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This paper investigates the problem of exponential stabilization for a class of uncertain nonlinear
systems by means of periodically intermittent control. Several sufficient conditions of exponential
stabilization for this class of uncertain nonlinear systems are formulated in terms of a set of linear
matrix inequalities by using quadratic Lyapunov function and inequality analysis technique. Also,
the synthesis of stabilization periodically intermittent state feedback controllers is present such
that the close-loop system is exponentially stable. A simulation example is given to illustrate the
effectiveness of the proposed approach.

1. Introduction

In recent years, significant interest in the study of stability analysis and control design
of nonlinear systems has aroused [1–5]. In [4], the problem of the stabilization of affine
nonlinear control systems via the center manifold approach was considered. In [5], a
stabilizing output feedback model with a predictive control algorithm was proposed for
linear systems with input constraints. Recently, incontinuous control techniques such as
impulsive control [6] and piecewise feedback control [7] have attracted much attention. In
[6], the impulsive control, which makes use of linear static measurement feedback instead
of full state feedback for master-slave synchronization schemes that consist of identical
chaotic Lur’e systems, was considered. Especially, the recent paper [7] has studied the
output regulation problem for a class of discrete-time nonlinear systems under periodic
disturbances generated from the so-called exosystems. Furthermore, by exploiting the
structural information encoded in the fuzzy rules, a piecewise state feedback and a piecewise
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error-feedback control lawswere constructed to achieve asymptotic rejecting of the unwanted
disturbances and/or tracking of the desired trajectories.

Besides these control methods for nonlinear systems mentioned above, intermittent
control is a special form of switching control [8]. It has been used for a variety of
purposes in engineering fields such as manufacturing, transportation, air-quality control,
and communication. Recently, intermittent control has been introduced to chaotic dynamical
systems [9–11], in which the method of synchronizing slave-to-master trajectory using
intermittent coupling was proposed. However, [9] gave little theoretical analysis of
intermittent control systems but only many numerical simulations. In [10], the authors
investigated the exponential stabilization problem for a class of chaotic systems with delay
by means of periodically intermittent control. In [11], the quasi-synchronization problem
for chaotic neural networks with parameter mismatch was formulated via periodically
intermittent control. In [12], the problem of the robust stabilization for a class of uncertain
linear systems with multiple time-varying delays was investigated. A memoryless state-
feedback controller for the robust stabilization of the system was proposed. Based on the
Lyapunov method and the linear matrix inequality (LMI) approach, two sufficient conditions
for the stability were derived. In [13], a new delay-dependent stability criterion for dynamic
systems with time-varying delays and nonlinear perturbations was proposed.

Motivated by the aforementioned discussion, in this paper, we investigate the problem
of exponential stabilization of a class of uncertain nonlinear systems by using periodically
intermittent control, which is activated in certain nonzero time intervals, and off in other
time intervals. Based on Lyapunov stability theory, some exponential stability criteria for this
class of uncertain nonlinear systems are given, which have been expressed in terms of linear
matrix inequalities (LMIs). A numerical example is given to demonstrate the validity of the
result.

The rest of this paper is organized as follows. In Section 2, the intermittent control
problem is formulated and some notations and lemmas are introduced. In Section 3, the
exponential stabilization problem for a class of uncertain nonlinear systems is investigated
by means of periodically intermittent control, and some exponential stability criteria are
established. Finally, some conclusions and remarks are drawn in Section 4.

2. Problem Formulation and Preliminaries

Consider a class of nonlinear uncertain systems described as

ẋ(t) = (A + ΔA(t))x(t) + (B + ΔB(t))u(t) + f(x(t)),

x(t0) = x0,
(2.1)

where x ∈ Rn is state vector, and u ∈ Rm is the external input of system (2.1). f : Rn → Rn

is a continuous nonlinear function with f(0) = 0, and there exists a positive definite matrixQ
such that ‖f(x)‖2 ≤ xTQx for x ∈ Rn. ΔA(t) andΔB(t) are time-varying uncertainties, which
satisfy the following conditions:

ΔA(t) = D1F(t)E1, ΔB(t) = D2F(t)E2, (2.2)
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where Di, Ei, i = 1, 2 are real constant matrices of appropriate dimensions and F(t) is an
unknown time-varying matrix with FT(t)F(t) ≤ I.

