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We define the new generalized difference Riesz sequence spaces rq∞(p, Bm), rqc (p, Bm), and r
q

0 (p, B
m)

which consist of all the sequences whose Bm-transforms are in the Riesz sequence spaces rq∞(p),
r
q
c (p), and r

q

0 (p), respectively, introduced by Altay and Başar (2006). We examine some topological
properties and compute the α-, β-, and γ-duals of the spaces rq∞(p, Bm), rqc (p, Bm), and r

q

0 (p, B
m).

Finally, we determine the necessary and sufficient conditions on the matrix transformation
from the spaces r

q
∞(p, Bm), r

q
c (p, Bm), and r

q

0 (p, B
m) to the spaces l∞ and c and prove that

sequence spaces r
q

0 (p, B
m) and r

q
c (p, Bm) have the uniform Opial property for pk ≥ 1 for all

k ∈ �.

1. Introduction

Let w be the space of real sequences. We write l∞, c, c0 for the sequence spaces of
all bounded, convergent and null sequences, respectively. Also, by bs, cs, and l1, we
denote the sequence spaces of all bounded, convergent and absolutely convergent series,
respectively.

A linear topological space X over the real field R is said to be a paranormed space
if there is a subadditive function g : X → R such that g(θ) = 0, g(x) = g(−x) and scalar
multiplication is continuous; that is, |αn −α| → 0 and g(xn −x) → 0 imply g(αnxn −αx) → 0
for all α’s in R and all x’s in X, where θ is the zero vector in the linear space X. Assume
here and after that p = (pk) is a bounded sequence of strictly positive real numbers with
sup pk = H and M = max{1,H}. Then, the linear space l∞(p), c(p), c0(p), and l(p) were
defined by Maddox [1, 2], (Nakano [3] and Simons [4]) as follows:
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l∞
(
p
)
=

{

x = (xk) ∈ w : sup
k∈�

|xk |pk < ∞
}

,

c
(
p
)
=
{
x = (xk) ∈ w : lim

k→∞
|xk − l|pk = 0 for some l ∈ �

}
,

c0
(
p
)
=
{
x = (xk) ∈ w : lim

k→∞
|xk |pk = 0

}
,

(1.1)

which are the complete spaces paranormed by

g1(x) = sup
k∈�

|xk|pk/M,

l
(
p
)
=

{

x = (xk) ∈ w :
∑

k

|xk|pk < ∞
}

, with
(
0 < pk ≤ H < ∞)

,

(1.2)

which is the complete space paranormed by

g2(x) =

(
∑

k

|xk |pk
)1/M

. (1.3)

For simplicity notation, here and in what follows, the summation without limits runs from 0
to∞. We assume throughout that (pk)

−1 + (p′k)
−1 = 1 provided 1 < inf pk ≤ H < ∞ and denote

the collection of all finite subsets of � by F, where � = {0, 1, 2, . . .}.
Let λ and μ be two sequence spaces andA = (ank) be an infinite matrix of real numbers

ank , where n, k ∈ �. Then, we say that A defines a matrix mapping from λ into μ and we
denote it by writingA : λ → μ if for every sequence x = (xk) ∈ λ the sequenceAx = {(Ax)n},
the A-transform of x, is in μ, where

(Ax)n =
∑

k

ankxk (n ∈ �). (1.4)

By (λ : μ), we denote the class of all matrices A such that A : λ → μ. Thus, A ∈ (λ : μ)
if and only if the series on the right side of (1.4) converges for each n ∈ λ. A sequence x is
said to be A-summable to α if Ax converges to α which is called as the A-limit of x.

Let (qk) be a sequence of positive numbers and

Qn =
n∑

k=0

qk, (n ∈ �). (1.5)

Then, the matrix Rq = (rq
nk
) of the Riesz mean is given by

r
q

nk
=

⎧
⎪⎨

⎪⎩

qk
Qn

, (0 ≤ k ≤ n),

0, (k > n).
(1.6)
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The Riesz sequence spaces introduced by Altay and Başar in [5, 6] are

rq
(
p
)
=

⎧
⎨

⎩
x = (xk) ∈ w :

∑

k

∣
∣∣∣
∣∣

1
Qk

k∑

j=0

qjxj

∣
∣∣∣
∣∣

pk

< ∞
⎫
⎬

⎭
, with

(
0 < pk ≤ H < ∞)

,

r
q
c

(
p
)
=

⎧
⎨

⎩
x = (xk) ∈ w : lim

k→∞

∣
∣∣∣∣
∣

1
Qk

k∑

j=0

qjxj − l

∣
∣∣∣∣
∣

pk

= 0, for some l ∈ R

⎫
⎬

⎭
,

r
q

0

(
p
)
=

⎧
⎨

⎩
x = (xk) ∈ w : lim

k→∞

∣∣
∣∣∣
∣

1
Qk

k∑

j=0

qjxj

∣∣
∣∣∣
∣

pk

= 0

⎫
⎬

⎭
,

r
q
∞
(
p
)
=

⎧
⎨

⎩
x = (xk) ∈ w : sup

k∈N

∣∣
∣∣∣
∣

1
Qk

k∑

j=0

qjxj

∣∣
∣∣∣
∣

pk

< ∞
⎫
⎬

⎭
,

(1.7)

which are the sequence spaces of the sequences xwhose Rq-transforms are in l(p), c(p), c0(p),
and l∞(p), respectively.

