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The purpose of this paper is to introduce two novel subclasses Γλ(n, α, β) and Γ∗
λ
(n, α, β) of

meromorphic p-valent functions by using the linear operator Dn
λ
. Then we prove the necessary

and sufficient conditions for a function f in order to be in the new classes. Further we study
several important properties such as coefficients inequalities, inclusion properties, the growth
and distortion theorems, the radii of meromorphically p-valent starlikeness, convexity, and
subordination properties. We also prove that the results are sharp for a certain subclass of
functions.

1. Introduction

Let Σp denote the class of functions of the form

f(z) = z−p +
∞∑

k=p+1

akz
k (

ak ≥ 0; p ∈ N = {1, 2, . . .}), (1.1)

which are meromorphic and p-valent in the punctured unit disc U∗ = {z ∈ C : 0 < |z| < 1} =
U − {0}. For the functions f in the class Σp, we define a linear operator Dn

λ by the following
form:

Dλf(z) =
(
1 + pλ

)
f(z) + λzf ′(z), (λ ≥ 0),

D0
λf(z) = f(z),

D1
λf(z) = Dλf(z),

D2
λf(z) = Dλ

(
D1

λf(z)
)
,

(1.2)
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and in general for n = 0, 1, 2, . . ., we can write

Dn
λf(z) =

1
zp

+
∞∑

k=p+1

(
1 + pλ + kλ

)n
akz

k,
(
n ∈ N0 = N ∪ {0}; p ∈ N

)
. (1.3)

Then we can observe easily that for f ∈ Σp,

zλ
(
Dn

λf(z)
)′ = Dn+1

λ f(z) − (
1 + pλ

)
Dn

λf(z),
(
p ∈ N; n ∈ N0

)
. (1.4)

Recall [1, 2] that a function f ∈ Σp is said to be meromorphically starlike of order α if it is
satisfying the following condition:

Re
{
−zf

′(z)
f(z)

}
> α, (z ∈ U∗), (1.5)

for some α (0 � α < 1). Similarly recall [3] a function f ∈ Σp is said to be meromorphically
convex of order α if it is satisfying the following condition:

Re
{
−1 − zf ′′(z)

f ′(z)

}
> α, (z ∈ U∗) for some α (0 ≤ α < 1). (1.6)

Let Σp(α) be a subclass of Σp consisting the functions which satisfy the following inequality:

Re

{
−z

(
Dn

λf(z)
)′

Dn
λ
f(z)

}
> pα, (z ∈ U∗; α ≥ 0). (1.7)

In the following definitions, we will define subclasses Γλ(n, α, β) and Γ∗
λ
(n, α, β) by using the

linear operatorDn
λ .

Definition 1.1. For fixed parameters α ≥ 0, 0 ≤ β < 1, the meromorphically p-valent function
f(z) ∈ Σp(α) will be in the class Γλ(n, α, β) if it satisfies the following inequality:

Re

{
−z

(
Dn

λf(z)
)′

p
(
Dn

λ
f(z)

)
}

≥ α

∣∣∣∣∣
z
(
Dn

λf(z)
)′

p
(
Dn

λ
f(z)

) + 1

∣∣∣∣∣ + β, (n ∈ N0). (1.8)

Definition 1.2. For fixed parameters α ≥ 1/(2 + β); 0 ≤ β < 1, the meromorphically p-valent
function f(z) ∈ Σp(α) will be in the class Γ∗λ(n, α, β) if it satisfies the following inequality:

∣∣∣∣∣
z
(
Dn

λf(z)
)′

p
(
Dn

λ
f(z)

) + α + αβ

∣∣∣∣∣ ≤ Re

{
−z

(
Dn

λf(z)
)′

p
(
Dn

λ
f(z)

)
}
+ α − αβ, ∀(n ∈ N0). (1.9)
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Meromorphically multivalent functions have been extensively studied by several authors, see
for example, Aouf [4–6], Joshi and Srivastava [7], Mogra [8, 9], Owa et al. [10], Srivastava
et al. [11], Raina and Srivastava [12], Uralegaddi andGanigi [13], Uralegaddi and Somanatha
[14], and Yang [15]. Similarly, in [16], some new subclasses of meromorphic functions in the
punctured unit disk was considered.

