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Subordination and superordination preserving properties for multivalent functions in the open
unit disk associated with the Dziok-Srivastava operator are derived. Sandwich-type theorems for
these multivalent functions are also obtained.

1. Introduction

Let � := {z ∈ � : |z| < 1} be the open unit disk in the complex plane � , and let H := H(�)
denote the class of analytic functions defined in �. For n ∈ � := {1, 2, . . .} and a ∈ � , let
H[a, n] consist of functions f ∈ H of the form f(z) = a + anzn + an+1zn+1 + · · · . Let f and F
be members of H. The function f is said to be subordinate to F, or F is said to be superordinate
to f , if there exists a function w analytic in �, with |w(z)| ≤ |z| and such that f(z) = F(w(z)).
In such a case, we write f ≺ F or f(z) ≺ F(z). If the function F is univalent in �, then f ≺ F if
and only if f(0) = F(0) and f(�) ⊂ F(�) (cf. [1, 2]). Let ϕ : � 2 → � , and let h be univalent in
�. The subordination ϕ(p(z), zp′(z)) ≺ h(z) is called a first-order differential subordination.
It is of interest to determine conditions under which p ≺ q arises for a prescribed univalent
function q. The theory of differential subordination in � is a generalization of a differential
inequality in �, and this theory of differential subordination was initiated by the works of
Miller, Mocanu, and Reade in 1981. Recently, Miller and Mocanu [3] investigated the dual
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problem of differential superordination. The monograph by Miller and Mocanu [1] gives a
good introduction to the theory of differential subordination, while the book by Bulboacă [4]
investigates both subordination and superordination. Related results on superordination can
be found in [5–23].

By using the theory of differential subordination, various subordination preserving
properties for certain integral operators were obtained by Bulboacă [24], Miller et al. [25],
and Owa and Srivastava [26]. The corresponding superordination properties and sandwich-
type results were also investigated, for example, in [4]. In the present paper, we investigate
subordination and superordination preserving properties of functions defined through the
use of the Dziok-Srivastava linear operator Hp,q,s(α1) (see (1.9) and (1.10)), and also obtain
corresponding sandwich-type theorems.

The Dziok-Srivastava linear operator is a particular instance of a linear operator
defined by convolution. For p ∈ �, let Ap denote the class of functions

f(z) = zp +
∞∑

k=1

ak+pz
k+p (1.1)

that are analytic and p-valent in the open unit disk � with f (p+1)(0)/= 0. The Hadamard
product (or convolution) f ∗ g of two analytic functions

f(z) =
∞∑

k=0

akz
k, g(z) =

∞∑

k=0

bkz
k (1.2)

is defined by the series

(
f ∗ g)(z) =

∞∑

k=0

akbkz
k. (1.3)

For complex parameters α1, . . . , αq and β1, . . . , βs (βj /= 0,−1,−2, . . . ; j = 1, . . . , s), the
generalized hypergeometric function qFs(α1, . . . , αq; β1, . . . , βs; z) is given by

qFs
(
α1, . . . , αq; β1, . . . , βs; z

)
:=

∞∑

n=0

(α1)n · · ·
(
αq
)
n(

β1
)
n · · ·

(
βs
)
n

zn

n!
,

(
q ≤ s + 1; q, s ∈ �0 := � ∪ {0}; z ∈ �

)
,

(1.4)

where (ν)n is the Pochhammer symbol (or the shifted factorial) defined (in terms of the
Gamma function) by

(ν)n :=
Γ(ν + n)
Γ(ν)

=

⎧
⎨

⎩
1 if n = 0, ν ∈ � \ {0},
ν(ν + 1) · · · (ν + n − 1) if n ∈ �, ν ∈ � .

