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Let α ≥ 0, the authors introduce in this paper a class of the hypersingular
Marcinkiewicz integrals along surface with variable kernels defined by μΦΩ,α(f)(x) =

(
∫∞
0 | ∫|y|≤t(Ω(x, y)/|y|n−1)f(x −Φ(|y|)y′)dy|2(dt/t3+2α))1/2, where Ω(x, z) ∈ L∞(�n) × Lq(�n−1)

with q > max{1, 2(n − 1)/(n + 2α)}. The authors prove that the operator μΦΩ,α is bounded from
Sobolev space Lpα(�n) to Lp(�n) space for 1 < p ≤ 2, and from Hardy-Sobolev space Hp

α(�n) to
Lp(�n) space for n/(n+α) < p ≤ 1. As corollaries of the result, they also prove the L̇2

α(R
n)−L2(Rn)

boundedness of the Littlewood-Paley type operators μΦΩ,α,S and μ∗,ΦΩ,α,λ which relate to the Lusin
area integral and the Littlewood-Paley g∗

λ
function.

1. Introduction

Let �n (n ≥ 2) be the n-dimensional Euclidean space and �n−1 be the unit sphere in �n

equipped with the normalized Lebesgue measure dσ = dσ(·). For x ∈ �n \ {0}, let x′ = x/|x|.
Before stating our theorems, we first introduce some definitions about the variable

kernelΩ(x, z). A functionΩ(x, z) defined on �n ×�n is said to be in L∞(�n )×Lq(�n−1), q ≥ 1,
if Ω(x, z) satisfies the following two conditions:

(1) Ω(x, λz) = Ω(x, z), for any x, z ∈ �n and any λ > 0;

(2) ‖Ω‖L∞(�n)×Lq(�n−1) = supr≥0, y∈�n(
∫
�n−1 |Ω(rz′ + y, z′)|qdσ(z′))1/q < ∞.

In 1955, Calderón and Zygmund [1] investigated the Lp boundedness of the singular
integrals TΩ with variable kernel. They found that these operators connect closely with the
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problem about the second-order linear elliptic equations with variable coefficients. In 2002,
Tang and Yang [2] gave Lp boundedness of the singular integrals with variable kernels
associated to surfaces of the form {x = Φ(|y|)y′}, where y′ = y/|y| for any y ∈ �n \ {0} (n ≥
2). That is, they considered the variable Calderón-Zygmund singular integral operator TΦ

Ω
defined by

TΦ
Ω

(
f
)
(x) = p · v ·

∫

�n

Ω
(
x, y
)

∣∣y
∣∣n

f
(
x −Φ

(∣∣y
∣
∣)y′)dy. (1.1)

On the other hand, as a related vector-valued singular integral with variable kernel,
the Marcinkiewicz singular with rough variable kernel associated with surfaces of the form
{x = Φ(|y|)y′} is considered. It is defined by

μΦΩ
(
f
)
(x) =

(∫∞

0

∣∣
∣FΦ

Ω,t(x)
∣∣
∣
2dt

t3

)1/2

, (1.2)

where

FΦ
Ω,t(x) =

∫

|y|≤t

Ω
(
x, y
)

∣
∣y
∣
∣n−1

f
(
x −Φ

(∣∣y
∣∣)y′)dy, (1.3)

∫

�n−1
Ω
(
x, z′
)
dσ
(
z′
)
= 0. (1.4)

If Φ(|y|) = |y|, we put μΦΩ = μΩ. Historically, the higher dimension Marcinkiewicz
integral operator μΩ with convolution kernel, that is Ω(x, z) = Ω(z), was first defined and
studied by Stein [3] in 1958. See also [4–6] for some further works on μΩ with convolution
kernel. Recently, Xue and Yabuta [7] studied the L2 boundedness of the operator μΦΩ with
variable kernel.

Theorem 1.1 (see [7]). Suppose thatΩ(x, y) is positively homogeneous in y of degree 0, and satisfies
(1.4) and

( 2′ ) supy∈�n (
∫
�n−1 |Ω(y, z′)|qdσ(z′))1/q < ∞, for some q > 2(n − 1)/n. Let Φ be a positive

and monotonic (or negative and monotonic) C1 function on (0,∞) and let it satisfy the
following conditions:

(i) δ ≤ |Φ(t)/(tΦ
′
(t))| ≤ M for some 0 < δ ≤M <∞;

(ii) Φ
′
(t) is monotonic on (0,∞).

Then there is a constant C such that ‖μΦΩ(f)‖2 ≤ C‖f‖2, where constant C is independent of f .

Since the condition (2) implies (2′), so the L2(�n) boundedness of μΦΩ holds if Ω ∈
L∞(�n ) × Lq(�n−1) with q > 2(n − 1)/n.

