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It is established that the sequences n �→ S(n) :=
∑n

k=1(k/n)
n and n �→ n(e/(e−1)−S(n)) are strictly

increasing and converge to e/(e−1) and e(e+1)/2(e−1)3, respectively. It is shown that there holds
the sharp double inequality (1/(e−1))·(1/n) � e/(e−1)−S(n) < (e(e+1)/2(e−1)3)·(1/n), (n ∈ �).

1. Introduction

The proof of the equality

lim
n→∞

n∑

k=1

(
k

n

)n

=
e

e − 1
, (1.1a)

published recently in the form [1]

lim
n→∞

n−1∑

k=1

(
k

n

)n

=
1

e − 1
, (1.1b)

was based on the equations n1−k ·n(n−1) · · · (n−k+2) = (1−1/n)(1−2/n) · · · (1−(k−2)/n) =
1 +O(1/n) with the false hypothesis that big O is independent of k (see [1, pages 63-64] and
[2, pages 54-55]). Deriving (1.1b) the author used the Euler-Maclaurin summation formula
and a generating function for the Bernoulli numbers.
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Figure 1: The graph of the sequence n �→ S(n) ≡ ∑n
k=1 (k/n)

n.

Subsequently, Spivey published the correction of his demonstration as the Letter to the
Editor [2]. Additionally, Holland [3] published two different derivations of (1.1a) in the same
issue as Spivey’s correction appeared.

In this note, using only elementary techniques, we demonstrate that the sequence S(n)
is strictly increasing and that (1.1a) holds; in addition, we establish a sharp estimate of the
rate of convergence.

2. Monotone Convergence

The formula (1.1a) is illustrated in Figure 1, where the sequence n �→ S(n) :=
∑n

k=1 (k/n)
n is

depicted. Its monotonicity is seen very clearly.
To prove that the sequence (Sn)n∈� is strictly increasing, we change the order of

summation

S(n) ≡
n∑

k=1

(
k

n

)n

≡
n∑

j=0

(
n − j

n

)n

≡ 1 +
n∑

j=1

(

1 +
−j
n

)n

. (2.1)

Now, consider the function t �→ E(x, t) := (1 + x/t)t which is, for x/= 0, strictly increasing on
the open interval (−min{0, x},∞) and limt→∞E(x, t) = supt>|x|E(x, t) = ex, for any x ∈ �

[4, page 42]. Consequently, the sequence (S(n))n∈� is strictly increasing. We use Tannery’s
theorem for series (see [5] or [6, item 49, page 136]) to determine its limit.

Lemma 2.1 (Tannery). Let a double sequence (j, n) �→ zj(n) of complex numbers satisfy the
following conditions:

(1) The finite limit z∞(j) := limn→∞zn(j) exists for every fixed j ∈ �.
(2) There exists a sequence of positive constants M1,M2,M3, . . . such that |zn(j)| ≤ Mj for

every (j, n) ∈ � × � satisfying the estimate j ≤ n, and the series
∑∞

j=1 Mj converges.
(In [6, item 49, page 136], we have the stronger supposition that |zn(j)| ≤ Mj for all
(j, n) ∈ � × �.)

Then we have

lim
n→∞

n∑

j=1

zn
(
j
)
=

∞∑

j=1

z∞
(
j
)
. (2.2)
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Proof. Let all the conditions of the Lemma be satisfied and ε ∈ �+ be given. Then we estimate
|z∞(j)| ≤ Mj for j ∈ � and

∑∞
j=mε+1 Mj < ε/3 for some mε ∈ �. Moreover, for any

j ∈ {1, . . . , mε}, also |z∞(j) − zn(j)| < ε/(3mε) for n ≥ nε(j) at some nε(j) ∈ �. Thus, for
n ≥ nε := max1≤j≤mεnε(j), we estimate

∣
∣
∣
∣
∣
∣

∞∑

j=1

z∞
(
j
) −

n∑

j=1

zn
(
j
)
∣
∣
∣
∣
∣
∣
≤

mε∑

j=1

∣
∣z∞

(
j
) − zn

(
j
)∣
∣ +

∞∑

j=mε+1

∣
∣z∞

(
j
)∣
∣ +

n∑

j=mε+1

∣
∣zn

(
j
)∣
∣

< mε · ε

3mε
+

∞∑

j=mε+1

Mj +
n∑

j=mε+1

Mj <
ε

3
+
ε

3
+
ε

3
= ε.

(2.3)

Now, using (2.1) and putting zn(j) = (1 + −j/n)n and z∞(j) = e−j into Tannery’s
Lemma, we obtain

lim
n→∞

S(n) = 1 +
∞∑

j=1

e−j =
e

e − 1
. (2.4)

3. The Rate of Convergence

Referring to Figure 1, the convergence of the sequence (S(n))n∈� appears to be rather slow.
The difference

Δ(n) :=
e

e − 1
− S(n) (3.1)

determines the sequence n �→ nΔ(n). Its graph, shown in Figure 2, suggests it is monotonic
increasing, which we will prove first.