(1.5)
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To define the Dziok-Srivastava operator

Hp

(
α1, . . . , αq; β1, . . . , βs

)
: Ap → Ap (1.6)

via the Hadamard product given by (1.3), we consider a corresponding function

Fp

(
α1, . . . , αq; β1, . . . , βs; z

)
(1.7)

defined by

Fp

(
α1, . . . , αq; β1, . . . , βs; z

)
:= zpqFs

(
α1, . . . , αq; β1, . . . , βs; z

)
. (1.8)

The Dziok-Srivastava linear operator is now defined by the Hadamard product

Hp

(
α1, . . . , αq; β1, . . . , βs

)
f(z) := Fp

(
α1, . . . , αq; β1, . . . , βs; z

) ∗ f(z). (1.9)

This operator was introduced and studied in a series of recent papers byDziok and Srivastava
([27–29]; see also [30, 31]). For convenience, we write

Hp,q,s(α1) := Hp

(
α1, . . . , αq; β1, . . . , βs

)
. (1.10)

The importance of the Dziok-Srivastava operator from the general convolution operator rests
on the relation

z
(
Hp,q,s(α1)f(z)

)′ = α1Hp,q,s(α1 + 1)f(z) − (α1 − p
)
Hp,q,s(α1)f(z) (1.11)

that can be verified by direct calculations (see, e.g., [27]). The linear operator Hp,q,s(α1)
includes various other linear operators as special cases. These include the operators
introduced and studied by Carlson and Shaffer [32], Hohlov ([33], also see [34, 35]), and
Ruscheweyh [36], as well as works in [27, 37].

2. Definitions and Lemmas

Recall that a domain D ⊂ � is convex if the line segment joining any two points in D lies
entirely in D, while the domain is starlike with respect to a point w0 ∈ D if the line segment
joining any point in D to w0 lies inside D. An analytic function f is convex or starlike if
f(� ) is, respectively, convex or starlike with respect to 0. For f ∈ A := A1, analytically, these
functions are described by the conditions Re(1 + zf ′′(z)/f ′(z)) > 0 or Re(zf ′(z)/f(z)) >
0, respectively. More generally, for 0 ≤ α < 1, the classes of convex functions of order α
and starlike functions of order α are, respectively, defined by Re(1 + zf ′′(z)/f ′(z)) > α or
Re(zf ′(z)/f(z)) > α. A function f is close-to-convex if there is a convex function g (not
necessarily normalized) such that Re(f ′(z)/g ′(z)) > 0. Close-to-convex functions are known
to be univalent.

The following definitions and lemmas will also be required in our present investiga-
tion.
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Definition 2.1 (see [1, page 16]). Let ϕ : � 2 → � , and let h be univalent in �. If p is analytic in
� and satisfies the differential subordination

ϕ
(
p(z), zp′(z)

) ≺ h(z), (2.1)

then p is called a solution of differential subordination (2.1). A univalent function q is called
a dominant of the solutions of differential subordination (2.1), or more simply a dominant, if
p ≺ q for all p satisfying (2.1). A dominant q̃ that satisfies q̃ ≺ q for all dominants q of (2.1) is
said to be the best dominant of (2.1).

Definition 2.2 (see [3, Definition 1, pages 816-817]). Let ϕ : � 2 → � , and let h be analytic in
�. If p and ϕ(p(z), zp′(z)) are univalent in � and satisfy the differential superordination

h(z) ≺ ϕ(p(z), zp′(z)), (2.2)

then p is called a solution of differential superordination (2.2). An analytic function q is
called a subordinant of the solutions of differential superordination (2.2), or more simply
a subordinant, if q ≺ p for all p satisfying (2.2). A univalent subordinant q̃ that satisfies q ≺ q̃
for all subordinants q of (2.2) is said to be the best subordinant of (2.2).

Definition 2.3 (see [1, Definition 2.2b, page 21]). Denote by Q the class of functions f that are
analytic and injective on � \ E(f), where

E
(
f
)
=
{
ζ ∈ ∂� : lim

z→ ζ
f(z) = ∞

}
, (2.3)

and are such that f ′(ζ)/= 0 for ζ ∈ ∂� \ E(f).