Also, Altay and Başar [7] introduced the generalized difference matrix B = (bnk) by

bnk =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

r, (k = n),

s, (k = n − 1),

0, (0 ≤ k < n − 1) or (k > n)

(1.8)

for all k, n ∈ �, r, s ∈ � − {0}. The matrix B can be reduced the difference matrix Δ in case
r = 1, s = −1 by, where Δ denotes the matrix Δ = (Δnk) defined by

Δnk =

⎧
⎨

⎩

(−1)n−k, (n − 1 ≤ k ≤ n),

0, (k < n − 1) or (k > n).
(1.9)

The results related to the matrix domain of the matrix B are more general and more
comprehensive than the corresponding consequences of matrix domain of Δ and include
them [6, 8–13].

Başarır and Kayikçi [14] defined the matrix Bm = (bmnk) which reduced the difference
matrix Δm = Δ(Δm−1) in case r = 1, s = −1 by

bmnk =

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎝
m

n − k

⎞

⎠rm−n+ksn−k; (max{0, n −m} ≤ k ≤ n),

0; (0 ≤ k < max{0, n −m}) or (k > n),

(1.10)
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and introduced the generalized Bm-difference Riesz sequence space which is the sequence
space of the sequences x whose RqBm-transforms are in l(p).

Themain purpose of this paper is to introduce the Bm-difference Riesz sequence spaces
r
q
∞(p, Bm), rqc (p, Bm), and r

q
0(p, B

m) of the sequences whose RqBm-transform are in l∞(p), c(p),
and c0(p), respectively, and to investigate some topological and geometric properties of them.
For simplicity, we take the matrix RqBm = T .

2. Bm-Difference Riesz Sequence Spaces

Let us define the sequence y = {yn(q)}, which is used, as the RqBm = T-transform of a
sequence x = (xk), that is,

yn

(
q
)
= (Tx)n =

1
Qn

n−1∑

k=0

[
n∑

i=k

(
m

i − k

)

rm−i+ksi−kqixk

]

+
rm

Qn
qnxn, (n ∈ �). (2.1)

We define the Bm-difference Riesz sequence spaces rq∞(p, Bm), rqc (p, Bm), and r
q

0 (p, B
m) by

r
q
∞
(
p, Bm) =

{
x =

(
xj

) ∈ w : ((Tx)n) ∈ l∞
(
p
)}
,

r
q
c

(
p, Bm) =

{
x =

(
xj

) ∈ w : ((Tx)n) ∈ c
(
p
)}
,

r
q

0

(
p, Bm) =

{
x =

(
xj

) ∈ w : ((Tx)n) ∈ c0
(
p
)}
.

(2.2)

Ifm = 1 then they are reduced the spaces rq∞(p, B), r
q
c (p, B), and r

q

0(p, B) defined by Başarır in
[15]. If we take B = Δ then we have rq∞(p,Δm), rqc (p,Δm), and r

q

0 (p,Δ
m). If we take B = Δ and

m = 1 then we have rq∞(p,Δ), rqc (p,Δ), and r
q
0(p,Δ). If we take pk = p for all k then we have

r
q
∞(Bm), rqc (Bm), and r

q

0 (B
m).

We have the following.

Theorem 2.1. rq0(p, B
m) is a complete linear metric space paranormed by gB, defined by

gB(x) = sup
k∈�

|(Tx)k|pk/M, (2.3)

gB is a paranorm for the spaces rq∞(p, Bm) and rqc (p, Bm) only in the trivial case with inf pk > 0 when
r
q
∞(p, Bm) = r

q
∞(Bm) and rqc (p, Bm) = r

q
c (Bm).
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Proof. We prove the theorem for the space rq0 (p, B
m). The linearity of rq0 (p, B

m)with respect to
the coordinatewise addition and scalar multiplication that follow from the inequalities which
are satisfied for u, v ∈ r

q

0(p, B
m) [16]

sup
k∈�

∣∣
∣∣∣
∣

1
Qk

⎡

⎣
k−1∑

j=0

⎡

⎣
k∑

i=j

(
m

i − j

)

rm−i+jsi−jqi
(
uj + vj

)
⎤

⎦ +
rmqk

Qk
(uk + vk)