In [17], similar results were proved by using the p-valent functions that satisfy the
following differential subordinations:

z
(Ip(r, λ)f(z)

)(j+1)
(
p − j

)(Ip(r, λ)f(z)
)(j) ≺ a +

(
aB + (A − B)β

)
z

a(1 + Bz)
(1.10)

and studied the related coefficients inequalities with β complex number.
This paper is organized as follows. It consists of four sections. Sections 2 and 3

investigate the various important properties and characteristics of the classes Γλ(n, α, β) and
Γ∗
λ
(n, α, β) by giving the necessary and sufficient conditions. Further we study the growth

and distortion theorems and determine the radii of meromorphically p-valent starlikeness
of order μ (0 ≤ μ < p) and meromorphically p-valent convexity of order μ (0 ≤ μ < p). In
Section 4 we give some results related to the subordination properties.

2. Properties of the Class Γλ(n, α, β)

We begin by giving the necessary and sufficient conditions for functions f in order to be in
the class Γλ(n, α, β).

Lemma 2.1 (see [2]). Let

Ra =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a − α + β

1 + α
, for a ≤ 1 +

1 − β

α(1 + α)
,

√
(1 − a)2(1 − α2) − 2

(
1 − β

)
(1 − a), for a ≥ 1 +

1 − β

α(1 + α)
.

(2.1)

Then

{w : |w − a| ≤ Ra} ⊆ {
w : Re(w) ≥ α|w − 1| + β

}
. (2.2)

Theorem 2.2. Let f ∈ Σp. Then f is in the class Γλ(n, α, β) if and only if

∞∑

k=p+1

[
p
(
α + β

)
+ k(1 + α)

](
kλ + pλ + 1

)n
ak ≤ p

(
1 − β

)

(
α ≥ 0; 0 ≤ β < 1; p ∈ N; n ∈ N0

)
.

(2.3)
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Proof. Suppose that f ∈ Γλ(n, α, β). Then by the inequalities (1.3) and (1.8), we get that

Re

{
−z

(
Dn

λ
f(z)

)′

p
(
Dn

λ
f(z)

)
}

≥ α

∣∣∣∣∣
z
(
Dn

λ
f(z)

)′

p
(
Dn

λ
f(z)

) + 1

∣∣∣∣∣ + β. (2.4)

That is,

Re

{
1 −∑∞

k=p+1
(
k/p

)(
kλ + pλ + 1

)n
akzk+p

1 +
∑∞

k=p+1
(
kλ + pλ + 1

)n
akzk+p

}

≥ α

∣∣∣∣∣

∑∞
k=p+1

((
k/p

)
+ 1

)(
kλ + pλ + 1

)n
akzk+p

1 +
∑∞

k=p+1
(
kλ + pλ + 1

)n
akzk+p

∣∣∣∣∣ + β

≥ Re

{
α ·

∑∞
k=p+1

((
k/p

)
+ 1

)(
kλ + pλ + 1

)n
akzk+p

1 +
∑∞

k=p+1
(
kλ + pλ + 1

)n
akzk+p

+ β

}

= Re

{
β +

∑∞
k=p+1

[
α
((
k/p

)
+ 1

)
+ β

](
kλ + pλ + 1

)n
akzk+p

1 +
∑∞

k=p+1
(
kλ + pλ + 1

)n
akzk+p

}
,

(2.5)

that is,

Re

{
p
(
1 − β

) −∑∞
k=p+1

(
k + kα + pα + pβ

)(
kλ + pλ + 1

)n
akzk+p

1 +
∑∞

k=p+1
(
kλ + pλ + 1

)n
akzk+p

}
≥ 0. (2.6)

Taking z to be real and putting z → 1− through real values, then the inequality (2.6) yields

p
(
1 − β

) −∑∞
k=p+1

(
k + kα + pα + pβ

)(
kλ + pλ + 1

)n
ak

1 +
∑∞

k=p+1
(
kλ + pλ + 1

)n
ak

≥ 0, (2.7)

which leads us at once to (2.3).
In order to prove the converse, suppose that the inequality (2.3) holds true. In