The following lemmas are useful in the proof of our main results.

Lemma 2.1 (see [14]). Let D, E, and F be real matrices of appropriate dimensions with FTF ≤ I,
then for any scalar ε > 0, one has the following inequality:

DFE + ETFTDT ≤ ε−1DDT + εETE. (2.3)

Lemma 2.2 (see [15]). Let M, N be real matrices of appropriate dimensions. Then, for any matrix
Q > 0 of appropriate dimension and any scalar β > 0, the following inequality holds:

MN +NTMT ≤ β−1MQ−1MT + βNTQN. (2.4)

Lemma 2.3 (see [16]). Given constant symmetric matrices S1, S2, S3, and S1 = ST
1 < 0, S3 = ST

3 >
0, then S1 + S2S

−1
3 ST

2 < 0 if and only if

[
S1 S2

ST
2 −S3

]
< 0. (2.5)

In order to stabilize the system (2.1) by means of periodically intermittent feedback
control, we assume that the control imposed on the system is of the following form:

u(t) =

⎧⎨
⎩
Kx(t), nT ≤ t < nT + τ,

0 nT + τ ≤ t < (n + 1)T,
(2.6)

where K ∈ Rm×n is the control gain matrix, T > 0 denotes the control period, and τ > 0 is
called the control width. Our objective is to design suitable T, τ , and K such that the system
(2.1) can be stabilized.

With control law (2.6), system (2.1) can be rewritten as

ẋ(t) = (A + ΔA(t))x(t) + (B + ΔB(t))Kx(t) + f(x(t)), nT ≤ t < nT + τ,

ẋ(t) = (A + ΔA(t))x(t) + f(x(t)), nT + τ ≤ t < (n + 1)T.
(2.7)

The above system is classical uncertain switched one where the switching rule only depends
on time. Although there are many successful applications of intermittent control, the
theoretical analysis on intermittent control system has received little attention. In this paper,
we will make a contribution to this issue.

Throughout this paper, we use PT , λmin(P) (λmax(P)) to denote the transpose and the
minimum (maximum) eigenvalue of a square matrix P , respectively. The vector (or matrix)
norm is taken to be Euclidian, denoted by ‖ · ‖. We use P > 0 (< 0, ≤ 0, ≥ 0) to denote a
positive (negative, seminegative, and semipositive) definite matrix P .
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3. Exponential Stabilization of a Class of Uncertain Nonlinear System

This section addresses the exponential stability problem of the switched system (2.7). The
main result is stated as follows.

Theorem 3.1. The system (2.7) is exponentially stable, if there exists a positive definite matrix P > 0,
scalar constants η > 0, δ > 0, εij > 0 (i = 1, 2, j = 1, 2), ε13 > 0, such that the following LMIs hold:

⎡
⎢⎢⎢⎢⎢⎣

Ξ1 P PD1 PD2

P −ε−111 I 0 0

DT
1 P 0 −ε−112 I 0

DT
2 P 0 0 −ε−113

⎤
⎥⎥⎥⎥⎥⎦ < 0, (3.1)

⎡
⎢⎢⎣
ATP + PA + ε−121Q + ε−122E

T
1E1 + δI P PD1

P −ε−121 I 0

DT
1 P 0 −ε−122 I

⎤
⎥⎥⎦ < 0, (3.2)

where

Ξ1 = ATP + PA + PBK +KTBTPT + ε−111Q + ε−112E
T
1E1 + ε−113K

TET
2E2K + ηI. (3.3)

Moreover, the solution x(t) satisfies the condition

‖x(t)‖ ≤
√

λmax(P)
λmin(P)

‖x0‖e−((ητ+δ(T−τ))/2Tλmax(P))(t−τ), ∀t > 0. (3.4)

Proof. Consider the following candidate Lyupunov function

V (x(t)) = xT (t)Px(t), (3.5)

which implies that

λmin(P)‖x(t)‖2 ≤ V (x(t)) ≤ λmax(P)‖x(t)‖2. (3.6)