Indeed, according to (3.1) and (2.1), we have

Δ(n) =
∞∑

j=0

e−j −
n∑

j=0

(

1 − j

n

)n

=
n∑

j=1

fn
(
j
)
+

∞∑

j=n+1

e−j

=
n∑

j=1

fn
(
j
)
+

e−n

e − 1
,

(3.2)

where

fn(x) := e−x −
(

1 − x

n

)n

(x ∈ �) (3.3)
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Figure 2: The graph of the sequence n �→ nΔ(n).

and, for x/= 0, the sequence n �→ fn(x) is strictly decreasing and converges to zero [4, (4)].
Thus, we have

nΔ(n) =
n∑

j=1

gn
(
j
)
+ n

e−n

e − 1
=

n−1∑

j=1

gn
(
j
)
+ Cne−n (3.4)

with

gn(x) := nfn(x), C =
e

e − 1
. (3.5)

To examine the monotonicity of the sequence n �→ nΔ(n), we study, using (3.3), (3.4)
and (3.5), the difference (n + 1)Δ(n + 1) − nΔ(n), which is equal to

⎛

⎝
n−1∑

j=1

gn+1
(
j
)
+ gn+1(n)

⎞

⎠ + C · (n + 1)e−n−1 −
n−1∑

j=1

gn
(
j
) − Cne−n

=
n−1∑

j=1

(
gn+1

(
j
) − gn

(
j
))

+ (n + 1)e−n − 1
(n + 1)n

+
n + 1
e − 1

e−n − en

e − 1
e−n

=
n−1∑

j=1

(
(n + 1)fn+1

(
j
) − nfn

(
j
))

+
(

e

e − 1
e−n − (n + 1)−n

)

>
n−1∑

j=1

(
nfn+1

(
j
) − nfn

(
j
))

+ 0 > 0.

(3.6)

Hence:

The sequence n �−→ nΔ(n) is strictly increasing. (3.7)

Next, we examine also the question of convergence of the above sequence. First,
referring to (3.3), (3.5), and [4, page 29, equation (16)], there exists the limit

g∞
(
j
)
:= lim

n→∞
gn

(
j
)
=
e−j j2

2
(
j ∈ �). (3.8)
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Moreover, according to (3.3), (3.5), and [4, (15)], the estimates

gn
(
j
)
<
e−j j2

2
· n

n − j
≤ e−j j2

2
· (1 + j

)
(3.9)

hold true for j ≤ n − 1. Additionally, gn(n) = ne−n, due to (3.3) and (3.5). Thus, the estimate

gn
(
j
) ≤ Mj :=

(
j + 1

)
j2

2
· e−j (3.10)

is being valid for n ∈ � and j ≤ n with

∞∑

j=1

Mj =
∞∑

j=1

(
j + 1

)
j2

2
· e−j < ∞. (3.11)

According to (3.8) and differentiating the appropriate power series resulting from the
geometric series, we obtain

∞∑

j=1

g∞
(
j
)
=

∞∑

j=1

e−j j2

2
=

e2 + e

2(e − 1)3
. (3.12)

Now, referring to (3.4) and (3.8)–(3.12), and applying Tannery’s Lemma—equation
(2.2), with zn(j) ≡ gn(j), we obtain the result

lim
n→∞

nΔ(n) =
∞∑

j=1

g∞
(
j
)
+ 0 =

e(e + 1)

2(e − 1)3
. (3.13)

Therefore, using (3.1) and (3.7), we find the following sharp inequality

e

e − 1
− S(n) <

e(e + 1)

2(e − 1)3
· 1
n
, (3.14)

true for every n ∈ �. In addition, we have also the estimate

e

e − 1
− S(n) ≥ m

(
e

e − 1
− S(m)

)

· 1
n
, (3.15)

valid for everym,n ∈ � such that n ≥ m.
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We have e(e + 1)/2(e − 1)3 = 0.996147 . . ., and for the function P(m) := mΔ(m) =
m(e/(e − 1) − S(m)) we calculate P(1) = 0.581976 . . ., and P(999) = 0.995149 . . .. This way we
obtain simple and rather accurate estimates

0.581 · 1
n
<

e

e − 1
− S(n) < 0.996 · 1

n
, for n ≥ 1,

0.995 · 1
n
<

e

e − 1
− S(n) < 0.997 · 1

n
, for n ≥ 1000.

(3.16)

Consequently, we get, for example, a simple double inequality

e

e − 1
− 1
n
< S(n) <

e

e − 1
− 1
2n

, for n ≥ 1. (3.17)

Open Question. Are the sequences n �→ S(n) and n �→ nΔ(n) strictly concave?
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