Lemma 2.1, since 1 ≤ 1 + ((1 − β)/α(1 + α)), put a = 1. Then for p ∈ N and n ∈ N0, let
wnp = −z(Dn

λ
f(z))′/p(Dn

λ
f(z)). If we let z ∈ ∂U∗ = {z ∈ C : |z| = 1}, we get from the

inequalities (1.3) and (2.3) that |wnp − 1| ≤ R1. Thus by Lemma 2.1 above, we ge that

Re

{
−z

(
Dn

λ
f(z)

)′

p
(
Dn

λ
f(z)

) − 1

}
= Re

{
wnp

} ≥ α
∣∣wnp − 1

∣∣ + β = α

∣∣∣∣∣−
z
(
Dn

λ
f(z)

)′

p
(
Dn

λ
f(z)

) − 1

∣∣∣∣∣ + β

= α

∣∣∣∣∣
z
(
Dn

λ
f(z)

)′

p
(
Dn

λ
f(z)

) + 1

∣∣∣∣∣ + β,
(
α ≥ 0; 0 ≤ β < 1; p ∈ N; n ∈ N0

)
.

(2.8)

Therefore by the maximum modulus theorem, we obtain f ∈ Γλ(n, α, β).
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Corollary 2.3. If f ∈ Γλ(n, α, β), then

ak ≤ p
(
1 − β

)
[
p
(
α + β

)
+ k(1 + α)

](
kλ + pλ + 1

)n ,
(
α ≥ 0; 0 ≤ β < 1; p ∈ N; n ∈ N0

)
. (2.9)

The result is sharp for the function f(z) given by

f(z) = z−p+
∞∑

k=p+1

p
(
1 − β

)
[
p
(
α + β

)
+ k(1 + α)

](
kλ + pλ + 1

)n z
k,

(
α ≥ 0; 0 ≤ β < 1; p ∈ N; n ∈ N0

)
.

(2.10)

Theorem 2.4. The class Γλ(n, α, β) is closed under convex linear combinations.

Proof. Suppose the function

f(z) = z−p +
∞∑

k=p+1

akz
k,j (

ak,j ≥ 0; j = 1, 2; p ∈ N
)
, (2.11)

be in the class Γλ(n, α, β). It is sufficient to show that the function h(z) defined by

h(z) = (1 − δ)f1(z) + δf2(z) (0 ≤ δ ≤ 1), (2.12)

is also in the class Γλ(n, α, β). Since

h(z) = z−p +
∞∑

k=p+1

[(1 − δ)ak,1 + δak,2]zk,j , (0 ≤ δ ≤ 1), (2.13)

and by Theorem 2.2, we get that

∞∑

k=p+1

[
p
(
α + β

)
+ k(1 + α)

](
kλ + pλ + 1

)n[(1 − δ)ak,1 + δak,2]

=
∞∑

k=p+1

(1 − δ)
[
p
(
α + β

)
+ k(1 + α)

](
kλ + pλ + 1

)n
ak,1

+
∞∑

k=p+1

δ
[
p
(
α + β

)
+ k(1 + α)

](
kλ + pλ + 1

)n
ak,2

≤ (1 − δ)p
(
1 − β

)
+ δp

(
1 − β

)
= p

(
1 − β

)
,

(
α ≥ 0; 0 ≤ β < 1; p ∈ N; n ∈ N0

)
.

(2.14)

Hence f ∈ Γλ(n, α, β).

The following are the growth and distortion theorems for the class Γλ(n, α, β).



6 Journal of Inequalities and Applications

Theorem 2.5. If f ∈ Γλ(n, α, β), then

{(
p +m − 1

)
!

(
p − 1

)
!

−
(
1 − β

)

(
2α + β + 1

)(
p + 1

)n−1 · p!2−n
(
p −m

)
!
r2p

}
r−(p+m) ≤

∣∣∣f (m)(z)
∣∣∣

≤
{(

p +m − 1
)
!

(
p − 1

)
!

+

(
1 − β

)

(
2α + β + 1

)(
p + 1

)n−1 · p!2−n
(
p −m

)
!
r2p

}
r−(p+m)

(
0 < |z| = r < 1; α ≥ 0; 0 ≤ β < 1; p ∈ N; n,m ∈ N0; p > m

)
.