Lemma 2.4 (cf. [1, Theorem 2.3i, page 35]). Suppose that the function H : � 2 → � satisfies the
condition

ReH(is, t) ≤ 0, (2.4)

for all real s and t ≤ −n(1 + s2)/2, where n is a positive integer. If the function p(z) = 1 + pnzn + · · ·
is analytic in � and

ReH
(
p(z), zp′(z)

)
> 0 (z ∈ �), (2.5)

then Re p(z) > 0 in �.

One of the points of importance of Lemma 2.4was its use in showing that every convex
function is starlike of order 1/2 (see e.g., [38, Theorem 2.6a, page 57]). In this paper, we take
an opportunity to use the technique in the proof of Theorem 3.1.
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Lemma 2.5 (see [39, Theorem 1, page 300]). Let β, γ ∈ � with β /= 0, and let h ∈ H(�) with
h(0) = c. If Re(βh(z) + γ) > 0 for z ∈ �, then the solution of the differential equation

q(z) +
zq′(z)

βq(z) + γ
= h(z) (z ∈ �) (2.6)

with q(0) = c is analytic in � and satisfies Re(βq(z) + γ) > 0 (z ∈ �).

Lemma 2.6 (see [1, Lemma 2.2d, page 24]). Let p ∈ Qwith p(0) = a, and let q(z) = a+anzn+ · · ·
be analytic in � with q(z)/≡ a and n ≥ 1. If q is not subordinate to p, then there exists points z0 =
r0eiθ ∈ � and ζ0 ∈ ∂� \ E(p), for which q(�r0 ) ⊂ p(�),

q(z0) = p(ζ0), z0q
′(z0) = mζ0p′(ζ0) (m ≥ n). (2.7)

A function L(z, t) defined on � × [0,∞) is a subordination chain (or Löwner chain) if
L(·, t) is analytic and univalent in � for all t ∈ [0,∞), L(z, ·) is continuously differentiable on
[0,∞) for all z ∈ �, and L(z, s) ≺ L(z, t) for 0 ≤ s < t.

Lemma 2.7 (see [3, Theorem 7, page 822]). Let q ∈ H[a, 1], ϕ : � 2 → � , and set h(z) ≡
ϕ(q(z), zq′(z)). If L(z, t) = ϕ(q(z), tzq′(z)) is a subordination chain and p ∈ H[a, 1] ∩ Q, then

h(z) ≺ ϕ(p(z), zp′(z)) (2.8)

implies that

q(z) ≺ p(z). (2.9)

Furthermore, if ϕ(q(z), zp′(z)) = h(z) has a univalent solution q ∈ Q, then q is the best subordinant.

Lemma 2.8 (see [3, Lemma B, page 822]). The function L(z, t) = a1(t)z + · · · , with a1(t)/= 0 and
limt→∞|a1(t)| = ∞, is a subordination chain if and only if

Re
(
z∂L(z, t)/∂z
∂L(z, t)/∂t

)
> 0 (z ∈ �; 0 ≤ t <∞). (2.10)

3. Main Results

We first prove the following subordination theorem involving the operatorHp,q,s(α1) defined
by (1.10).

Theorem 3.1. Let f, g ∈ Ap. For α1 > 0, 0 ≤ λ < p, let

ϕ(z) :=
p − λ
p

Hp,q,s(α1 + 1)g(z)
zp

+
λ

p

Hp,q,s(α1)g(z)
zp

(z ∈ �). (3.1)
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Suppose that

Re
(
1 +

zϕ′′(z)
ϕ′(z)

)
> −δ, z ∈ �, (3.2)

where

δ =

(
p − λ)2 + p2α21 −

∣∣∣
(
p − λ)2 − p2α21

∣∣∣

4p
(
p − λ)α1

. (3.3)

Then the subordination condition

p − λ
p

Hp,q,s(α1 + 1)f(z)
zp

+
λ

p

Hp,q,s(α1)f(z)
zp

≺ ϕ(z) (3.4)

implies that

Hp,q,s(α1)f(z)
zp

≺ Hp,q,s(α1)g(z)
zp

. (3.5)

Moreover, the functionHp,q,s(α1)g(z)/zp is the best dominant.