Our aim of this paper is to study the hypersingular Marcinkiewicz integral μΦΩ,α along
surfaces with variable kernel Ω, and with index α ≥ 0, on the homogeneous Sobolev space
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L
p
α(�n ) for 1 < p ≤ 2 and the homogeneous Hardy-Sobolev spaceHp

α(�n) for some n/(n+α) <
p ≤ 1. Let FΦ

Ω,t(x) be as above, we then define the operators μΦΩ,α by

μΦΩ,α
(
f
)
(x) =

(∫∞

0

∣∣∣FΦ
Ω,t(x)

∣∣∣
2 dt

t3+2α

)1/2

, α ≥ 0. (1.5)

Our main results are as follows.

Theorem 1.2. Suppose that α ≥ 0, Ω(x, y) satisfies (1.4) and Ω ∈ L∞(�n) × Lq(�n−1) with q >
max{1, 2(n−1)/(n+2α)}. LetΦ be a positive and increasing C1 function on (0,∞) and let it satisfy
the following conditions:

(i) Φ(t) 	 tΦ′
(t);

(ii) 0 ≤ Φ
′
(t) ≤W on (0,∞).

Then there is a constant C such that ‖μΦΩ,α(f)‖L2(�n)
≤ C‖f‖L2

α(�n), where constant C is independent
of f .

Theorem 1.3. Suppose 0 < α < n/2, and that Ω ∈ L∞(�n ) × Lq(Sn−1), with q > max{1, 2(n −
1)/(n + 2α)}, and satisfies (1.4). Let Φ be a positive and increasing C1 function on (0,∞) and let it
satisfy the following conditions:

(i) Φ(t) 	 tΦ′
(t);

(ii) 0 < Φ
′
(t) ≤ 1,Φ(0) = 0.

Then, for n/(n + α) < p ≤ 1, there is a constant C such that ‖μΦΩ,α(f)‖Lp(�n)
≤ C‖f‖Hp

α(�n),

where constant C is independent of any f ∈ Hp
α(�n) ∩ S(�n).

Furthermore, our result can be extended to the Littlewood-Paley type operators μΦΩ,α,S
and μ∗,ΦΩ,α,λ with variable kernels and index α ≥ 0, which relate to the Lusin area integral and
the Littlewood-Paley g∗

λ function, respectively. Let FΦ
Ω,t(x) be as above, we then define the

operators μΦΩ,α,S and μ
∗,Φ
Ω,α,λ for f ∈ S(�n ), respectively by

μΦΩ,α,S
(
f
)
(x) =

(∫∫

Γ(x)

∣∣∣FΦ
Ω,t

(
y
)∣∣∣

2 dydt

tn+3+2α

)1/2

,

μ∗,ΦΩ,α,λ
(
f
)
(x) =

⎛

⎝
∫∫

�
n+1
+

(
t

t +
∣∣x − y∣∣

)λn∣
∣∣FΦ

Ω,t

(
y
)∣∣∣

2 dydt

tn+3+2α

⎞

⎠

1/2

,

(1.6)

with λ > 1, where Γ(x) = {(y, t) ∈ �n+1+ : |x − y| < t}. As an application of Theorem 1.2, we
have the following conclusion.

Theorem 1.4. Under the assumption of Theorem 1.2, then Theorem 1.2 still holds for μΦΩ,α,S and

μ∗,ΦΩ,α,λ.

By Theorems 1.2 and 1.3 and applying the interpolation theorem of sublinear operator,
we obtain the Lpα − Lp boundedness of μΦΩ,α.
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Corollary 1.5. Suppose 0 < α < n/2, and that Ω ∈ L∞(�n) × Lq(Sn−1), q > max{1, 2(n − 1)/(n +
2α)}, and satisfies (1.4). LetΦ be given as in Theorem 1.3. Then, for 1 < p ≤ 2, there exists an absolute
positive constant C such that

∥
∥∥μΦΩ,α

(
f
)∥∥∥

Lp(�n)
≤ C∥∥f∥∥Lpα(�n), (1.7)

for all f ∈ Lpα(�n ) ∩ S(�n ).

Remark 1.6. It is obvious that the conclusions of Theorem 1.2 are the substantial improve-
ments and extensions of Stein’s results in [3] about the Marcinkiewicz integral μΩ with
convolution kernel, and of Ding’s results in [8] about the Marcinkiewicz integral μΩ with
variable kernels.

Remark 1.7. Recently, the authors in [9] proved the boundedness of hypersingular
Marcinkiewicz integral with variable kernels on homogeneous Sobolev space L

p
α(Rn) for

1 < p ≤ 2 and 0 < α < 1 without any smoothness on Ω. So Corollary 1.5 extended the results
in [9, Theorem 5].

