
Hindawi Publishing Corporation
Journal of Inequalities and Applications
Volume 2011, Article ID 686834, 9 pages
doi:10.1155/2011/686834

Research Article
The Optimal Convex Combination Bounds for
Seiffert’s Mean

Hong Liu1 and Xiang-Ju Meng2

1 College of Mathematics and Computer Science, Hebei University, Baoding 071002, China
2 Department of Mathematics, Baoding College, Baoding 071002, China

Correspondence should be addressed to Hong Liu, liuhongmath@163.com

Received 28 November 2010; Accepted 28 February 2011

Academic Editor: P. Y. H. Pang

Copyright q 2011 H. Liu and X.-J. Meng. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

We derive some optimal convex combination bounds related to Seiffert’s mean. We find the
greatest values α1, α2 and the least values β1, β2 such that the double inequalities α1C(a, b) + (1 −
α1)G(a, b) < P(a, b) < β1C(a, b) + (1 − β1)G(a, b) and α2C(a, b) + (1 − α2)H(a, b) < P(a, b) <
β2C(a, b)+ (1−β2)H(a, b) hold for all a, b > 0 with a/= b. Here, C(a, b), G(a, b),H(a, b), and P(a, b)
denote the contraharmonic, geometric, harmonic, and Seiffert’s means of two positive numbers a
and b, respectively.

1. Introduction

For a, b > 0 with a/= b, the Seiffert’t mean P(a, b) was introduced by Seiffert [1] as follows:

P(a, b) =
a − b

4 arctan
(√

a/b
)
− π

. (1.1)

Recently, the inequalities for means have been the subject of intensive research. In particular,
many remarkable inequalities for P can be found in the literature [2–6]. Seiffert’s mean P can
be rewritten as (see [5, equation (2.4)])

P(a, b) =
a − b

2 arcsin((a − b)/(a + b))
. (1.2)
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Let C(a, b) = (a2+b2)/(a+b), A(a, b) = (a+b)/2, G(a, b) =
√
ab, andH(a, b) = 2ab/(a+b) be

the contraharmonic, arithmetic, geometric and harmonic means of two positive real numbers
a and b with a/= b. Then

min{a, b} < H(a, b) < G(a, b) < P(a, b) < A(a, b) < C(a, b) < max{a, b}. (1.3)

In [7], Seiffert proved that

P(a, b) >
3A(a, b)G(a, b)

A(a, b) + 2G(a, b)
, P(a, b) >

2
π
A(a, b), (1.4)

for all a, b > 0 with a/= b.
In [8], the authors found the greatest value α and the least value β such that the double

inequality

αA(a, b) + (1 − α)H(a, b) < P(a, b) < βA(a, b) +
(
1 − β

)
H(a, b) (1.5)

holds for all a, b > 0 with a/= b.
For more results, see [9–23].
The purpose of the present paper is to find the greatest values α1, α2 and the least

values β1, β2 such that the double inequalities

α1C(a, b) + (1 − α1)G(a, b) < P(a, b) < β1C(a, b) +
(
1 − β1

)
G(a, b),

α2C(a, b) + (1 − α2)H(a, b) < P(a, b) < β2C(a, b) +
(
1 − β2

)
H(a, b)

(1.6)

hold for all a, b > 0 with a/= b.

2. Main Results

Firstly, we present the optimal convex combination bounds of contraharmonic and geometric
means for Seiffert’s mean as follows.

Theorem 2.1. The double inequality α1C(a, b) + (1 − α1)G(a, b) < P(a, b) < β1C(a, b) + (1 −
β1)G(a, b) holds for all a, b > 0 with a/= b if and only if α1 � 2/9 and β1 � 1/π .

Proof. Firstly, we prove that

P(a, b) <
1
π
C(a, b) +

(
1 − 1

π

)
G(a, b),

P(a, b) >
2
9
C(a, b) +

7
9
G(a, b),

(2.1)

for all a, b > 0 with a/= b.
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Without loss of generality, we assume that a > b. Let t =
√
a/b > 1 and p ∈ {2/9, 1/π}.