Proof. Let us define the functions F and G, respectively, by

F(z) :=
Hp,q,s(α1)f(z)

zp
, G(z) :=

Hp,q,s(α1)g(z)
zp

. (3.6)

We first show that if the function q is defined by

q(z) := 1 +
zG′′(z)
G′(z)

, (3.7)

then

Re q(z) > 0 (z ∈ �). (3.8)

Logarithmic differentiation of both sides of the second equation in (3.6) and using
(1.11) for g ∈ Ap yield

pα1
p − λϕ(z) =

pα1
p − λG(z) + zG

′(z). (3.9)
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Now, differentiating both sides of (3.9) results in the following relationship:

1 +
zϕ′′(z)
ϕ′(z)

= 1 +
zG′′(z)
G′(z)

+
zq′(z)

q(z) + pα1/
(
p − λ)

= q(z) +
zq′(z)

q(z) + pα1/
(
p − λ) ≡ h(z).

(3.10)

We also note from (3.2) that

Re
(
h(z) +

pα1

p − λ
)
> 0 (z ∈ �), (3.11)

and, by using Lemma 2.5, we conclude that differential equation (3.10) has a solution q ∈
H(�) with q(0) = h(0) = 1. Let us put

H(u, v) = u +
v

u + pα1/
(
p − λ) + δ, (3.12)

where δ is given by (3.3). From (3.2), (3.10), and (3.12), it follows that

Re
(
H
(
q(z), zq′(z)

))
> 0 (z ∈ �). (3.13)

In order to use Lemma 2.4, we now proceed to show that ReH(is, t) ≤ 0 for all real s
and t ≤ −(1 + s2)/2. Indeed, from (3.12),

ReH(is, t) = Re

(
is +

t

is + pα1/
(
p − λ) + δ

)

=
tpα1/

(
p − λ)

∣∣pα1/(p − λ) + is∣∣2
+ δ

≤ − Eδ(s)

2
∣∣pα1/

(
p − λ) + is∣∣2

,

(3.14)

where

Eδ(s) :=
(
pα1

p − λ − 2δ
)
s2 − pα1

p − λ
(
2δ

pα1

p − λ − 1
)
. (3.15)

For δ given by (3.3), we can prove easily that the expression Eδ(s) given by (3.15) is
positive or equal to zero. Hence, from (3.14), we see that ReH(is, t) ≤ 0 for all real s and
t ≤ −(1 + s2)/2. Thus, by using Lemma 2.4, we conclude that Re q(z) > 0 for all z ∈ �. That is,
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G defined by (3.6) is convex in �. Next, we prove that subordination condition (3.4) implies
that

F(z) ≺ G(z) (3.16)

for the functions F andG defined by (3.6). Without loss of generality, we also can assume that
G is analytic and univalent on � and G′(ζ)/= 0 for |ζ| = 1. For this purpose, we consider the
function L(z, t) given by

L(z, t) := G(z) +

(
p − λ)(1 + t)

pα1
zG′(z) (z ∈ �; 0 ≤ t <∞). (3.17)

Note that

∂L(z, t)
∂z

∣∣∣∣
z=0

= G′(0)

(
pα1 +

(
p − λ)(1 + t)
pα1

)

/= 0
(
0 ≤ t < ∞; α1 > 0; 0 ≤ λ < p). (3.18)

This shows that the function

L(z, t) = a1(t)z + · · · (3.19)

satisfies the condition a1(t)/= 0 for all t ∈ [0,∞). Furthermore,

Re
(
z∂L(z, t)/∂z
∂L(z, t)/∂t

)
= Re

(
pα1
p − λ + (1 + t)

(
1 +

zG′′(z)
G′(z)

))
> 0. (3.20)

Therefore, by virtue of Lemma 2.8, L(z, t) is a subordination chain. We observe from
the definition of a subordination chain that

L(ζ, t) /∈ L(�, 0) = ϕ(�) (ζ ∈ ∂�; 0 ≤ t <∞). (3.21)