Throughout this paper, the letter C always remains to denote a positive constant not
necessarily the same at each occurrence.

2. The Bounedness on Sobolev Spaces

Before giving the definition of the Sobolev space, let us first recall the Triebel-Lizorkin space.
Fix a radial function ϕ(x) ∈ C∞ satisfying supp(ϕ) ⊆ {x : 1/2 < |x| ≤ 2} and 0 ≤

ϕ(x) ≤ 1, and ϕ(x) > c > 0 if 3/5 ≤ |x| ≤ 5/3. Let ϕj(x) = ϕ(2jx). Define the function ψj(x) by
F(ψj)(ξ) = ϕj(ξ), such that F(ψj ∗ f)(ξ) = F(f)(ξ)ϕj (ξ).

For 0 < p, q <∞, and α ∈ �, the homogeneous Triebel-Lizorkin space Ḟα,qp is the set of
all distributions f satisfying

Ḟ
α,q
p (�n) =

⎧
⎪⎨

⎪⎩
f ∈ S′(�n ) :

∥∥f
∥∥
Ḟ
α,q
p

=

∥
∥∥∥
∥∥

(
∑

k

∣
∣∣2−αkψk ∗ f

∣
∣∣
q
)1/q

∥
∥∥∥
∥∥
p

< ∞

⎫
⎪⎬

⎪⎭
. (2.1)

For p ≥ 1, the homogeneous Sobolev spaces Lpα(�n) is defined by Lpα(�n) = Ḟα,2p (�n ),
namely ‖f‖Lpα = ‖f‖Ḟα,2p . From [10] we know that for any f ∈ L2

α(�
n )

∥∥f
∥∥
L2
α(�n)

∼=
(∫

�n

∣∣F(f)(ξ)∣∣2|ξ|2αdξ
)1/2

, (2.2)

and if α is a nonnegative integer, then for any f ∈ Lpα(�n)
∥∥f
∥∥
L
p
α(�n)

∼=
∑

|τ |=α

∥∥Dτf
∥∥
Lp(�n). (2.3)
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For 0 < p ≤ 1, we define the homogeneous Hardy-Sobolev spaceHp
α(�n ) byH

p
α(�n ) =

Ḟα,2p (�n). It is well known that Hp(�n ) = Ḟ0,2
p (�n) for 0 < p ≤ 1, one can refer [10] for the

details.
Next, let us give the main lemmas we will use in proving theorems.

Lemma 2.1 (see [11]). Suppose that n ≥ 2 and f ∈ L1(�n ) ∩ L2(�n ) has the form f(x) =
f0(|x|)P(x) where P(x) is a solid spherical harmonic polynomial of degree m. Then the Fourier
transform of f has the form F(f)(x) = F0(|x|)P(x), where

F0(r) = 2πi−mr−((n+2m−2)/2)
∫∞

0
f0(s)J(n+2m−2)/2(2πrs)s(n+2m)/2ds, (2.4)

and r = |ξ|, Jm(s) is the Bessel function.

Lemma 2.2 (see [12]). For λ = (n − 2)/2, and −λ ≤ α ≤ 1, there exists C > 0 such that for any
h ≥ 0 and m = 1, 2, . . .,

∣∣
∣∣∣

∫h

0

Jm+λ(t)
tλ+α

dt

∣∣
∣∣∣
≤ C

mλ+α
. (2.5)

Lemma 2.3. Let α ≥ 0, λ = (n − 2)/2, Φ is a C1 function on (0,∞) and let it satisfy the conditions
(i) and (ii) in Theorem 1.2.

Denote gα(f)(x) = (
∫+∞
0 |Nεf(x)|2(dε/ε1+2α))1/2, if

F(Nεf
)
(ξ) =

∫Φ(ε)|ξ|

0

Jm+λ(t)
tλ+1

dt · F(f)(ξ). (2.6)

Then there exists a constant C independent of m, such that ‖gα(f)‖L2 ≤ C/mλ+1+α‖f‖L2
α
for every

integer m ∈ �, m > α.

Proof. Let η(|x|) = ∫ |x|0 (Jm+λ(t)/tλ+1)dt, then we have

∥∥gα
(
f
)∥∥2

2 =
∫

�n

∫+∞

0

∣∣Nεf(x)
∣∣2 dε

ε1+2α
dx

=
∫+∞

0

∫

�n

∣
∣η(Φ(ε)|ξ|)F(f)(ξ)

∣
∣2dξ

dε

ε1+2α

=
∫+∞

0

∫

�n

∣∣
∣∣η
(
Φ
(
β

|ξ|
)
|ξ|
)
F(f)(ξ)

∣∣
∣∣

2

|ξ|2αdξ dβ

β1+2α

=
∫

�n

∫+∞

0

∣
∣∣∣η
(
Φ
(
β

|ξ|
)
|ξ|
)∣∣∣∣

2 dβ

β1+2α
∣∣F(f)(ξ)∣∣2|ξ|2αdξ.