Then (1.1) leads to

{
P(a, b) − [

pC(a, b) +
(
1 − p

)
G(a, b)

]}

= bP
(
t2, 1

)
− b

[
pC

(
t2, 1

)
+
(
1 − p

)
G
(
t2, 1

)]

=
b
[
pt4 +

(
1 − p

)
t3 +

(
1 − p

)
t + p

]

(t2 + 1)(4 arctan t − π)
f(t),

(2.2)

where

f(t) =

(
t4 − 1

)

pt4 +
(
1 − p

)
t3 +

(
1 − p

)
t + p

− 4 arctan t + π. (2.3)

Simple computations lead to

lim
t→ 1+

f(t) = 0, lim
t→+∞

f(t) =
1
p
− π,

f ′(t) =
(t − 1)2

(t2 + 1)
[
pt4 +

(
1 − p

)
t3 +

(
1 − p

)
t + p

]2 g(t),
(2.4)

where

g(t) = −
(
4p2 + p − 1

)
t6 − 2

(
5p − 1

)
t5 − 3

(
5p − 1

)
t4

+ 4
(
2p2 − 5p + 1

)
t3 − 3

(
5p − 1

)
t2

− 2
(
5p − 1

)
t − 4p2 − p + 1.

(2.5)

We divide the proof into two cases.

Case 1 (p = 2/9). In this case,

g(t) =
1
81

(
47t4 + 76t3 + 78t2 + 76t + 47

)
(t − 1)2 > 0, for t > 1. (2.6)

Therefore, the second inequality in (2.1) follows from (2.2)–(2.6). Notice that in this case, the
second equality in (2.4) becomes

lim
t→+∞

f(t) =
9
2
− π > 0. (2.7)
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Case 2 (p = 1/π). From (2.5), we have that

g(1) = 8
(
2 − 9p

)
= 8

(
2 − 9

π

)
< 0, lim

t→+∞
g(t) = +∞, (2.8)

g ′(t) = −6
(
4p2 + p − 1

)
t5 − 10

(
5p − 1

)
t4 − 12

(
5p − 1

)
t3

+ 12
(
2p2 − 5p + 1

)
t2 − 6

(
5p − 1

)
t − 10p + 2

(2.9)

g ′(1) = 24
(
2 − 9p

)
= 24

(
2 − 9

π

)
< 0, lim

t→+∞
g ′(t) = +∞, (2.10)

g ′′(t) = −30
(
4p2 + p − 1

)
t4 − 40

(
5p − 1

)
t3 − 36

(
5p − 1

)
t2

+ 24
(
2p2 − 5p + 1

)
t − 30p + 6,

(2.11)

g ′′(1) = 8
(
17 − 70p − 9p2

)
= 8

(
17 − 70

π
− 9
π2

)
< 0, lim

t→+∞
g ′′(t) = +∞, (2.12)

g ′′′(t) = −120
(
4p2 + p − 1

)
t3 − 120

(
5p − 1

)
t2 − 72

(
5p − 1

)
t

+ 48p2 − 120p + 24,
(2.13)

g ′′′(1) = 48
(
7 − 25p − 9p2

)
= 48

(
7 − 25

π
− 9
π2

)
< 0, lim

t→+∞
g ′′′(t) = +∞, (2.14)

g(4)(t) = −360
(
4p2 + p − 1

)
t2 − 240

(
5p − 1

)
t − 360p + 72, (2.15)

g(4)(1) = 96
(
7 − 20p − 15p2

)
= 96

(
7 − 20

π
− 15
π2

)
< 0, lim

t→+∞
g ′(t) = +∞, (2.16)

g(5)(t) = −720
(
4p2 + p − 1

)
t − 1200p + 240, (2.17)

g(5)(1) = 960
(
1 − 2p − 3p2

)
= 960

(
1 − 2

π
− 3
π2

)
> 0. (2.18)

From (2.17) and (2.18), we clearly see that g(5)(t) > 0 for t ≥ 1; hence g(4)(t) is strictly
increasing in [1,+∞), which together with (2.16) implies that there exists λ1 > 1 such that
g(4)(t) < 0 for t ∈ [1, λ1) and g(4)(t) > 0 for t ∈ (λ1,+∞); and hence g ′′′(t) is strictly decreasing
in [1, λ1] and strictly increasing for [λ1,+∞). From (2.14) and the monotonicity of g ′′′(t), there
exists λ2 > 1 such that g ′′′(t) < 0 for t ∈ [1, λ2) and g ′′′(t) > 0 for t ∈ (λ2,+∞); hence g ′′(t) is
strictly decreasing in [1, λ2] and strictly increasing for [λ2,+∞). As this goes on, there exists
λ3 > 1 such that f(t) is strictly decreasing in [1, λ3] and strictly increasing in [λ3,+∞). Note
that if p = 1/π , then the second equality in (2.4) becomes

lim
t→+∞

f(t) = 0. (2.19)

Thus f(t) < 0 for all t > 1. Therefore, the first inequality in (2.1) follows from (2.2) and (2.3).
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Secondly, we prove that 2/9C(a, b) + 7/9G(a, b) is the best possible lower convex
combination bound of the contraharmonic and geometric means for Seiffert’s mean.