Now suppose that F is not subordinate to G; then, by Lemma 2.6, there exist points z0 ∈ �

and ζ0 ∈ ∂� such that

F(z0) = G(ζ0), z0F(z0) = (1 + t)ζ0G′(ζ0) (0 ≤ t < ∞). (3.22)
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Hence,

L(ζ0, t) = G(ζ0) +

(
p − λ)(1 + t)

pα1
ζ0G

′(ζ0)

= F(z0) +

(
p − λ)

pα1
z0F

′(z0)

=
p − λ
p

Hp,q,s(α1 + 1)f(z0)

z
p

0

+
λ

p

Hp,q,s(α1)f(z0)

z
p

0

∈ ϕ(�),

(3.23)

by virtue of subordination condition (3.4). This contradicts the above observation that
L(ζ0, t) /∈ ϕ(�). Therefore, subordination condition (3.4)must imply the subordination given
by (3.16). Considering F(z) = G(z), we see that the function G is the best dominant. This
evidently completes the proof of Theorem 3.1.

We next prove a dual result to Theorem 3.1, in the sense that subordinations are
replaced by superordinations.

Theorem 3.2. Let f, g ∈ Ap. For α1 > 0, 0 ≤ λ < p, let

ϕ(z) :=
p − λ
p

Hp,q,s(α1 + 1)g(z)
zp

+
λ

p

Hp,q,s(α1)g(z)
zp

(z ∈ �). (3.24)

Suppose that

Re
(
1 +

zϕ′′(z)
ϕ′(z)

)
> −δ, z ∈ �, (3.25)

where δ is given by (3.3). Further, suppose that

p − λ
p

Hp,q,s(α1 + 1)f(z)
zp

+
λ

p

Hp,q,s(α1)f(z)
zp

(3.26)

is univalent in � andHp,q,s(α1)f(z)/zp ∈ H[1, 1] ∩ Q. Then the superordination

ϕ(z) ≺ p − λ
p

Hp,q,s(α1 + 1)f(z)
zp

+
λ

p

Hp,q,s(α1)f(z)
zp

(3.27)

implies that

Hp,q,s(α1)g(z)
zp

≺ Hp,q,s(α1)f(z)
zp

. (3.28)

Moreover, the functionHλ,q,s(α1)g(z)/zp is the best subordinant.
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Proof. The first part of the proof is similar to that of Theorem 3.1 and so we will use the same
notation as in the proof of Theorem 3.1.

Now let us define the functions F and G, respectively, by (3.6). We first note that if the
function q is defined by (3.7), then (3.9) becomes

ϕ(z) = G(z) +
p − λ
pα1

zG′(z). (3.29)

After a simple calculation, (3.29) yields the relationship

1 +
zϕ′′(z)
ϕ′(z)

= q(z) +
zq′(z)

q(z) + pα1/
(
p − λ) . (3.30)

Then by using the same method as in the proof of Theorem 3.1, we can prove that Re q(z) > 0
for all z ∈ �. That is, G defined by (3.6) is convex (univalent) in �. Next, we prove that the
subordination condition (3.27) implies that

G(z) ≺ F(z) (3.31)

for the functions F and G defined by (3.6). Now considering the function L(z, t) defined by

L(z, t) := G(z) +

(
p − λ)t
pα1

zG′(z) (z ∈ �; 0 ≤ t < ∞), (3.32)

we can prove easily that L(z, t) is a subordination chain as in the proof of Theorem 3.1.
Therefore according to Lemma 2.7, we conclude that superordination condition (3.27) must
imply the superordination given by (3.31). Furthermore, since the differential equation
(3.29) has the univalent solution G, it is the best subordinant of the given differential
superordination. This completes the proof of Theorem 3.2.

Combining Theorems 3.1 and 3.2, we obtain the following sandwich-type theorem.