(2.7)

So it suffices to show
∫+∞
0 η(Φ(β/|ξ|)|ξ|)2(dβ/β1+2α) ≤ (C/mλ+1+α)2.

Decompose this integral into two parts
∫+∞
0 =

∫m/2
0 +

∫+∞
m/2 =: I1 + I2.
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For I2, by using Lemma 2.2 and Φ(t) 	 tΦ′
(t), we can get

I2 =
∫+∞

m/2

(∫Φ(β/|ξ|)|ξ|

0

Jm+λ(t)
tλ+1

dt

)2
dβ

β1+2α

≤ C

m2λ+2

∫+∞

m/2

dβ

β1+2α

≤ C

m2λ+2+2α
.

(2.8)

For the other part I1, applying Stirling’s formula, we have

√
2πxx−1/2e−x ≤ Γ(x) ≤ 2

√
2πxx−1/2e−x. (2.9)

Also in [13], the authors proved the following inequality

|Jν(t)| ≤ (t/2)ν

Γ(ν + 1)
. (2.10)

So by (2.9) and (2.10), 0 ≤ α < [α] + 1 ≤ m, and noting that Φ(t) ≤Wt, we have

I1 =
∫m/2

0

(∫Φ(β/|ξ|)|ξ|

0

Jm+λ(t)
tλ+1

dt

)2
dβ

β1+2α

≤
∫m/2

0

(∫Φ(β/|ξ|)|ξ|

0

|Jm+λ(t)|
tλ+1

dt

)2
dβ

β1+2α

≤ 1
22m+2λΓ2(m + λ + 1)

∫m/2

0

(∫Φ(β/|ξ|)|ξ|

0

tm+λ

tλ+1
dt

)2
dβ

β1+2α

≤ 1
22m+2λΓ2(m + λ + 1)

∫m/2

0

(
Φ

′
(
β

|ξ|
))2m dβ

β1+2α

≤ e2m+2λ+2

2π22m+2λ(m + λ + 1)2m+2λ+1

∫m/2

0

(

Φ
′
(
β

|ξ|
)2m
)

dβ

β1+2α−2m

≤ C e2m+2λ+2

2π22m+2λ(m + λ + 1)2m+2λ+1

∫m/2

0

dβ

β1+2α−2m

≤ C
(e
4

)2m+2λ+2 1
m2α+2λ+2

≤ C

m2α+2λ+2
.

(2.11)

So far we can deduce the desired conclusion of Lemma 2.3.
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Proof of Theorem 1.2. The basic idea of proof can go back to [14], for recently papers, one see [8,
15]. By the same argument as in [1], let {Ym,j} (m ≥ 1, j = 1, 2, . . . , Dm) denote the complete
system of normalized surface spherical harmonics. See [14] for instance, we can decompose
Ω(x, y′) as following:

Ω
(
x, y′) =

+∞∑

m=1

Dm∑

j=1

am,j(x)Ym,j
(
y′) is a finite sum. (2.12)

Denote

am(x) =

⎛

⎝
Dm∑

j=1

∣∣am,j(x)
∣∣2
⎞

⎠

1/2

, bm,j(x) =
am,j(x)
am(x)

, (2.13)

then we get

Dm∑

j=1

b2m,j(x) = 1, Ω
(
x, y′) =

+∞∑

m=1

am(x)
Dm∑

j=1

bm,j(x)Ym,j
(
y′). (2.14)

Then, applying Hölder inequality twice, we have for any 0 < ε < 1 that

∣∣∣μΦΩ,αf(x)
∣∣∣
2
=
∫∞

0

∣
∣∣∣
∣

∫

|y|≤t

+∞∑

m=1

bm,j(x)
Ym,j
(
y′)

∣∣y
∣∣n−1

f
(
x −Φ

(∣∣y
∣
∣)y′)dy

∣
∣∣∣
∣

2
dt

t3+2α

≤
(

+∞∑

m=1

a2m(x)m
−ε(1+2α)

)
+∞∑

m=1

mε(1+2α)

×
∫+∞

0

∣∣∣
∣∣∣

∫

|y|≤t

Dm∑

j=1

bm,j(x)
Ym,j
(
y′)