⎤

⎦

∣∣
∣∣∣
∣

pk/M

≤ sup
k∈�

∣∣∣
∣∣∣

1
Qk

⎡

⎣
k−1∑

j=0

⎡

⎣
k∑

i=j

(
m

i − j

)

rm−i+jsi−jqiuj

⎤

⎦ +
rmqk
Qk

uk

⎤

⎦

∣∣∣
∣∣∣

pk/M

+ sup
k∈�

∣
∣∣∣
∣∣

1
Qk

⎡

⎣
k−1∑

j=0

⎡

⎣
k∑

i=j

(
m

i − j

)

rm−i+j si−jqivj

⎤

⎦ +
rmqk
Qk

vk

⎤

⎦

∣
∣∣∣
∣∣

pk/M

,

(2.4)

and for any α ∈ � [1],

|α|pk ≤ max
{
1, |α|M

}
. (2.5)

It is clear that gB(θ) = 0 and gB(−x) = gB(x) for all x ∈ r
q
0(p, B

m). Again, the inequalities
(2.4) and (2.5) yield the subadditivity of gB and

gB(αu) ≤ max{1, |α|}gB(u). (2.6)

Let {xn} be any sequence of the elements of the space rq0(p, B
m) such that

gB(xn − x) −→ 0, (2.7)

and (λn) also be any sequence of scalars such that λn → λ, as n → ∞. Then, since the
inequality

gB(xn) ≤ gB(x) + gB(xn − x) (2.8)
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holds by subadditivity of gB, {gB(xn)} is bounded, and thus we have

gB(λnx
n − λx)

= sup
k∈�

∣
∣∣∣
∣∣

1
Qk

⎡

⎣
k−1∑

j=0

⎡

⎣
k∑

i=j

(
m

i − j

)

rm−i+jsi−jqi
(
λnx

n
j − λxj

)
⎤

⎦ +
rmqk
Qk

(
λnx

n
k − λxk

)
⎤

⎦

∣
∣∣∣
∣∣

pk/M

= |λn − λ|1/Msup
k∈�

∣∣
∣∣∣
∣

1
Qk

⎡

⎣
k−1∑

j=0

⎡

⎣
k∑

i=j

(
m

i − j

)

rm−i+jsi−jqixn
j

⎤

⎦ +
rmqk

Qk
xn
k

⎤

⎦

∣∣
∣∣∣
∣

pk/M

+ |λ|1/Msup
k∈�

∣
∣∣∣
∣∣

1
Qk

⎡

⎣
k−1∑

j=0

⎡

⎣
k∑

i=j

(
m

i − j

)

rm−i+jsi−jqi
(
xn
j − xj

)
⎤

⎦ +
rmqk
Qk

(
xn
k − xk

)
⎤

⎦

∣
∣∣∣
∣∣

pk/M

≤ |λn − λ|1/MgB(xn) + |λ|1/MgB(xn − x),

(2.9)

which tends to zero as n → ∞. Hence, the scalar multiplication is continuous. Finally, it
is clear to say that gB is a paranorm on the space r

q
0(p, B

m). Moreover, we will prove the
completeness of the space rq0 (p, B

m). Let xi be a Cauchy sequence in the space rq0(p, B
m), where

xi = {x(i)
k } = {xi

0, x
i
1, x

i
2, . . .} ∈ r

q

0(p, B
m). Then, for a given ε > 0, there exists a positive integer

n0(ε) such that

gB
(
xi − xj

)
< ε, (2.10)

for all i, j ≥ n0(ε). If we use the definition of gB, we obtain for each fixed k ∈ � that

∣∣
∣
(
Txi

)

k
−
(
Txj

)

k

∣∣
∣ ≤ sup

k∈�

∣∣
∣
(
Txi

)

k
−
(
Txj

)

k

∣∣
∣
pk/M

< ε, (2.11)

for i, j ≥ n0(ε) which leads us to the fact that

{(
Tx0

)

k
,
(
Tx1

)

k
,
(
Tx2

)

k
, . . .

}
(2.12)

is a Cauchy sequence of real numbers for every fixed k ∈ �. Since � is complete, it converges,
so we write (Txi)k → (Tx)k as i → ∞. Hence, by using these infinitely many limits
(Tx)0, (Tx)1, (Tx)2, . . ., we define the sequence {(Tx)0, (Tx)1, (Tx)2, . . .}. From (2.11) with
j → ∞, we have

∣∣∣
(
Txi

)

k
− (Tx)k

∣∣∣ < ε, (2.13)

i ≥ n0(ε) for every fixed k ∈ �. Since xi = {x(i)
k
} ∈ r

q

0 (p, B
m),

∣
∣∣
(
Txi

)

k

∣
∣∣
pk/M

< ε, (2.14)
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for all k ∈ �. Therefore, by (2.13), we obtain that

|(Tx)k|pk/M ≤
∣∣
∣(Tx)k −

(
Txi

)

k

∣∣
∣
pk/M

+
∣∣
∣
(
Txi

)

k

∣∣
∣
pk/M

< ε, (2.15)

for all i ≥ n0(ε). This shows that the sequence Tx belongs to the space c0(p). Since {xi} was
an arbitrary Cauchy sequence, the space rq0(p, B

m) is complete.