Theorem 3.3. Let f, gk ∈ Ap (k = 1, 2). For k = 1, 2, α1 > 0, 0 ≤ λ < p, let

ϕk(z) :=
p − λ
p

Hp,q,s(α1 + 1)gk(z)
zp

+
λ

p

Hp,q,s(α1)gk(z)
zp

(z ∈ �). (3.33)

Suppose that

Re

(
1 +

zϕ′′
k(z)

ϕ′
k(z)

)
> −δ, (3.34)

where δ is given by (3.2). Further, suppose that

p − λ
p

Hp,q,s(α1 + 1)f(z)
zp

+
λ

p

Hp,q,s(α1)f(z)
zp

(3.35)
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is univalent in � andHλ,q,s(α1)f(z)/zp ∈ H[1, 1] ∩ Q. Then

ϕ1(z) ≺
p − λ
p

Hp,q,s(α1 + 1)f(z)
zp

+
λ

p

Hp,q,s(α1)f(z)
zp

≺ ϕ2(z) (3.36)

implies that

Hp,q,s(α1)g1(z)
zp

≺ Hp,q,s(α1)f(z)
zp

≺ Hp,q,s(α1)g2(z)
zp

. (3.37)

Moreover, the functionsHp,q,s(α1)g1(z)/zp andHp,q,s(α1)g2(z)/zp are the best subordinant and the
best dominant, respectively.

The assumption of Theorem 3.3 that the functions

p − λ
p

Hp,q,s(α1 + 1)f(z)
zp

+
λ

p

Hp,q,s(α1)f(z)
zp

,
Hp,q,s(α1)f(z)

zp
(3.38)

need to be univalent in � may be replaced by another condition in the following result.

Corollary 3.4. Let f, gk ∈ Ap (k = 1, 2). For α1 > 0, 0 ≤ λ < p, let

ψ(z) :=
p − λ
p

Hp,q,s(α1 + 1)f(z)
zp

+
λ

p

Hp,q,s(α1)f(z)
zp

(z ∈ �), (3.39)

and ϕ1, ϕ2 be as in (3.33). Suppose that condition (3.34) is satisfied and

Re
(
1 +

zψ ′′(z)
ψ ′(z)

)
> −δ, z ∈ �, (3.40)

where δ is given by (3.3). Then

ϕ1(z) ≺
p − λ
p

Hp,q,s(α1 + 1)f(z)
zp

+
λ

p

Hp,q,s(α1)f(z)
zp

≺ ϕ2(z) (3.41)

implies that

Hp,q,s(α1)g1(z)
zp

≺ Hp,q,s(α1)f(z)
zp

≺ Hp,q,s(α1)g2(z)
zp

. (3.42)

Moreover, the functionsHp,q,s(α1)g1(z)/zp andHp,q,s(α1)g2(z)/zp are the best subordinant and the
best dominant, respectively.
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Proof. In order to prove Corollary 3.4, we have to show that condition (3.40) implies the
univalence of ψ(z) and

F(z) :=
Hp,q,s(α1)f(z)

zp
. (3.43)

Since δ given by (3.3) in Theorem 3.1 satisfies the inequality 0 < δ ≤ 1/2, condition
(3.40)means that ψ is a close-to-convex function in � (see [40]) and hence ψ is univalent in �.
Furthermore, by using the same techniques as in the proof of Theorem 3.1, we can prove the
convexity (univalence) of F and so the details may be omitted. Therefore, from Theorem 3.3,
we obtain Corollary 3.4.

By taking q = s + 1, α1 = β1 = p, αi = βi (i = 2, 3, . . . , s), αs+1 = 1, and λ = 0 in
Theorem 3.3, we have the following result.

Corollary 3.5. Let f, gk ∈ Ap. Let

ϕk(z) :=
g ′
k(z)

pzp−1
(k = 1, 2). (3.44)

Suppose that

Re

(
1 +

zϕ′′
k(z)

ϕ′
k(z)

)
> − 1

2p
(z ∈ �) (3.45)

and f ′(z)/pzp−1 is univalent in � and f(z) ∈ H[1, 1] ∩ Q. Then

g ′
1(z)

pzp−1
≺ f ′(z)
pzp−1

≺ g ′
2(z)

pzp−1
(3.46)

implies that

g1(z)
zp

≺ f(z)
zp

≺ g2(z)
zp

. (3.47)

Moreover, the functions g1(z)/zp and g2(z)/zp are the best subordinant and the best dominant,
respectively.