When nT ≤ t < nT + τ , the derivative of formula (3.5) with respect to time t along the
trajectories of the first subsystem of system (2.7) is calculated and estimated as follows:

V̇ (x(t)) = xT (t)
[
(A + ΔA(t))TP + P(A + ΔA(t))

]
x(t) + xT (t)P(B + ΔB(t))u(t)

+ uT (t)(B + ΔB(t))TPx(t) + 2xT (t)Pf(x(t))

= xT (t)
[
ATP + PA + PBK +KTBTP

]
x(t) + 2xT (t)Pf(x(t))

+ xT (t)
[
ET
1F

T(t)DT
1 P + PD1F(t)E1 + PD2F(t)E2K +KTET

2F
T(t)DT

2 P
]
x(t).

(3.7)
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Using Lemmas 2.1 and 2.2, we get

V̇ (x(t)) ≤ xT (t)
[
ATP + PA + PBK +KTBTP

]
x(t) + ε11x

T (t)PPx(t) + ε−111
∥∥f(x(t))∥∥2

+ xT (t)
[
ε−112E

T
1E1 + ε12PD1D

T
1 P + ε−113K

TET
2E2K + ε13PD2D

T
2 P
]
x(t)

≤ xT (t)
[
ATP + PA + PBK +KTBTP + ε−112E

T
1E1 + ε12PD1D

T
1 P + ε−113K

TET
2E2K

+ε13PD2D
T
2 P + ε11PP + ε−111Q

]
x(t).

(3.8)

From formula (3.1) and Lemma 2.3, we have

Ξ1 + ε11PP + ε12PD1D
T
1 P + ε13PD2D

T
2 P < 0. (3.9)

Hence, we get

V̇ (x(t)) ≤ −ηxT (t)x(t)

≤ −c1V (x(t)),
(3.10)

where c1 = η/λmax(P).
Thus, we have

V̇ (x(t)) ≤ −c1V (x(t)), nT ≤ t < nT + τ, (3.11)

which implies that when nT ≤ t < nT + τ

V (x(t)) ≤ V (x(nT))e−c1(t−nT). (3.12)

Similarly, when nT + τ ≤ t < (n + 1)T , we have

V̇ (x(t)) = xT (t)
[
(A + ΔA(t))TP + P(A + ΔA(t))

]
x(t) + 2xT (t)Pf(x(t))

= xT (t)
[
ATP + PA

]
x(t) + 2xT (t)Pf(x(t)) + xT (t)

[
ET
1F

T (t)DT
1 P + PD1F(t)E1

]
x(t)

≤ xT (t)
[
ATP + PA + ε21PP + ε−121Q + ε−122E

T
1E1 + ε22PD1D

T
1 P
]
x(t).

(3.13)

From formula (3.2) and Lemma 2.3, we have

ATP + PA + ε21PP + ε−121Q + ε−122E
T
1E1 + ε22PD1D

T
1 P + δI < 0, (3.14)
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Hence, it is obtained that

V̇ (x(t)) ≤ −δxT (t)x(t)

≤ −c2V (x(t)),
(3.15)

where c2 = δ/λmax(P).
So, we derive that when nT + τ ≤ t < (n + 1)T ,

V̇ (x(t)) ≤ −c2V (x(t)), (3.16)

V (x(t)) ≤ V (x(nT + τ))e−c2(t−nT−τ). (3.17)

From inequalities (3.12) and (3.17), we have the following.
When 0 ≤ t < τ , V (x(t)) ≤ V (x0)e−c1t and V (x(τ)) ≤ V (x0)e−c1τ .
When τ ≤ t < T ,

V (x(t)) ≤ V (x(τ))e−c2(t−τ)

≤ V (x0)e−(c1τ+c2(t−τ)),

V (x(T)) ≤ V (x0)e−(c1τ+c2(T−τ)).

(3.18)

When T ≤ t < T + τ ,

V (x(t)) ≤ V (x(T))e−c1(t−T)

≤ V (x0)e−(c1τ+c2(T−τ)+c1(t−T)),

V (x(T + τ)) ≤ V (x0)e−(2c1τ+c2(T−τ)).