Theorem 2.2. Let
∑k

i=j
( m
i−j
)
rm−i+jsi−jqi /= 0 for all k,m and 0 ≤ j ≤ k − 1. Then the Bm-difference

Riesz sequence spaces rq∞(p, Bm), rqc (p, Bm), and rq0 (p, B
m) are linearly isomorphic to the spaces l∞(p),

c(p), and c0(p), respectively, where 0 < pk ≤ H < ∞.

Proof. We establish this for the space rq∞(p, Bm). For the proof of the theorem, we should show
the existence of a linear bijection between the space rq∞(p, Bm) and l∞(p) for 0 < pk ≤ H < ∞.
With the notation of (2.1), define the transformation S from r

q
∞(p, Bm) to l∞(p) by x �→ y =

Sx.S is a linear transformation, morever; it is obviuos that x = θ whenever Sx = θ and hence
S is injective.

Let y = (yk) ∈ l∞(p) and define the sequence x = (xk) by

xk =
k−1∑

n=0

[
n+1∑

i=n
(−1)k−n sk−i

rm+k−i

(
m + k − i − 1

k − i

)
1
qi
Qnyn

]

+
Qk

rmqk
yk, ∀k ∈ �. (2.16)

Then,

gB(x) = sup
k∈�

∣∣
∣∣∣
∣

1
Qk

k−1∑

j=0

⎡

⎣
k∑

i=j

(
m

i − j

)

rm−i+jsi−jqixj

⎤

⎦ +
rmqk

Qk
xk

∣∣
∣∣∣
∣

pk/M

= sup
k∈�

∣
∣∣∣
∣∣

k∑

j=0

δkjyj

∣
∣∣∣
∣∣

pk/M

= sup
k∈�

∣∣yk

∣∣pk/M = g1
(
y
)
< ∞,

(2.17)

where

δkj =

⎧
⎨

⎩

1, k = j,

0, k /= j.
(2.18)

Thus, we have that x ∈ r
q
∞(p, Bm). Consequently, S is surjective and is paranorm preserving.

Hence, S is linear bijection, and this explains that the spaces rq∞(p, Bm) and l∞(p) are linearly
isomorphic.

3. The Basis for the Spaces r
q
c (p, Bm) and r

q

0 (p, B
m)

In this section, we give two sequences of the points of the spaces r
q

0 (p, B
m) and r

q
c (p, Bm)

which form the basis for those spaces.
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If a sequence space λ paranormed by h contains a sequence (bn)with the property that
for every x ∈ λ, there is a unique sequence of scalars (αn) such that

lim
n→∞

h

(

x −
n∑

k=0

αkβk

)

= 0, (3.1)

then (bn) is called a Schauder basis (or briefly basis) for λ. The series
∑

αkβk which has the
sum x is then called the expansion of x with respect to (bn) and written as x =

∑
αkβk.

Because of the isomorphism S is onto, defined in the proof of Theorem 2.2, the inverse
image of the basis of the spaces, c0(p) and c(p) are the basis of the new spaces rq0 (p, B

m) and
r
q
c (p, Bm), respectively.

We have the following.

Theorem 3.1. Let μk(q) = (Tx)k for all k ∈ � and 0 < pk ≤ H < ∞. Define the sequence b(k)(q) =
{b(k)n (q)}n∈� of the elements of the space rq0 (p, B

m) for every fixed k ∈ � by

b
(k)
n

(
q
)
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

k+1∑

i=k

(−1)n−k sn−i

rm+n−i

⎛

⎝
m + n − i − 1

n − i

⎞

⎠ 1
qi
Qk, (n > k),

Qn

rmqn
, (k = n),

0, (k > n).

(3.2)

Then, one has the following.

(a) The sequence {b(k)(q)}k∈� is a basis for the space rq0 (p, B
m), and any x ∈ r

q
0(p, B

m) has a
unique representation of the form

x =
∑

k

μk

(
q
)
b(k)

(
q
)
. (3.3)

(b) The set {z = (T)−1e, b(k)(q)} is a basis for the space rqc (p, Bm) and any x ∈ r
q
c (p, Bm) has

a unique representation of the form

x = le +
∑

k

∣∣μk

(
q
) − l

∣∣b(k)
(
q
)
, (3.4)

where

l = lim
k→∞

(Tx)k. (3.5)