Next consider the generalized Libera integral operator Fμ (μ > −p) defined by (cf.
[37, 41–43])

Fμ
(
f
)
(z) :=

μ + p
zμ

∫z

0
tμ−1f(t)dt

(
f ∈ Ap; μ > −p). (3.48)

For the choice p = 1, with μ ∈ �, (3.48) reduces to the well-known Bernardi integral
operator [41]. The following is a sandwich-type result involving the generalized Libera
integral operator Fμ.
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Theorem 3.6. Let f, gk ∈ Ap (k = 1, 2). Let

ϕk(z) :=
Hp,q,s(α1)gk(z)

zp
(k = 1, 2). (3.49)

Suppose that

Re

(
1 +

zϕ′′
k(z)

ϕ′
k(z)

)
> −δ, z ∈ �, (3.50)

where

δ =
1 +
(
μ + p

)2 −
∣∣∣1 − (μ + p

)2∣∣∣

4
(
μ + p

)
(
μ > −p). (3.51)

IfHp,q,s(α1)f(z)/zp is univalent in � andHp,q,s(α1)Fμ(f)(z) ∈ H[1, 1] ∩ Q, then

ϕ1(z) ≺
Hp,q,s(α1)f(z)

zp
≺ ϕ2(z) (3.52)

implies that

Hp,q,s(α1)Fμ
(
g1
)
(z)

zp
≺ Hp,q,s(α1)Fμ

(
f
)
(z)

zp
≺ Hp,q,s(α1)Fμ

(
g2
)
(z)

zp
. (3.53)

Moreover, the functions Hp,q,s(α1)Fμ(g1)(z)/zp and Hp,q,s(α1)Fμ(g2)(z)/zp are the best subordi-
nant and the best dominant, respectively.

Proof. Let us define the functions F and Gk (k = 1, 2) by

F(z) :=
Hp,q,s(α1)Fμ

(
f
)
(z)

zp
, Gk(z) :=

Hp,q,s(α1)Fμ
(
gk
)
(z)

zp
, (3.54)

respectively. From the definition of the integral operator Fμ given by (3.48), it follows that

z
(
Hp,q,s(α1)Fμ

(
f
)
(z)
)′ =

(
μ + p

)
Hp,q,s(α1)f(z) − μHp,q,s(α1)Fμ

(
f
)
(z). (3.55)

Then, from (3.49) and (3.55),

(
μ + p

)
ϕk(z) =

(
μ + p

)
Gk(z) + zG′

k(z). (3.56)

Setting

qk(z) = 1 +
zG′′

k(z)

G′
k(z)

(k = 1, 2; z ∈ �), (3.57)
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and differentiating both sides of (3.51) result in

1 +
zϕ′′

k(z)

ϕ′
k(z)

= qk(z) +
zq′

k(z)
qk(z) + μ + p

. (3.58)

The remaining part of the proof is similar to that of Theorem 3.3 (a combined proof of
Theorems 3.1 and 3.2) and is therefore omitted.

By using the same methods as in the proof of Corollary 3.4, the following result is
obtained.

Corollary 3.7. Let f, gk ∈ Ap (k = 1, 2) and

ψ(z) :=
Hp,q,s(α1)f(z)

zp
. (3.59)

Suppose that condition (3.50) is satisfied and

Re
(
1 +

zψ ′′(z)
ψ ′(z)

)
> −δ, z ∈ �, (3.60)

where δ is given by (3.51). Then

ϕ1(z) ≺
Hp,q,s(α1)f(z)

zp
≺ ϕ2(z) (3.61)

implies that

Hp,q,s(α1)Fμ
(
g1
)
(z)

zp
≺ Hp,q,s(α1)Fμ

(
f
)
(z)

zp
≺ Hp,q,s(α1)Fμ

(
g2
)
(z)

zp
. (3.62)

Moreover, the functions Hp,q,s(α1)Fμ(g1)(z)/zp and Hp,q,s(α1)Fμ(g2)(z)/zp are the best subordi-
nant and the best dominant, respectively.