(3.19)

When T + τ ≤ t < 2T ,

V (x(t)) ≤ V (x(T + τ))e−c2(t−T−τ)

≤ V (x0)e−(2c1τ+c2(T−τ)+c2(t−T−τ)),

V (x(2T)) ≤ V (x0)e−(2c1τ+2c2(T−τ)).

(3.20)

When 2T ≤ t < 2T + τ ,

V (x(t)) ≤ V (x(2T))e−c1(t−2T)

≤ V (x0)e−(2c1τ+2c2(T−τ)+c1(t−2T)),

V (x(2T + τ)) ≤ V (x0)e−(3c1τ+2c2(T−τ)).

(3.21)
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When 2T + τ ≤ t < 3T ,

V (x(t)) ≤ V (x(2T + τ))e−c2(t−2T−τ)

≤ V (x0)e−(3c1τ+2c2(T−τ)+c2(t−2T−τ)),

V (x(3T)) ≤ V (x0)e−(3c1τ+2c2(T−τ)+c2(T−τ))

= V (x0)e−(3c1τ+3c2(T−τ)).

(3.22)

When nT ≤ t < nT + τ , that is, (t − τ)/T < n ≤ t/T ,

V (x(t)) ≤ V (x(nT))e−c1(t−nT)

≤ V (x0)e−(nc1τ+nc2(T−τ))e−c1(t−nT)

≤ V (x0)e−(nc1τ+nc2(T−τ))

≤ V (x0)e−((c1τ+c2(T−τ))/T)(t−τ).

(3.23)

When nT + τ ≤ t < (n + 1)T , that is, t/T < n + 1 < (t − τ + T)/T ,

V (x(t)) ≤ V (x(nT + τ))e−c2(t−nT−τ)

≤ V (x0)e−((c1τ+c2(T−τ))/T)(t−τ)e−c2(t−nT−τ)

≤ V (x0)e−((c1τ+c2(T−τ))/T)(t−τ).

(3.24)

From inequalities (3.23) and (3.24), it follows that for any t > 0,

xT (t)x(t) ≤ 1
λmin(P)

V (x0)e−((c1τ+c2(T−τ))/T)(t−τ)

≤ λmax(P)
λmin(P)

‖x0‖2e−((c1τ+c2(T−τ))/T)(t−τ).
(3.25)

Hence, we get

‖x(t)‖ ≤
√

λmax(P)
λmin(P)

‖x0‖e−((c1τ+c2(T−τ))/2T)(t−τ), ∀t > 0, (3.26)

that is,

‖x(t)‖ ≤
√

λmax(P)
λmin(P)

‖x0‖e−(ητ+δ(T−τ)/2Tλmax(P))(t−τ), ∀t > 0, (3.27)

which concludes the proof.
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Remark 3.2. In [17], the problem of an exponential stability for time-delay systems with
interval time-varying delays and nonlinear perturbations was investigated. Based on the
Lyapunov method, a new delay-dependent criterion for exponential stability is established in
terms of LMI. However, in [17], the control is not concerned in the systems. In our paper, as
τ → T , the periodic feedbackwill be reduced to the general continuous feedback. In this case,
formula (3.1) gives an exponential stability criterion for the system (2.1) with continuous
feedback control u(t) = Kx(t). Hence, our result have a wider area of applications.

Corollary 3.3. If there exist a symmetric and positive definite matrix P > 0, scalar constants η > 0,
δ > 0, εj > 0 (j = 1, 2, 3), such that the following LMIs hold:

[
PBK +KTBTP + ε−13 KTET

2E2K + ηI − δI PD2

DT
2 P −ε−13 I

]
< 0, (3.28)

⎡
⎢⎢⎣
ATP + PA + ε−11 Q + ε−12 ET

1E1 + δI P PD1

P −ε−11 I 0

DT
1 P 0 −ε−12 I

⎤
⎥⎥⎦ < 0, (3.29)

then the system (2.7) is exponentially stable, and moreover,

‖x(t)‖ ≤
√

λmax(P)
λmin(P)

‖x0‖e−(ητ+δ(T−τ)/2Tλmax(P))(t−τ), ∀t > 0. (3.30)

Proof. Set ε11 = ε21 = ε1, ε12 = ε22 = ε2, and ε13 = ε3. From (3.29) and Lemma 2.3, we get

ATP + PA + ε21PP + ε−121Q + ε−122E
T
1E1 + ε22PD1D

T
1 P

= ATP + PA + ε1PP + ε−11 Q + ε−12 ET
1E1 + ε2PD1D

T
1 P

< −δI.