(2.15)

The result is sharp for the function f given by

f(z) = z−p +
∞∑

k=p+1

(
1 − β

)
(
2α + β + 1

)(
2p + 2

)n z
p,

(
n ∈ N0; p ∈ N

)
. (2.16)

Proof. From Theorem 2.2, we get that

p
(
2α + β + 1

)(
2p + 2

)n
(
p + 1

)
!

∞∑

k=p+1

k!ak ≤
∞∑

k=p+1

[
p
(
α + β

)
+ k(1 + α)

](
kλ + pλ + 1

)n
ak

≤ p
(
1 − β

)
,

(2.17)

that is,

∞∑

k=p+1

k!ak ≤ p
(
1 − β

)(
p + 1

)
!

p
(
2α + β + 1

)(
2p + 2

)n =

(
1 − β

)
p!2−n

(
2α + β + 1

)(
p + 1

)n−1 . (2.18)

By the differentiating the function f in the form (1.1) m times with respect to z, we get that

fm(z) = (−1)m
(
p +m − 1

)
!

(
p − 1

)
!

z−(p+m) +
∞∑

k=p+1

k!
(k −m)!

akz
k−m,

(
m ∈ N0; p ∈ N

)
(2.19)

and Theorem 2.5 follows easily from (2.18) and (2.19). Finally, it is easy to see that the bounds
in (2.15) are attained for the function f given by (2.18).

Next we determine the radii of meromorphically p-valent starlikeness of order μ (0 ≤
μ < p) and meromorphically p-valent convexity of order μ (0 ≤ μ < p) for the class Γλ(n, α, β).

Theorem 2.6. If f ∈ Γλ(n, α, β), then f is meromorphically p-valent starlike of order μ(0 ≤ μ < 1)
in the disk |z| < r1, that is,

Re
{
−zf

′(z)
f(z)

}
> μ

(
0 ≤ μ < p; |z| < r1; p ∈ N

)
, (2.20)
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where

r1 = inf
k≥p+1

{(
p − μ

)[
p
(
α + β

)
+ k(1 + α)

](
kλ + pλ + 1

)n

p
(
k + μ

)(
1 − β

)
}1/(k+p)

. (2.21)

Proof. By the form (1.1), we get that

∣∣∣∣∣

(
zf ′(z)/f(z)

)
+ p

(
zf ′(z)/f(z)

) − p + 2μ

∣∣∣∣∣ =

∣∣∣∣∣

∑∞
k=p+1

(
k + p

)
akzk

2
(
p − μ

)
z−p +

∑∞
k=p+1

(
k − p + 2μ

)
akzk

∣∣∣∣∣

≤
∑∞

k=p+1
(
k + p

)|z|k

2
(
p − μ

)
ak |z|−p +

∑∞
k=p+1

(
k − p + 2μ

)
ak |z|k

=

∑∞
k=p+1

(
k + p

)
ak |z|k+p

2
(
p − μ

)
+
∑∞

k=p+1
(
k − p + 2μ

)
ak|z|k+p

.

(2.22)

Then the following incurability

∣∣∣∣∣

(
zf ′(z)/f(z)

)
+ p

(
zf ′(z)/f(z)

) − p + 2μ

∣∣∣∣∣ ≤ 1,
(
0 ≤ μ < p; p ∈ N

)
(2.23)

also holds if

∞∑

k=p+1

(
k + μ

)
(
p − μ

)ak|z|k+p ≤ 1,
(
0 ≤ μ < p; p ∈ N

)
. (2.24)

Then by Corollary 2.3 the inequality (2.24) will be true if

(
k + μ

)
(
p − μ

) |z|k+p ≤
[
p
(
α + β

)
+ k(1 + α)

](
kλ + pλ + 1

)n

p
(
1 − β

) ,
(
0 ≤ μ < p; p ∈ N

)
, (2.25)

that is,

|z|k+p ≤
(
p − μ

)[
p
(
α + β

)
+ k(1 + α)

](
kλ + pλ + 1

)n

p
(
k + μ

)(
1 − β

) ,
(
0 ≤ μ < p; p ∈ N

)
. (2.26)

Therefore the inequality (2.26) leads us to the disc |z| < r1, where r1 is given by the form
(2.21).