If α1 > 2/9, then (2.5) (with α1 in place of p) leads to

g(1) = 8(2 − 9α1) < 0. (2.20)

From this result and the continuity of g(t) we clearly see that there exists δ = δ(α1) > 0
such that g(t) < 0 for t ∈ (1, 1 + δ). Then the last equality in (2.4) implies that f ′(t) < 0 for
t ∈ (1, 1 + δ). Thus f(t) is decreasing for t ∈ (1, 1 + δ). Due to (2.4), f(t) < 0 for t ∈ (1, 1 + δ),
which is equivalent to, by (2.2),

P
(
t2, 1

)
< α1C

(
t2, 1

)
+ (1 − α1)G

(
t2, 1

)
, (2.21)

for t ∈ (1, 1 + δ).
Finally, we prove that 1/πC(a, b) + (1− 1/π)G(a, b) is the best possible upper convex

combination bound of the contraharmonic and geometric means for Seiffert’s mean.
If β1 < 1/π , then from (1.1) one has

lim
t→+∞

β1C
(
t2, 1

)
+
(
1 − β1

)
G
(
t2, 1

)

P(t2, 1)

= lim
t→+∞

[
β1t4 +

(
1 − β1

)
t3 +

(
1 − β1

)
t + β1

]
(4 arctan t − π)

t4 − 1
= β1π < 1.

(2.22)

Inequality (2.22) implies that for any β1 < 1/π there exists X = X(β1) > 1 such that

β1C
(
t2, 1

)
+
(
1 − β1

)
G
(
t2, 1

)
< P

(
t2, 1

)
(2.23)

for t ∈ (X,+∞).

Secondly, we present the optimal convex combination bounds of the contraharmonic
and harmonic means for Seiffert’s mean as follows.

Theorem 2.2. The double inequality α2C(a, b) + (1 − α2)H(a, b) < P(a, b) < β2C(a, b) + (1 −
β2)H(a, b) holds for all a, b > 0 with a/= b if and only if α2 � 1/π and β2 � 5/12.

Proof. Firstly, we prove that

P(a, b) <
5
12

C(a, b) +
7
12

H(a, b),

P(a, b) >
1
π
C(a, b) +

(
1 − 1

π

)
H(a, b),

(2.24)

for all a, b > 0 with a/= b.
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Without loss of generality, we assume that a > b. Let t =
√
a/b > 1 and p ∈

{1/π, 5/12}. Then (1.1) leads to

{
P(a, b) − [

pC(a, b) +
(
1 − p

)
H(a, b)

]}

= bP
(
t2, 1

)
− b

[
pC

(
t2, 1

)
+
(
1 − p

)
H
(
t2, 1

)]

=
b
[
pt4 + 2

(
1 − p

)
t2 + p

]

(t2 + 1)(4 arctan t − π)
f(t),

(2.25)

where

f(t) =

(
t4 − 1

)

pt4 + 2
(
1 − p

)
t2 + p

− 4 arctan t + π. (2.26)

Simple computations lead to

lim
t→ 1+

f(t) = 0, lim
t→+∞

f(t) =
1
p
− π,

f ′(t) =
4(t − 1)2

(t2 + 1)
[
pt4 + 2

(
1 − p

)
t2 + p

]2 g(t),
(2.27)

where

g(t) = −p2t6 +
(
−2p2 − p + 1

)
t5 +

(
p2 − 6p + 2

)
t4

+ 2
(
2p2 − 5p + 2

)
t3 +

(
p2 − 6p + 2

)
t2 +

(
−2p2 − p + 1

)
t − p2.

(2.28)

We divide the proof into two cases.

Case 1 (p = 5/12). In this case,

g(t) = − 1
144

(
25t4 + 16t3 + 54t2 + 16t + 25

)
(t − 1)2 < 0, for t > 1. (2.29)

Therefore, the first inequality in (2.24) follows from (2.25)–(2.29). Notice that in this case, the
second equality in (2.27) becomes

lim
t→+∞

f(t) =
12
5

− π < 0. (2.30)
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Case 2 (p = 1/π). From (2.28) we have that

g(1) = 2
(
5 − 12p

)
= 2

(
5 − 12

π

)
> 0, lim

t→+∞
g(t) = −∞, (2.31)

g ′(t) = −6p2t5 + 5
(
−2p2 − p + 1

)
t4 + 4

(
p2 − 6p + 2

)
t3

+ 6
(
2p2 − 5p + 2

)
t2 + 2

(
p2 − 6p + 2

)
t − 2p2 − p + 1,

(2.32)