∣
∣y
∣
∣n−1

f
(
x −Φ

(∣∣y
∣
∣)y′)dy

∣∣∣
∣∣∣

2
dt

t3+2α

≤
(

+∞∑

m=1

a2m(x)m
−ε(1+2α)

)
+∞∑

m=1

mε(1+2α)
∫+∞

0

⎛

⎝
Dm∑

j=1

b2m,j(x)

⎞

⎠

×
Dm∑

j=1

∣
∣∣∣
∣

∫

|y|≤t

Ym,j
(
y′)

∣∣y
∣∣n−1

f
(
x −Φ

(∣∣y
∣
∣)y′)dy

∣
∣∣∣
∣

2
dt

t3+2α

=

(
+∞∑

m=1

a2m(x)m
−ε(1+2α)

)
+∞∑

m=1

mε(1+2α)

×
∫+∞

0

Dm∑

j=1

∣∣
∣∣∣

∫

|y|≤t

Ym,j
(
y′)

∣∣y
∣∣n−1

f
(
x −Φ

(∣∣y
∣∣)y′)dy

∣∣
∣∣∣

2
dt

t3+2α
.

(2.15)
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By [14, page 230, equation (4.4)], we can observe that the series in the first parenthesis
on the right-hand side of the inequality above, for each x fixed, is equal to ‖Ω(x, ·)‖2

L2
−γ (�n−1)

,

where L2
−γ (�

n−1) is the Sobolev space on �n−1 with γ = ε((1/2) + α) for any 0 < ε < 1. So if we
take ε sufficiently close to 1, then by the Sobolev imbedding theorem Lq ⊂ L2

−γ , we have

(
∑

m

a2m(x)m
−ε(1+2α)

)1/2

≤ C‖Ω‖L∞(�n)×Lq(�n−1) := C‖Ω‖ (2.16)

with q > max{1, 2(n − 1)/(n + 2α)}.
By Fourier transform and (2.16), we get

∥∥∥μΦΩ,α
(
f
)∥∥∥

2

2
≤ C‖Ω‖2

+∞∑

m=1

mε(1+2α)
∫+∞

0

∫

�n

Dm∑

j=1

∣
∣∣∣∣

∫

|y|≤t

Ym,j
(
y′)

∣∣y
∣∣n−1

f
(
x −Φ

(∣∣y
∣∣)y′)dy

∣
∣∣∣∣

2

dx
dt

t3+2α

≤C‖Ω‖2
+∞∑

m=1

mε(1+2α)
Dm∑

j=1

∫+∞

0

∫

�n

∣∣
∣∣∣
F
(∫

|y|≤t

Ym,j
(
y′)

∣∣y
∣∣n−1

f
(· −Φ

(∣∣y
∣∣)y′)dy

)

(ξ)

∣∣
∣∣∣

2

dξ
dt

t3+2α

=: C‖Ω‖2
+∞∑

m=1

mε(1+2α)
Dm∑

j=1

∥
∥∥μΦΩ,j,α

(
f
)∥∥∥

2

2
.

(2.17)

For μΦΩ,j,α(f), we have

∥
∥∥μΦΩ,j,α(f)

∥
∥∥
2

2
=
∫+∞

0

∫

�n

∣∣
∣∣∣

∫

|y|≤t

∫

�n

Ym,j
(
y′)

∣∣y
∣∣n−1

f
(
x −Φ

(∣∣y
∣∣)y′)e−2πix·ξdx dy

∣∣
∣∣∣

2

dξ
dt

t3+2α

=
∫+∞

0

∫

�n

∣
∣∣∣
∣

∫

|y|≤t

Ym,j
(
y′)

∣∣y
∣∣n−1

e−2πiΦ(|y|)y′·ξ

×
∫

�n

f
(
x −Φ

(∣∣y
∣∣)y′)e−2πi(x−Φ(|y|)y′)·ξdx dy

∣∣∣
∣

2

dξ
dt

t3+2α

=
∫+∞

0

∫

�n

∣∣
∣∣∣

∫

|y|≤t

Ym,j
(
y′)

∣∣y
∣∣n−1

e−2πiΦ(|y|)y′·ξdy

∣∣
∣∣∣

2
∣∣F(f)(ξ)∣∣2dξ dt

t3+2α

=
∫

�n

∫+∞

0

∣
∣∣∣
∣

1
t1+α

∫

|y|≤t

Ym,j
(
y′)

∣∣y
∣∣n−1

e−2πiΦ(|y|)y′·ξdy

∣
∣∣∣
∣

2
dt

t

∣
∣F(f)(ξ)∣∣2dξ.