Theorem 2.7. If f ∈ Γλ(n, α, β), then f is meromorphically p-valent convex of order μ (0 ≤ μ < 1)
in the disk |z| < r2, that is,

Re
{
−1 − zf ′′(z)

f ′(z)

}
> μ

(
0 ≤ μ < p; |z| < r2; p ∈ N

)
, (2.27)
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where

r2 = inf
k≥p+1

{(
p − μ

)[(
α + β

)
+ k(1 + α)

](
kλ + pλ + 1

)n

k
(
k + μ

)(
1 − β

)
}1/(k+p)

. (2.28)

Proof. By the form (1.1), we get that

∣∣∣∣∣
1 +

(
zf ′′(z)/f ′(z)

)
+ p

1 +
(
zf ′′(z)/f ′(z)

) − p + 2μ

∣∣∣∣∣ =

∣∣∣∣∣

∑∞
k=p+1 k

(
k + p

)
akzk

2p
(
p − μ

)
z−p +

∑∞
k=p+1 k

(
k − p + 2μ

)
akzk

∣∣∣∣∣

≤
∑∞

k=p+1 k
(
k + p

)|z|k

2p
(
p − μ

)
ak|z|−p +

∑∞
k=p+1 k

(
k − p + 2μ

)
ak|z|k

=

∑∞
k=p+1 k

(
k + p

)
ak|z|k+p

2p
(
p − μ

)
+
∑∞

k=p+1 k
(
k − p + 2μ

)
ak |z|k+p

.

(2.29)

Then the following incurability:

∣∣∣∣∣
1 +

(
zf ′′(z)/f ′(z)

)
+ p

1 +
(
zf ′′(z)/f ′(z)

) − p + 2μ

∣∣∣∣∣ ≤ 1,
(
0 ≤ μ < p; p ∈ N

)
(2.30)

will hold if

∞∑

k=p+1

k
(
k + μ

)

p
(
p − μ

)ak|z|k+p ≤ 1,
(
0 ≤ μ < p; p ∈ N

)
. (2.31)

Then by Corollary 2.3 the inequality (2.31) will be true if

k
(
k + μ

)

p
(
p − μ

) |z|k+p ≤
[
p
(
α + β

)
+ k(1 + α)

](
kλ + pλ + 1

)n

p
(
1 − β

) ,
(
0 ≤ μ < p; p ∈ N

)
, (2.32)

that is,

|z|k+p ≤
(
p − μ

)[(
α + β

)
+ k(1 + α)

](
kλ + pλ + 1

)n

k
(
k + μ

)(
1 − β

) ,
(
0 ≤ μ < p; p ∈ N

)
. (2.33)

Therefore the inequality (2.33) leads us to the disc |z| < r2, where r2 is given by the form
(2.28).

3. Properties of the Class Γ∗
λ(n, α, β)

We first give the necessary and sufficient conditions for functions f in order to be in the class
Γ∗λ(n, α, β).
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Lemma 3.1 (see [2]). Let μ > δ and

Ra =

⎧
⎨

⎩

a − δ, for a ≤ 2μ + δ,

2
√
μ
(
a − μ − δ

)
, for a ≥ 2μ + δ.

(3.1)

Then

{w : |w − a| ≤ Ra} ⊆ {
w :

∣∣w − (
μ + δ

)∣∣ ≤ Re
{
w + μ − δ

}}
. (3.2)

Lemma 3.2. Let α ≥ 0 and 0 ≤ β < 1

Ra =

⎧
⎨

⎩

a − αβ, for a ≤ 2α + αβ,

2
√
α
(
a − α − αβ

)
, for a ≥ 2α + αβ.

(3.3)

Then

{w : |w − a| ≤ Ra} ⊆ {
w :

∣∣w − (
α + αβ

)∣∣ ≤ Re
{
w + α − αβ

}}
. (3.4)

Proof. Since α ≥ 0 and 0 ≤ β < 1, then α > αβ. Then in Lemma 3.1, put μ = α and δ = αβ.

Theorem 3.3. Let f ∈ Σp. Then f is in the class Γ∗λ(n, α, β) if and only if

∞∑

k=p+1

(
k + pαβ

)(
kλ + pλ + 1

)n
ak ≤ p

(
1 − αβ

) (
α ≥ 1

2 + β
; 0 ≤ β < 1; p ∈ N; n ∈ N0

)
.