Proof. It is clear that {b(k)(q)} ⊂ r
q

0(p, B
m), since

Tb(k)
(
q
)
= e(k) ∈ c0

(
p
)
, (for k ∈ �), (3.6)
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for 0 < pk ≤ H < ∞, where e(k) is the sequence whose only non-zero term is 1 in kth place for
each k ∈ �. Let x ∈ r

q
0(p, B

m) be given. For every nonnegative integer m, we put

x[m] =
m∑

k=0

μk

(
q
)
b(k)

(
q
)
. (3.7)

Then, we obtain by applying T to (3.7) with (3.6) that

Tx[m] =
m∑

k=0

μk

(
q
)
Tb(k)

(
q
)
=

m∑

k=0

(T)ke
(k),

(
Rq
(
x − x[M]

))

i
=

⎧
⎨

⎩

0, (0 ≤ i ≤ m),

(Tx)i, (i > m).

(3.8)

Given ε > 0, then there exists an integer m0 such that

sup
i≥m

|(Tx)i|pk/M <
ε

2
, (3.9)

for all m ≥ m0. Hence,

gB
(
x − x[m]

)
= sup

i≥m
|(Tx)i|pk/M ≤ sup

i≥m0

|(Tx)i|pk/M <
ε

2
< ε, (3.10)

for all m ≥ m0, which proves that x ∈ r
q

0 (p, B
m) is represented as in (3.3).

To show the uniqueness of this representation, we suppose that there exists a
representation

x =
∑

k

λk

(
q
)
b(k)

(
q
)
. (3.11)

Since the linear transformation S from r
q

0(p, B
m) to c0(p), used in Theorem 2.2, is continuous

we have

(Tx)n =
∑

k

λk

(
q
){

Tb(k)
(
q
)}

n
=
∑

k

λk

(
q
)
e
(k)
n = λn

(
q
)
; n ∈ �, (3.12)

which contradicts the fact that (Tx)n = μk(q) for all n ∈ �. Hence, the representation (3.3) of
x ∈ r

q
0(p, B

m) is unique. Thus, the proof of the part (a) of theorem is completed.
(b) Since {b(k)(q)} ⊂ r

q
0(p, B

m) and e ∈ c(p), the inclusion {e, b(k)(q)} ⊂ r
q
c (p, Bm)

trivially holds. Let us take x ∈ r
q
c (p, Bm). Then, there uniquely exists an l satisfying (3.5). We

thus have the fact that u ∈ r
q

0(p, B
m)whenever we set u = x− le. Therefore, we deduce by part

(a) of the present theorem that the representation of x given by (3.4) is unique and this step
concludes the proof of the part (b) of theorem.
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4. The α-, β-, and γ-Duals of the Spaces r
q
c (p, Bm), rq0 (p, B

m), and r
q
∞(p, Bm)

In this section, we prove the theorems determining the α-, β-, and γ -duals of the sequence
spaces rqc (p, Bm) and r

q

0 (p, B
m).

For the sequence spaces λ and μ, define the set S(λ, μ) by

S
(
λ, μ

)
=
{
z = (zk) ∈ w : xz = (xkzk) ∈ μ ∀x ∈ λ

}
. (4.1)

With the notation (4.1), the α-, β-, γ -duals of a sequence space λ, which are, respectively,
denoted by λα, λβ, and λγ are defined by

λα = S(λ, l1), λβ = S(λ, cs), λγ = S(λ, bs). (4.2)

Now, we give some lemmas which we need to prove our theorems

Lemma 4.1 (see [17]). A ∈ (l∞(p) : l1) if and only if

sup
K∈F

∑

n

∣∣
∣∣∣

∑

k∈K
ankK

1/pk

∣∣
∣∣∣
< ∞, ∀ integers K > 1. (4.3)

Lemma 4.2 (see [18]). Let pk > 0 for every k ∈ �. Then, A ∈ (l∞(p) : l∞) if and only if

sup
n∈�

∑

k

|ank|K1/pk < ∞, ∀ integers K > 1. (4.4)

Lemma 4.3 (see [18]). Let pk > 0 for every k ∈ �. Then, A ∈ (l∞(p) : c) if and only if

∑

k

|ank|K1/pk converges uniformly in n, ∀ integers K > 1, (4.5)

lim
n→∞

αnk, ∀k ∈ �. (4.6)



Journal of Inequalities and Applications 11

Theorem 4.4. For each m ∈ �, define the sets R1(p), R2(p), R3(p), R4(p), R5(p), and R6(p) as
follows:

R1
(
p
)
=
⋂

K>1

{

a = (ak) ∈ w : sup
N∈F

∑

n

∣
∣∣∣∣

∑

k∈N

[
k+1∑

i=k

∇(i, n, k)Qkan +
Qnan

rmqn

]

K1/pk

∣
∣∣∣∣
< ∞, ∀K > 1

}

,

R2
(
p
)
=
⋂

K>1

⎧
⎨

⎩
a = (ak) ∈ w :