(2.18)
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For the integral on the right hand side of the above inequality, by changing of variable, we
can get

1
t1+α

∫

|y|≤t

Ym,j
(
y′)

∣∣y
∣∣n−1

e−2πiΦ(|y|)y′·ξdy

=
1
t1+α

∫ t

0

∫

�n−1
Ym,j
(
y′)e−2πiΦ(s)y′·ξdy′ds

=
1
t1+α

∫Φ(t)

0

∫

�n−1
Ym,j
(
y′)e−2πiγy

′·ξ
(
Φ−1(γ

))′
dy′dγ

=
1
t1+α

∫

|y|≤Φ(t)

Ym,j
(
y′)

∣
∣y
∣
∣n−1

e−2πiy·ξ
(
Φ−1(∣∣y

∣∣)
)′
dy.

(2.19)

So we have

∥
∥∥μΦΩ,j,α(f)

∥
∥∥
2

2
=
∫

�n

∫+∞

0

∣∣
∣∣∣

1
t1+α

∫

|y|≤Φ(t)

Ym,j
(
y′)

∣∣y
∣∣n−1

e−2πiy·ξ
(
Φ−1(∣∣y

∣∣)
)′
dy

∣∣
∣∣∣

2
dt

t

∣∣F(f)(ξ)∣∣2dξ.

(2.20)

Put Pm,j(x) = Ym,j(x′)|x|m and ϕ
Φ,m,j
t,α (x) = Pm,j(x) · |x|−n−m+1χ|x|≤Φ(t)(x)(Φ−1(|x|))′t−1−α,

we can deduce from Lemma 2.1 that

F
(
ϕ
Φ,m,j
t,α

)
(ξ) = Pm,j(|ξ|) · F0(|ξ|) = Ym,j

(
ξ′
) · |ξ|mF0(|ξ|), (2.21)

where

F0(r) = 2πi−mr−(n/2)−m+1
∫Φ(t)

0
t−1−αs−n−m+1

(
Φ−1(s)

)′
J(n/2)+m−1(2πrs)s(n/2)+mds

= 2πi−mr−(n/2)−m+1t−1−α
∫Φ(t)

0
s−(n/2)+1J(n/2)+m−1(2πrs)d

(
Φ−1(s)

)

= 2πi−mr−(n/2)−m+1t−1−α
∫ t

0

J(n/2)+m−1
(
2πrΦ

(
β
))

(
Φ
(
β
))(n/2)−1 dβ

= (2π)(n/2)i−mr−m
t−α

t

∫ t

0

J(n/2)+m−1
(
2πrΦ

(
β
))

(
2πrΦ

(
β
))(n/2)−1 dβ.

(2.22)
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Hence, we have

∥
∥∥μΦΩ,j,α

(
f
)∥∥∥

2

2

=
∫+∞

0

∫

�n

∣
∣∣ϕ

Φ,m,j
t,α ∗ f(x)

∣
∣∣
2
dx

dt

t

=
∫+∞

0

∫

�n

∣
∣∣F
(
ϕ
Φ,m,j
t,α ∗ f

)
(ξ)
∣
∣∣
2
dξ
dt

t

≤
∫

�n

∫+∞

0

∣∣
∣∣∣
Ym,j
(
ξ′
)|ξ|mi−m|ξ|−m(2π)n/2 t

−α

t

∫ t

0

J(n/2)+m−1
(
2π |ξ|Φ(β))

(
2π |ξ|Φ(β))(n/2)−1

dβ

∣∣
∣∣∣

2
dt

t

∣∣F(f)(ξ)∣∣2dξ

≤ C
∫

�n

∫+∞

0

∣
∣∣∣
∣
Ym,j
(
ξ′
)1
t

∫ t

0

J(n/2)+m−1
(
2π |ξ|Φ(β))

(
2π |ξ|Φ(β))(n/2)−1

dβ

∣
∣∣∣
∣

2
dt

t1+2α
∣
∣F(f)(ξ)

∣
∣2dξ.

(2.23)

By [14], we know that
∑Dm

j=1 |Ym,j(z′)|2 ∼= mn−2.
So we can get

Dm∑

j=1

∥
∥∥μΦΩ,j,α(f)

∥
∥∥
2

2
≤ Cmn−2

∫

�n

∫+∞

0

∣∣
∣∣∣
1
t

∫ t

0

J(n/2)+m−1
(
2π |ξ|Φ(β))

(
2π |ξ|Φ(β))(n/2)−1

dβ

∣∣
∣∣∣

2
dt

t1+2α
∣∣F(f)(ξ)∣∣2dξ.