(3.5)

Proof. Suppose that f ∈ Γ∗
λ
(n, α, β). Then by the inequality (1.9), we get that

∣∣∣∣∣
z
(
Dn

λ
f(z)

)′

p
(
Dn

λ
f(z)

) + α + αβ

∣∣∣∣∣ ≤ Re

{
−z

(
Dn

λ
f(z)

)′

p
(
Dn

λ
f(z)

)
}
+ α − αβ. (3.6)

That is,

Re

{
z
(
Dn

λ
f(z)

)′

p
(
Dn

λ
f(z)

) + α + αβ

}
≤
∣∣∣∣∣
z
(
Dn

λ
f(z)

)′

p
(
Dn

λ
f(z)

) + α + αβ

∣∣∣∣∣

≤ Re

{
−z

(
Dn

λf(z)
)′

p
(
Dn

λf(z)
)
}
+ α − αβ,

(3.7)
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that is,

Re

{
2z

(
Dn

λ
f(z)

)′

p
(
Dn

λ
f(z)

) + 2αβ

}
≤ 0. (3.8)

Hence by the inequality (1.3),

Re

{−2p(1 − αβ
)
+
∑∞

k=p+1 2
(
k + pαβ

)(
kλ + pλ + 1

)n
akzk+p

p +
∑∞

k=p+1 p
(
kλ + pλ + 1

)n
akzk+p

}
≤ 0. (3.9)

Taking z to be real and putting z → 1− through real values, then the inequality (3.9) yields

−2p(1 − αβ
)
+
∑∞

k=p+1 2
(
k + pαβ

)(
kλ + pλ + 1

)n
ak

p +
∑∞

k=p+1 p
(
kλ + pλ + 1

)n
ak

≤ 0, (3.10)

which leads us at once to (3.5).
In order to prove the converse, consider that the inequality (3.5) holds true. In

Lemma 3.2 above, since α > αβ and α ≥ 1/(2 + β), that is, 1 ≤ 2α + αβ, we can put
a = 1. Then for p ∈ N and n ∈ N0, let wnp = −z(Dn

λf(z))
′/p(Dn

λf(z)). Now, if we let
z ∈ ∂U∗ = {z ∈ C : |z| = 1}, we get from the inequalities (1.3) and (3.5) that |wnp − 1| ≤ R1.
Thus by Lemma 3.2 above, we ge that

∣∣∣∣∣
z
(
Dn

λ
f(z)

)′

p
(
Dn

λ
f(z)

) + α + αβ

∣∣∣∣∣

=

∣∣∣∣∣−
z
(
Dn

λf(z)
)′

p
(
Dn

λ
f(z)

) − (
α + αβ

)
∣∣∣∣∣

=
∣∣w − (

α + αβ
)∣∣

≤ Re
{
w + α − αβ

}
= Re{w} + α − αβ

=

{
−z

(
Dn

λ
f(z)

)′

p
(
Dn

λ
f(z)

)
}
+ α − αβ,

(
α ≥ 1

2 + β
; 0 ≤ β < 1; p ∈ N; n ∈ N0

)
.

(3.11)

Therefore by the maximum modulus theorem, we obtain f ∈ Γ∗
λ
(n, α, β).

Corollary 3.4. If f ∈ Γ∗
λ
(n, α, β), then

ak ≤ p
(
1 − αβ

)
(
k + pαβ

)(
kλ + pλ + 1

)n
(
α ≥ 1

2 + β
; 0 ≤ β < 1; p ∈ N; n ∈ N0

)
. (3.12)
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The result is sharp for the function f(z) given by

f(z) = z−p +
∞∑

k=p+1

p
(
1 − αβ

)
(
k + pαβ

)(
kλ + pλ + 1

)n z
k

(
α ≥ 1

2 + β
; 0 ≤ β < 1; p ∈ N; n ∈ N0

)
.

(3.13)

Theorem 3.5. The class Γ∗
λ
(n, α, β) is closed under convex linear combinations.

Proof. This proof is similar as the proof of Theorem 2.4.