(3.31)

So, formula (3.2) holds. From formulae (3.31), (3.28), and Lemma 2.3, we obtain

ATP + PA + PBK +KTBTP + ε11PP + ε−111Q + ε−112E
T
1E1 + ε12PD1D

T
1 P

+ ε−113K
TET

2E2K + ε13PD2D
T
2 P + ηI

= ATP + PA + PBK +KTBTP + ε1PP + ε−11 Q + ε−12 ET
1E1 + ε2PD1D

T
1 P

+ ε−13 KTET
2E2K + ε3PD2D

T
2 P + ηI

< PBK +KTBTP + ε−13 KTET
2E2K + ε3PD2D

T
2 P + ηI − δI < 0.

(3.32)

So, formula (3.1) holds. According to Theorem 3.1, the conclusion is obtained.
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Now, we consider the following uncertain nonlinear system

ẋ(t) = (A + ΔA(t))x(t) + (I + ΔF(t))Bu(t) + f(x(t)),

x(t0) = x0,
(3.33)

where x ∈ Rn, u ∈ Rn, B is inverse. ΔA(t) and ΔF(t) are time-varying uncertainties with
ΔFT (t)ΔF(t) ≤ I and satisfy ΔA(t) = DΔFE, in which D and E are real constant matrices of
appropriate dimensions. f : Rn → Rn is a continuous nonlinear function satisfying f(0) = 0,
and there exists a positive definite matrix Q such that ‖f(x)‖2 ≤ xTQx for x ∈ Rn.

Consider the following control law:

u(t) =

⎧⎨
⎩
kB−1x(t), nT ≤ t < nT + τ,

0, nT + τ ≤ t < (n + 1)T,
(3.34)

where k ∈ R. Then, the system (3.33) with formula (3.34) can be rewritten as

ẋ(t) = (A + ΔA(t))x(t) + (I + ΔF(t))kx(t) + f(x(t)), nT ≤ t < nT + τ,

ẋ(t) = (A + ΔA(t))x(t) + f(x(t)), nT + τ ≤ t < (n + 1)T.
(3.35)

Theorem 3.4. If there exist a symmetric and positive definite matrix P > 0, scalar constants η > 0,
δ > 0, εj > 0 (i, j = 1, 2), ε13 > 0, k, such that the following LMIs hold:

⎡
⎢⎢⎣
ATP + PA + 2kP + ε11Q + ε−112E

T
1E1 + ε−113k

2I + ηI P PD

P −(ε13 + ε−111
)−1

I 0

DTP 0 −ε−112 I

⎤
⎥⎥⎦ < 0, (3.36)

⎡
⎢⎢⎣
ATP + PA + ε21Q + ε−122E

TE + δI P PD

P ε21I 0

DTP 0 ε−122

⎤
⎥⎥⎦ < 0, (3.37)

then the system (3.35) is exponentially stable, and moreover,

‖x(t)‖ ≤
√

λmax(P)
λmin(P)

‖x0‖e−((ητ+δ(T−τ))/2Tλmax(P))(t−τ) , ∀t > 0. (3.38)

Proof. Consider the candidate Lyupunov function (3.5).
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When nT ≤ t < nT + τ , the derivative of Lyupunov function (3.5) with respect to time
t along the trajectories of the first subsystem of system (3.35) is calculated and estimated as
follows:

V̇ (x(t)) =
[
(A + ΔA(t))x(t) + (I + ΔF(t))kx(t) + f(x(t))

]T
Px(t)

+ xT (t)P
[
(A + ΔA(t))x(t) + (I + ΔF(t))kx(t) + f(x(t))

]
= xT (t)

[
ATP + PA + 2kP

]
x(t) + 2xT (t)Pf(x(t))

+ xT (t)
[
ETΔFT(t)DTP + PDΔF(t)E

]
x(t) + 2kxT (t)PΔF(t)x(t)

≤ xT (t)
[
ATP+PA+2kP+ε−111PP+ε11Q+ε−112E

TE+ε12PDDTP+ε−113k
2I+ε13PP

]
x(t).