(2.24)

Set λ = (n/2) − 1, ρ = 2π |ξ|Φ(β) and note that Φ(t) 	 tΦ′
(t), we can deduce that

U :=
1
t

∫ t

0

J(n/2)+m−1
(
2π |ξ|Φ(β))

(
2π |ξ|Φ(β))(n/2)−1

dβ

=
1
t

∫2π |ξ|Φ(t)

0

Jm+λ
(
ρ
)

ρλ
1

2π |ξ|Φ′(Φ−1(ρ/2π |ξ|))dρ

=
1
t

∫2π |ξ|Φ(t)

0

Jm+λ
(
ρ
)

ρλ+1
Φ−1
(

ρ

2π |ξ|
)
dρ.

(2.25)

Noting that Φ(t) is increasing, by using the second mean-value theorem, we get, for
some 0 ≤ η < 2π |ξ|Φ(t),

|U| ≤
∣∣∣
∣∣
1
t
Φ−1(Φ(t))

∫2π |ξ|Φ(t)

η

Jm+λ
(
ρ
)

ρλ+1
dρ

∣∣∣
∣∣

≤
∣∣
∣∣∣

∫2π |ξ|Φ(t)

0

Jm+λ
(
ρ
)

ρλ+1
dρ

∣∣
∣∣∣
.

(2.26)
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From (2.26), it follows that

Dm∑

j=1

∥∥
∥μΦm,j,α

(
f
)∥∥
∥
2

2
≤ Cmn−2

∫

�n

∫+∞

0

∣∣∣
∣∣

∫2π |ξ|Φ(t)

0

Jm+λ
(
ρ
)

ρλ+1
dρ · F(f)(ξ)

∣∣∣
∣∣

2
dt

t1+2α
dξ. (2.27)

Thus using Lemma 2.3, we can deduce the desired conclusion of Theorem 1.2.

Proof of Theorem 1.4. First, we know that μΦΩ,α,S(f)(x) ≤ 2λnμ∗,ΦΩ,α,λ(f)(x). On the other hand,

∥
∥∥μ∗,ΦΩ,α,λ(f)

∥
∥∥
2

2

=
∫

�n

∫∫

Rn+1+

(
t

t +
∣∣x − y∣∣

)λn∣∣
∣∣∣
1
t

∫

|z|≤t

Ω(x, z)

|z|n−1
f
(
x −Φ(|z|)z′)dz

∣∣
∣∣∣

2
dzdt

tn+1+2α
dx

=
∫∞

0

∫

�n

⎛

⎝ 1
tn

∫

�n

(
t

t +
∣∣x − y∣∣

)λn

dx

⎞

⎠

∣∣
∣∣∣
1
t

∫

|z|≤t

Ω(x, z)

|z|n−1
f
(
x −Φ(|z|)z′)dz

∣∣
∣∣∣

2
dzdt

t1+2α

≤ C
∥∥
∥μΦΩ,α

(
f
)∥∥
∥
2

2
.

(2.28)

Thus, using Theorem 1.2, we can finish Theorem 1.4.

3. The Bounedness on Hardy-Sobolev Spaces

In order to prove the boundedness for operator μΦΩ,α on Hardy-Sobolev spaces and prove
Theorem 1.3, we first introduce a new kind of atomic decomposition for Hardy-Sobolev space
as following which will be used next.

Definition 3.1 (see [16]). For α ≥ 0, the function a(x) is called a (p, 2, α) atom if it satisfies the
following three conditions:

(1) supp(a) ⊂ B with a ball B ⊂ �n ;

(2) ‖a‖L2
α
≤ |B|(1/2)−(1/p);

(3)
∫
�n a(x)P(x) = 0, for any polynomial P(x) of degree ≤N = [n((1/p) − 1)α].

By [16], we have that every f ∈ H
p
α(�n) can be written as a sum of (p, 2, α) atoms

aj(x), that is,

f =
∑

j

λjaj . (3.1)
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Proof of Theorem 1.3. Similar to the argument of Lemma 3.3 in [17] and using above atomic
decomposition, it suffices to show that

∥∥∥μΦΩ,α(a)
∥∥∥
p

Lp
≤ C, (3.2)

with the constant C independent of any (p, 2, α) atom a.
Assume supp(a) ⊂ B(0, R). We first note that

∥∥
∥μΦΩ,α(a)

∥∥
∥
p

Lp
≤
∫

|x|≤8R

∣∣
∣μΦΩ,α(a)(x)

∣∣
∣
p
dx +

∫

|x|>8R

∣∣
∣μΦΩ,α(a)(x)

∣∣
∣
p
dx

=: U1 +U2.