Taking q = s + 1, α1 = β1 = p, αi = βi (i = 2, 3, . . . , s), and αs+1 = 1 in Corollary 3.7, we
have the following result.

Corollary 3.8. Let f, gk ∈ Ap (k = 1, 2). Let

ϕk(z) :=
gk(z)
zp

(k = 1, 2). (3.63)

Suppose that

Re

(
1 +

zϕ′′
k(z)

ϕ′
k(z)

)
> −δ, z ∈ �, (3.64)
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where δ is given by (3.51), and f(z)/zp is univalent in � and Fμ(f)(z)/zp ∈ H[1, 1] ∩ Q. Then,

g1(z)
zp

≺ f(z)
zp

≺ g2(z)
zp

(3.65)

implies that

Fμ
(
g1
)
(z)

zp
≺ Fμ

(
f
)
(z)

zp
≺ Fμ

(
g2
)
(z)

zp
. (3.66)

Moreover, the functions Fμ(g1)(z)/zp and Fμ(g2)(z)/zp are the best subordinant and the best
dominant, respectively.
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[4] T. Bulboacă, Differential Subordinations and Superordinations: New Results, House of Science Book Publ.,
Cluj-Napoca, Romania, 2005.

[5] R. M. Ali, V. Ravichandran, and N. Seenivasagan, “Subordination and superordination of the Liu-
Srivastava linear operator on meromorphic functions,” Bulletin of the Malaysian Mathematical Sciences
Society, vol. 31, no. 2, pp. 193–207, 2008.

[6] R.M. Ali, V. Ravichandran, and N. Seenivasagan, “Subordination and superordination on Schwarzian
derivatives,” Journal of Inequalities and Applications, vol. 2008, Article ID 712328, 18 pages, 2008.

[7] R. M. Ali, V. Ravichandran, and N. Seenivasagan, “Differential subordination and superordination of
analytic functions defined by the multiplier transformation,” Mathematical Inequalities & Applications,
vol. 12, no. 1, pp. 123–139, 2009.

[8] R. M. Ali, V. Ravichandran, and N. Seenivasagan, “On subordination and superordination of the
multiplier transformation for meromorphic functions,” Bulletin of the Malaysian Mathematical Sciences
Society, vol. 33, no. 2, pp. 311–324, 2010.

[9] R. M. Ali, V. Ravichandran, and N. Seenivasagan, “Differential subordination and superordination of
analytic functions defined by the Dziok-Srivastava linear operator,” Journal of The Franklin Institute,
vol. 347, no. 9, pp. 1762–1781, 2010.

[10] R. M. Ali, V. Ravichandran, M. H. Khan, and K. G. Subramanian, “Differential sandwich theorems for
certain analytic functions,” Far East Journal of Mathematical Sciences (FJMS), vol. 15, no. 1, pp. 87–94,
2004.

[11] R. M. Ali, V. Ravichandran, M. H. Khan, and K. G. Subramanian, “Applications of first order
differential superordinations to certain linear operators,” Southeast Asian Bulletin of Mathematics, vol.
30, no. 5, pp. 799–810, 2006.

[12] R. M. Ali and V. Ravichandran, “Classes of meromorphic α-convex functions,” Taiwanese Journal of
Mathematics, vol. 14, no. 4, pp. 1479–1490, 2010.



16 Journal of Inequalities and Applications

[13] T. Bulboacă, “A class of superordination-preserving integral operators,” Indagationes Mathematicae,
vol. 13, no. 3, pp. 301–311, 2002.
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[15] T. Bulboacă, “Generalized Briot-Bouquet differential subordinations and superordinations,” Revue
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