∑

k

∣∣∣
∣∣∣

⎛

⎝ ak

rmqk
+∇(i, n, k)

n∑

j=k+1

aj

⎞

⎠Qk

∣∣∣
∣∣∣
K1/pk converges

uniformly in n and
(
akQk

rmqk
K1/pk

)
∈ c0, ∀K > 1

⎫
⎬

⎭
,

R3
(
p
)
=
⋂

K>1

⎧
⎨

⎩
a = (ak) ∈ w :

∑

k

∣∣∣
∣∣∣

⎛

⎝ ak

rmqk
+∇(i, n, k)

n∑

j=k+1

aj

⎞

⎠Qk

∣∣∣
∣∣∣
K1/pk < ∞, ∀K > 1,

{(
ak

rmqk
+∇(i, n, k)

n∑

i=k+1

ai

)

Qk

}

∈ l∞

⎫
⎬

⎭
,

R4
(
p
)
=
⋃

K>1

{

a = (ak) ∈ w : sup
N∈F

∑

n

∣∣∣
∣∣

∑

k∈N

[
k+1∑

i=k

∇(i, n, k)Qkai +
Qnan

rmqn

]

K−1/pk
∣∣∣
∣∣
< ∞, ∀K > 1

}

,

R5
(
p
)
=

{

a = (ak) ∈ w :
∑

n

∣∣∣
∣∣

∑

k

[
k+1∑

i=k

∇(i, n, k)Qkai +
Qnan

rmqn

]∣∣∣
∣∣
< ∞

}

,

R6
(
p
)
=
⋃

K>1

⎧
⎨

⎩
a = (ak) ∈ w :

∑

k

∣∣
∣∣∣
∣

⎛

⎝ ak

rmqk
+∇(i, n, k)

n∑

j=k+1

aj

⎞

⎠Qk

∣∣
∣∣∣
∣
K−1/pk < ∞, ∀K > 1

⎫
⎬

⎭
,

(4.7)

where

∇(i, n, k) = (−1)n−k sn−i

rm+n−i

(
m + n − i − 1

n − i

)
1
qi
. (4.8)

Then,

{
r
q
∞
(
p, Bm

)}α
= R1

(
p
)
,

{
r
q
∞
(
p, Bm

)}β
= R2

(
p
)
,

{
r
q
∞
(
p, Bm

)}γ
= R3

(
p
)
,

{
r
q
c

(
p, Bm

)}α
= R4

(
p
) ∩ R5

(
p
)
,

{
r
q
c

(
p, Bm

)}β
= R6

(
p
) ∩ cs,

{
r
q
c

(
p, Bm)

}γ
= R6

(
p
) ∩ bs,

{
r
q
0

(
p, Bm)

}α
= R4

(
p
)
,

{
r
q
0

(
p, Bm)

}β
=
{
r
q
0

(
p, Bm)

}γ
= R6

(
p
)
.

(4.9)
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Proof. We give the proof for the space r
q
∞(p, Bm). Let us take any a = (an) ∈ w. We easily

derive with the notation

yk =
1
Qk

k−1∑

j=0

⎡

⎣
k∑

i=j

(
m

i − j

)

rm−i+jsi−jqixj

⎤

⎦ +
rm

Qk
qkxk, (4.10)

that

anxn =
n−1∑

k=0

[
k+1∑

i=k

∇(i, n, k)anQkyk

]

+
anQnyn

rmqn

=
n∑

k=0

unkyk =
(
Uy

)
n
,

(4.11)

(n ∈ �), whereU = (unk) is defined by

unk =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

k+1∑

i=k

∇(i, n, k)anQi, (0 ≤ k ≤ n − 1),

anQn

rmqn
, (k = n),

0, (k > n),

(4.12)

for all k, n ∈ �. Thus we deduce from (4.6) that ax = (anxn) ∈ l1 whenever x = (xk) ∈
r
q
∞(p, Bm) if and only if Uy ∈ l1 whenever y = (yk) ∈ l∞(p). From Lemma 4.1, we obtain the
desired result that

[
rq
(
p, Bm)]α = R1

(
p
)
. (4.13)

Consider the equation

n∑

k=0

akxk =
n−1∑

k=0

⎛

⎝ ak

rmqk
+

k+1∑

i=k

∇(i, n, k)
n∑

j=k+1

aj

⎞

⎠Qkyk +
akQkyk

rmqk

=
(
Vy

)
n
, (n ∈ �) ,

(4.14)

where V = (vnk) defined by

vnk =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎛

⎝ ak

rmqk
+

k+1∑

i=k

∇(i, n, k)
n∑

j=k+1

aj

⎞

⎠Qk, (0 ≤ k ≤ n − 1),

akQk

rmqk
, (k = n),

0, (k > n),

(4.15)
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for all k, n ∈ �. Thus, we deduce by with (4.11) that ax = (akxk) ∈ cs whenever x =
(xk) ∈ r

