Tf)(x, t)| < fK Fo(y,r)| T, 0sH f (y,7) |dma (y,7). (3.15)

By the Cauchy-Schwartz inequality,

T 0.H f (y, )| dma(y,r),  (316)

(xt)

|2H2 (1) (e, 0| < AGs) IK (1+s20@nIY) "
where
AG) = [ (157000 DI P x, ), (317)

In the following, we prove
A(s) < Cs™ 3, (3.18)

We write

A = [ (LG DI P P
lGeDli<vs

e (s DI P Pt G19)
lxBlI>+/s

= Aq(s) + Ax(s).
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For A;(s), we can easily get

Ai(s) < cf \F. (0, £) P (x, £) = cf Ay (A, m)
K

RxN

=C ((4m + 2a + 2)|A])2e~EmraarDsp2 () ) dy, (A, m)
RxN

F(m +a+1) 2~ (Sm+datd)|A]s| y ja+l
<
¢ ,[R & mil(a+1) @+ 1) (22D e (3-20)

gad I(m+a+1) 2 _(Sm+da+d)[A]| ) jatl
I Z: i@+ 1) ((4m +2a +2)|A])%e [A|TdA

SCs™* N (4m+2a+2)7 < Cs™™ .

m=0

For A;(s), we have

Ax(s) < CS-ZJ (4t2 + x4>|FS (x, )P dma(x, )
K

2

- cs-zf | (2it = P ) P, 1) | dma(x, 1) (3.21)

K
5\ - 2

= Csizj‘ <A1 + 2<A2 + a—)t>> s d}fa()t, m)

RxN
By Lemma 3.1,
<A1 + 2<A2 + i) >F A,m)| < Cmax{ + }e’eﬂmﬂaﬂ)ms (3.22)
ol s s ’ '

where 0 < e < 1.
So

Ay (S) < CS—Z f e_€(8m+4“+4)‘)‘|sd}’a()t, m)
RxN

— Cs 4 I p-e(Bmrda+d)|A] dya(\, m) (3.23)
RxN

< Cs™ 4,

Therefore (3.18) holds. Then

|02 F% (T f) (x, t)|2 <Cst JK (1+s2w NI |T(<;‘)t)a H*f (y,7) |2dma (y,7). (3.24)
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Integrating the both sides of the above inequality with s°ds, we have
Gl (x,t) < CG™ (f) (x, ). (3.25)

Then Theorem 3.2 is proved. O
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