(3.3)

For U1, using Theorem 1.2, it is not difficult to deduce that

U1 ≤ C
∥∥
∥μΦΩ,α(a)

∥∥
∥
p

L2
Rn(1−(p/2)) ≤ C‖a‖p

L2
α
Rn(1−(p/2))

≤ CRn((p/2)−1)Rn(1−(p/2)) ≤ C.
(3.4)

For U2, we first consider the case n/(n + α) < p < 1, according to [15, Lemma 5.5], for
0 < α < n/2 and (p, 2, α) atom awith support B = B(0, R), one has

∫

B

|a(x)|dx ≤ CRn−(n/p)+α. (3.5)

Using Minkowski inequality and Hölder inequality for integrals, and (3.5), we can get

U2 =
∫

|x|>8R

∣∣∣μΦΩ,α(a)(x)
∣∣∣
p
dx

=
∫

|x|>8R

⎛

⎝
∫+∞

0

∣
∣∣∣
∣

∫

|y|≤t

Ω
(
x, y
)

∣∣y
∣∣n−1

a
(
x −Φ

(∣∣y
∣
∣)y′)dy

∣
∣∣∣
∣

2
dt

t3+2α

⎞

⎠

p/2

dx

≤
∫

|x|>8R

∣∣
∣∣∣

∫

�n

∣
∣Ω
(
x, y
)∣∣

∣∣y
∣∣n+α

∣∣a
(
x −Φ

(∣∣y
∣∣)y′)∣∣dy

∣∣
∣∣∣

p

dx.

(3.6)
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For the integral on the right hand side of the above inequality, by changing of variable and
noting that 0 < Φ

′
(t) ≤ 1,Φ(0) = 0, we can get

∫

�n

∣∣Ω
(
x, y
)∣∣

∣∣y
∣∣n+α

∣∣a
(
x −Φ

(∣∣y
∣∣)y′)∣∣dy

=
∫

�n−1

∫R

0

∣∣Ω
(
x, y′)∣∣

r1+α
∣∣a
(
x −Φ(r)y′)∣∣dr dy′

=
∫

�n−1

∫Φ(R)

0

∣
∣Ω
(
x, y′)∣∣

(
Φ−1(γ

))1+α
∣∣a
(
x − γy′)∣∣ 1

Φ′(Φ−1(γ
))dγ dy′

=
∫

�n−1

∫Φ(R)

0

∣
∣Ω
(
x, y′)∣∣

(
Φ−1(γ

))1+α
∣∣a
(
x − γy′)∣∣Φ

−1(γ
)

γ
dγ dy′

=
∫

�n−1

∫Φ(R)

0

∣∣Ω
(
x, y′)∣∣

(
Φ−1(γ

))α
γ

∣∣a
(
x − γy′)∣∣dγ dy′

=
∫

|y|≤Φ(R)

∣∣Ω
(
x, y
)∣∣

∣∣y
∣∣n(Φ−1(∣∣y

∣∣))α
∣
∣a
(
x − y)∣∣dy

=
∫

|x−y|≤Φ(R)

∣∣Ω
(
x, x − y)∣∣

∣∣x − y∣∣n(Φ−1(∣∣x − y∣∣))α
∣
∣a
(
y
)∣∣dy

≤
∫

|x−y|≤Φ(R)

∣
∣Ω
(
x, x − y)∣∣

∣∣x − y∣∣n+α
∣∣a
(
y
)∣∣dy.

(3.7)

By (3.7), we can get

U2 ≤
+∞∑

j=3

∫

2jR<|x|<2j+1R

∣∣
∣∣∣

∫

�n

∣
∣Ω
(
x, x − y)∣∣

∣∣x − y∣∣n+α
∣∣a
(
y
)∣∣dy

∣∣
∣∣∣

p

dx

≤
+∞∑

j=3

(
2jR
)n(1−p)

(∫

2jR<|x|<2j+1R

∫

�n

|Ω(x, x − y)|
∣∣x − y∣∣n+α

∣∣a
(
y
)∣∣dy dx

)p

≤
+∞∑

j=3

(
2jR
)n(1−p)

(∫

B

∣
∣a
(
y
)∣∣
∫

2jR<|x|<2j+1R

∣∣Ω
(
x, x − y)∣∣

∣
∣x − y∣∣n+α

dx dy

)p

≤ C‖Ω‖p
L∞×L1

(∫

B

∣∣a
(
y
)∣∣dy

)p
·
+∞∑

j=3

(
2jR
)−αp(

2jR
)n(1−p)

.

(3.8)

Thus by (3.5) and the condition p > n/(n + α),

U2 ≤ C‖Ω‖p
L∞×L1

+∞∑

j=3

2j(n−np−αp) ≤ C. (3.9)
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As for p = 1, similar to the argument of n/(n + α) < p < 1, we can easily getU2 ≤ C. So
far the proof of Theorem 1.3 has been finished.
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