g ′(t) = 6
(
5 − 12p

)
= 6

(
5 − 12

π

)
> 0, lim

t→+∞
g ′(t) = −∞, (2.33)

g ′′(t) = −30p2t4 + 20
(
−2p2 − p + 1

)
t3 + 12

(
p2 − 6p + 2

)
t2

+ 12
(
2p2 − 5p + 2

)
t + 2p2 − 12p + 4,

(2.34)

g ′′(t) = 4
(
18 − 41p − 8p2

)
= 4

(
18 − 41

π
− 8
π2

)
> 0, lim

t→+∞
g ′′(t) = −∞, (2.35)

g ′′′(t) = −120p2t3 + 60
(
−2p2 − p + 1

)
t2 + 24

(
p2 − 6p + 2

)
t2

+ 24p2 − 60p + 24,
(2.36)

g ′′′(1) = 12
(
11 − 22p − 16p2

)
= 12

(
11 − 22

π
− 16
π2

)
> 0, lim

t→+∞
g ′′′(t) = −∞, (2.37)

g(4)(t) = −360p2t2 + 120
(
−2p2 − p + 1

)
t + 24p2 − 144p + 48. (2.38)

g(4)(1) = 24
(
7 − 11p − 24p2

)
= 24

(
7 − 11

π
− 24
π2

)
> 0, lim

t→+∞
g ′(t) = −∞, (2.39)

g(5)(t) = −720p2t − 240p2 − 120p + 120, (2.40)

g(5)(1) = 120
(
1 − p − 8p2

)
= 120

(
1 − 1

π
− 8
π2

)
< 0. (2.41)

From (2.40) and (2.41) we clearly see that g(5)(t) < 0 for t ≥ 1; hence g(4)(t) is strictly
decreasing in [1,+∞), which together with (2.39) implies that there exists λ4 > 1 such that
g(4)(t) > 0 for t ∈ [1, λ4) and g(4)(t) < 0 for t ∈ (λ4,+∞), and hence g ′′′(t) is strictly increasing
in [1, λ4] and strictly decreasing for [λ1,+∞). From (2.37) and the monotonicity of g ′′′(t), there
exists λ5 > 1 such that g ′′′(t) > 0 for t ∈ [1, λ5) and g ′′′(t) < 0 for t ∈ (λ5,+∞); hence g ′′(t) is
strictly increasing in [1, λ5] and strictly decreasing for [λ5,+∞). As this goes on, there exists
λ6 > 1 such that f(t) is strictly increasing in [1, λ6] and strictly decreasing in [λ6,+∞). Notice
that if p = 1/π , then the second equality in (2.27) becomes

lim
t→+∞

f(t) = 0. (2.42)

Thus f(t) > 0 for all t > 1. Therefore, the second inequality in (2.24) follows from (2.25) and
(2.26).
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Secondly, we prove that 5/12C(a, b) + 7/12H(a, b) is the best possible upper convex
combination bound of the contraharmonic and harmonic means for Seiffert’s mean.

If β2 < 5/12, then (2.28) (with β2 in place of p) leads to

g(1) = 2
(
5 − 12β2

)
> 0. (2.43)

From this result and the continuity of g(t) we clearly see that there exists δ = δ(β2) > 0
such that g(t) > 0 for t ∈ (1, 1 + δ). Then the last equality in (2.27) implies that f ′(t) > 0 for
t ∈ (1, 1 + δ). Thus f(t) is increasing for t ∈ (1, 1 + δ). Due to (2.27), f(t) > 0 for t ∈ (1, 1 + δ),
which is equivalent to, by (2.25),

P
(
t2, 1

)
> β2C

(
t2, 1

)
+
(
1 − β2

)
H
(
t2, 1

)
, (2.44)

for t ∈ (1, 1 + δ).
Finally, we prove that 1/πC(a, b) + (1 − 1/π)H(a, b) is the best possible lower convex

combination bound of the contraharmonic and harmonic means for Seiffert’s mean.
If α2 > 1/π , then from (1.1) one has

lim
t→+∞

α2C
(
t2, 1

)
+ (1 − α2)H

(
t2, 1

)

P(t2, 1)

= lim
t→+∞

[
α2t4 − 2(1 − α2)t2 + α2

]
(4 arctan t − π)

(t2 + 1)(t2 − 1)
= α2π > 1.

(2.45)

Inequality (2.45) implies that for any α2 > 1/π there exists X = X(α2) > 1 such that

α2C
(
t2, 1

)
+ (1 − α2)H

(
t2, 1

)
> P

(
t2, 1

)
(2.46)

for t ∈ (X,+∞).
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