q
∞(p, Bm) if and only if Vy ∈ c whenever y = (yk) ∈ l∞(p). Therefor, we derive

from Lemma 4.3 that

∑

k

∣
∣∣∣
∣∣

⎛

⎝ ak

rmqk
+∇(i, n, k)

n∑

j=k+1

aj

⎞

⎠Qk

∣
∣∣∣
∣∣
K1/pk converges uniformly in n ∀K > 1,

lim
k→∞

akQk

rmqk
K1/pk = 0,

(4.16)

which shows that [rq(p, Bm)]β = R2(p).
As this, we deduce by (4.11) that ax = (akxk) ∈ bs whenever x = (xk) ∈ r

q
∞(p, Bm)

if and only if Vy ∈ l∞ whenever y = (yk) ∈ l∞(p). Therefore, we obtain by Lemma 4.2 that
[rq(p, Bm)]γ = R3(p) and this completes proof.

Now we characterize the matrix mappings from the spaces rq∞(p, Bm), rqc (p, Bm), and
r
q

0 (p, B
m) to the spaces l∞ and c. Since the following theorems can be proved by using standart

methods, we omit the detail.

Theorem 4.5. (i) A ∈ (rq∞(p, Bm) : l∞) if and only if

lim
k→∞

ank

qk
QkM

1/pk = 0, (∀n,M ∈ �) , (4.17)

sup
n∈�

∑

k

∣
∣∣∣
∣∣

ank

rmqk
+∇(i, n, k)

n∑

j=k+1

anj

∣
∣∣∣
∣∣
QkM

1/pk < ∞, (∀M ∈ �) (4.18)

hold.
(ii) A ∈ (rqc (p, Bm) : l∞) if and only if (4.14),

sup
n∈�

∑

k

∣
∣∣∣
∣∣

⎛

⎝ ank

rmqk
+∇(i, n, k)

n∑

j=k+1

anj

⎞

⎠Qk

∣
∣∣∣
∣∣
M1/pk = 0, (∃M ∈ �),

sup
n∈�

∑

k

∣∣∣
∣∣∣

⎛

⎝ ank

rmqk
+∇(i, n, k)

n∑

j=k+1

anj

⎞

⎠Qk

∣∣∣
∣∣∣
< ∞

(4.19)

hold.
(iii) A ∈ (rq0 (p, B

m) : l∞) if and only if (4.14) and (4.18) hold.
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Theorem 4.6. (i) A ∈ (rq∞(p, Bm) : c) if and only if (4.14),

sup
n∈�

∑

k

∣∣
∣∣∣
∣

⎛

⎝ ank

rmqk
+∇(i, n, k)

n∑

j=k+1

anj

⎞

⎠Qk

∣∣
∣∣∣
∣
M1/pk < ∞, (∀M ∈ �),

∃(αk) ⊂ � such that lim
n→∞

⎡

⎣
∑

k

∣∣∣
∣∣∣

⎛

⎝ ank

rmqk
+∇(i, n, k)

n∑

j=k+1

anj

⎞

⎠Qk − αk

∣∣∣
∣∣∣
M1/pk

⎤

⎦ = 0,

(4.20)

(∀M ∈ �) hold.
(ii) A ∈ (rqc (p, Bm) : c) if and only if (4.14), (4.18),

∃α ⊂ � such that lim
n→∞

∣
∣∣∣
∣∣

⎛

⎝ ank

rmqk
+∇(i, n, k)

n∑

j=k+1

anj

⎞

⎠Qk − α

∣
∣∣∣
∣∣
= 0, (4.21)

∃(αk) ⊂ � such that lim
n→∞

∣∣
∣∣∣
∣

⎛

⎝ ank

rmqk
+∇(i, n, k)

n∑

j=k+1

anj

⎞

⎠Qk − αk

∣∣
∣∣∣
∣
= 0, (∀k ∈ �), (4.22)

∃(αk) ⊂ � such that sup
n∈�

∣
∣∣∣
∣∣

⎛

⎝ ank

rmqk
+∇(i, n, k)

n∑

j=k+1

anj

⎞

⎠Qk − αk

∣
∣∣∣
∣∣
M−1/pk < ∞, (4.23)

(∃M ∈ �) hold.
(iii) A ∈ (rq0 (p, B

m) : c) if and only if (4.14), (4.18), (4.21), and (4.22) hold.

5. Uniform Opial Property of Bm-Difference Riesz Sequence Spaces

In this section, we investigate the uniform Opial property of the sequence spaces rq0 (p, B
m)

and r
q
c (p, Bm).
The Opial property plays an important role in the study of weak convergence of

iterates of mapping of Banach spaces and of the asymptotic behavior of nonlinear semigroup.
The Opial property is important because Banach spaces with this property have the weak
fixed point property [19] (see [20, 21]).