(3.39)

From formula (3.36) and Lemma 2.3, we have

V̇ (x(t)) ≤ −ηxT (t)x(t),

≤ −c1V (x(t)),
(3.40)

where c1 = η/λmax(P).
Thus, we have

V̇ (x(t)) ≤ −c1V (x(t)), nT ≤ t < nT + τ, (3.41)

which implies that when nT ≤ t < nT + τ ,

V (x(t)) ≤ V (x(nT))e−c1(t−nT). (3.42)

Similarly, when nT + τ ≤ t < (n + 1)T , we have

V̇ (x(t)) = xT (t)
[
ATP + PA

]
x(t) + 2xT (t)Pf(x(t)) + xT (t)

[
(ΔA(t))TP + PΔA(t)

]
x(t)

≤ xT (t)
[
ATP + PA + ε−122E

TE + ε22PDDTP
]
x(t) + ε−121x

T (t)PPx(t) + ε21
∥∥f(x(t))∥∥2

≤ xT (t)
[
ATP + PA + ε−121PP + ε21Q + ε−122E

TE + ε22PDDTP
]
x(t)

≤ −c2V (x(t)),
(3.43)

where c2 = δ/λmax(P).
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So, we derive that when nT + τ ≤ t < (n + 1)T ,

V (x(t)) ≤ −c2V (x(t)),

V (x(t)) ≤ V (x(nT + τ))e−c2(t−nT−τ).
(3.44)

Similar to the proof in Theorem 3.1, we can get

‖x(t)‖ ≤
√

λmax(P)
λmin(P)

‖x0‖e−((c1τ+c2(T−τ))/2T)(t−τ), ∀t > 0, (3.45)

that is,

‖x(t)‖ ≤
√

λmax(P)
λmin(P)

‖x0‖e−((ητ+δ(T−τ))/2Tλmax(P))(t−τ) , ∀t > 0, (3.46)

which completes the proof.

Example 3.5. Consider the system (2.1) with

A =

(−10 2

2 −10

)
, B =

(
0

1

)
, f(x) =

(
x2(t) sinx1(t)

x1(t) cosx2(t)

)
, K =

(
0.01 0.2

)
,

E1 =

(
1 −2
2 1

)
, D1 =

(
2 1

−1 2

)
, D2 =

(−1 1

−1 −1

)
, E2 =

(
3

−1

)
.

(3.47)

It is obvious that Q = I.
For the positive numbers η = 0.5, δ = 2, ε1 = ε2 = ε3 = 1, by solving LMIs of

Corollary 3.3, we obtain

P =

(
0.6474 0.0745

0.0745 0.5723

)
. (3.48)

Therefore, the system is robustly exponentially stabilizable with feedback control

u(t) =

⎧⎨
⎩
0.01x1(t) + 0.2x2(t), nT ≤ t < nT + τ,

0, nT + τ ≤ t < (n + 1)T,
(3.49)

and the solution of the system satisfies

‖x(t)‖ ≤ 1.1476‖x0‖e−((2T−1.5τ)/1.3866T)(t−τ), ∀t > 0. (3.50)
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Figure 1: The state x1 and x2 of the closed-loop system in Example 3.5.

Simulation result is shown in Figure 1 for the initial condition x0 = (1 − 1)T , T = 0.2, τ = 0.1,
and F(t) =

(
α 0
0 β

)
, where α and β are random constants between 0 and 1. It is seen from

Figure 1 that the closed-loop system is exponentially stable.

4. Conclusions

In this paper, we deal with the exponential stabilization problem of a class of uncertain
nonlinear systems by means of periodically intermittent control. Based on Lyapunov
function approach, several stability criteria have been given in terms of a set of linear
matrix inequalities, and stabilization periodically intermittent state feedback controllers are
proposed. Finally, a numerical example is provided to show the high performance of the
proposed approach.
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