We give the definition of uniform Opial property in a linear metric space and use the
method in [22], and obtain that rq0 (p, B

m) and r
q
c (p, Bm) have uniform Opial property for

pk ≥ 1.
For a sequence x = (xn) ∈ r

q

0(p, B
m) or x = (xn) ∈ r

q
c (p, Bm) and for i ∈ �, we use the

notation x|i = (x(1), x(2), . . . , x(i), 0, 0, . . .) and x|�−i = (0, 0, . . . , 0, x(i + 1), x(i + 2), . . .).
We know that every total paranormed space becomes a linear metric space with the

metric given by d(x, y) = g(x − y). It is clear that rq∞(p, Bm), rq0(p, B
m), and r

q
c (p, Bm) are total

paranormed spaces with d(x, y) = gB(x − y).
Now, we can give the definition of uniform Opial property in a linear metric space.
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A linear metric space (X, d) has the uniform Opial property if for each ε > 0 there
exists τ > 0 such that for any weakly null sequence {xn} in S(0, r) and x ∈ X with d(x, 0) ≥ ε
the following inequality holds:

r + τ ≤ lim inf
n→∞

d(xn + x, 0). (5.1)

Now, we give following lemma which we need it to prove our main theorem. It can be
proved by using same method in [14] we omit the detail.

Lemma 5.1. If lim infk→∞pk > 0 then for any L > 0 and ε > 0, there exists δ = δ(ε, L) > 0 for
u, v ∈ X such that

dM(u + v, 0) < dM(u, 0) + ε (5.2)

whenever dM(u, 0) ≤ L and dM(v, 0) ≤ δ, where X = r
q

0 (p, B
m) or rqc (p, Bm).

Theorem 5.2. If pk ≥ 1, then r
q

0(p, B
m) and rqc(p, Bm) have uniform Opial property.

Proof. We prove the theorem for rq0 (p, B
m). rqc (p, Bm) can be proved by similiar way. For any

ε > 0, we can find a positive number ε0 ∈ (0, ε) such that

rM +
εM

4
> (r + ε0)M. (5.3)

Take any x ∈ r
q
0 (p, B

m) with dM(x, 0) ≥ εM and (xn) to be weakly null sequence in S(0, r). By
this, we write

dM(xn, 0) = rM. (5.4)

There exists q0 ∈ � such that

dM(
x|�−q0 , 0

)
=

∞∑

k=q0+1

|Tx(k)|pk <
(ε0
4

)M
<

εM

4
. (5.5)

Furthermore, we have

εM ≤ dM(x, 0) =
q0∑

k=0

|Tx(k)|pk +
∞∑

k=q0+1

|Tx(k)|pk ,

εM ≤
q0∑

k=0

|Tx(k)|pk + εM

4
,

3εM

4
≤

q0∑

k=0

|Tx(k)|pk .

(5.6)
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By xn → 0, weakly, this implies that xn → 0, coordinatewise, hence there exists n0 ∈ � such
that with (5.6)

3εM

4
≤

q0∑

k=0

|T(xn(k) + x(k))|pk , (5.7)

for all n ≥ n0. Lemma 5.1 asserts that

dM(
y + z, 0

) ≤ dM(y, 0
)
+
εM

4
, (5.8)

whenever dM(y, 0) ≤ rM and dM(z, 0) ≤ ε0. Again by xn → 0, weakly, there exists n1 > n0

such that dM(xn|q0 , 0) < ε0 for all n > n1, so by (5.8), we obtain that

dM
(
xn|�−q0 + xn|q0 , 0

)
< dM

(
xn|�−q0 , 0

)
+
εM

4
, (5.9)

hence,

dM(xn, 0) − εM

4
< dM(xn|�−q0 , 0

)
=

∞∑

k=q0+1

|Txn(k)|pk ,

rM − εM

4
<

∞∑

k=q0+1

|Txn(k)|pk ,
(5.10)

for all n > n1. This, together with (5.5), (5.6), implies that for any n > n1,

dM(xn + x, 0) =
q0∑

k=0

|T(xn(k) + x(k))|pk

+
∞∑

k=q0+1

|T(xn(k) + x(k))|pk

≥
q0∑

k=0

|T(xn(k) + x(k))|pk +
∣
∣∣∣
∣∣

∞∑

k=q0+1

|Txn(k)|pk
∣
∣∣∣
∣∣

−
∣∣
∣∣∣
∣

∞∑

k=q0+1

|Tx(k)|pk
∣∣
∣∣∣
∣

>
3εM

4
+

(

rM +
εM

4

)

− εM

4
= rM +

εM

4

> (r + ε0)M.

(5.11)
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This means that dM(xn + x, 0) > (r + ε0), so we get that the sequence space r
q
0 (p, B

m) has
uniform Opial property for pk ≥ 1.
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