The following are the growth and distortion theorems for the class Γ∗
λ
(n, α, β).

Theorem 3.6. If f ∈ Γ∗
λ
(n, α, β), then

{(
p +m − 1

)
!

(
p − 1

)
!

−
(
1 − αβ

)

(
1 + αβ

)(
p + 1

)n−1 · p!2−n
(
p −m

)
!
r2p

}
r−(p+m) ≤

∣∣∣f (m)(z)
∣∣∣

≤
{(

p +m − 1
)
!

(
p − 1

)
!

+

(
1 − αβ

)

(
1 + αβ

)(
p + 1

)n−1 · p!2−n
(
p −m

)
!
r2p

}
r−(p+m)

(
0 < |z| = r < 1; α ≥ 1

2 + β
; 0 ≤ β < 1; p ∈ N; n,m ∈ N0; p > m

)
.

(3.14)

The result is sharp for the function f given by

f(z) = z−p +
∞∑

k=p+1

(
1 − αβ

)
(
1 + αβ

)(
2p + 2

)n z
p,

(
n ∈ N0; p ∈ N

)
. (3.15)

Next we determine the radii of meromorphically p-valent starlikeness of order μ (0 ≤ μ < p)
and meromorphically p-valent convexity of order μ (0 ≤ μ < p) for the class Γ∗

λ
(n, α, β).

Theorem 3.7. If f ∈ Γ∗
λ
(n, α, β), then f is meromorphically p-valent starlike of order μ (0 ≤ μ < 1)

in the disk |z| < r1, that is,

Re
{
−zf

′(z)
f(z)

}
> μ

(
0 ≤ μ < p; |z| < r1; p ∈ N

)
, (3.16)

where

r1 = inf
k≥p+1

{(
p − μ

)(
k + pαβ

)(
kλ + pλ + 1

)n

p
(
k + μ

)(
1 − αβ

)
}1/(k+p)

. (3.17)

Proof. This proof is similar to the proof of Theorem 2.6.
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Theorem 3.8. If f ∈ Γ∗
λ
(n, α, β), then f is meromorphically p-valent convex of order μ (0 ≤ μ < 1)

in the disk |z| < r2, that is,

Re
{
−1 − zf ′′(z)

f ′(z)

}
> μ

(
0 ≤ μ < p; |z| < r2; p ∈ N

)
, (3.18)

where

r2 = inf
k≥p+1

{(
p − μ

)(
k + pαβ

)(
kλ + pλ + 1

)n

k
(
k + μ

)(
1 − αβ

)
}1/(k+p)

. (3.19)

Proof. This proof is similar to the proof of Theorem 2.7.

4. Subordination Properties

If f and g are analytic functions in U, we say that f is subordinate to g, written symbolically
as follows:

f ≺ g in U or f(z) ≺ g(z) (z ∈ U) (4.1)

if there exists a function w which is analytic in U with

w(0) = 0, |w(z)| < 1 (z ∈ U), (4.2)

such that

f(z) = g(w(z)) (z ∈ U). (4.3)

Indeed it is known that

f(z) ≺ g(z) (z ∈ U) =⇒ f(0) = g(0), f(U) ⊂ g(U). (4.4)

In particular, if the function g is univalent inU we have the following equivalence (see [18]):

f(z) ≺ g(z) (z ∈ U) ⇐⇒ f(0) = g(0), f(U) ⊂ g(U). (4.5)

Let φ : C2 → C be a function and let h be univalent in U. If J is analytic function in U and
satisfied the differential subordination φ(J(z), J ′(z)) ≺ h(z) then J is called a solution of the
differential subordination φ(J(z), J ′(z)) ≺ h(z). The univalent function q is called a dominant of
the solution of the differential subordination, J ≺ q.
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Lemma 4.1 (see [19]). Let q(z)/= 0 be univalent in U. Let θ and φ be analytic in a domain D
containing q(U) with φ(w)/= 0 whenw ∈ q(U). Set

Q(z) = zq′(z)φ
(
q(z)

)
, h(z) = θ

(
q(z)

)
+Q(z). (4.6)

Suppose that

(i) Q(z) is starlike univalent in U,

(ii) Re{zh′(z)/Q(z)} > 0 for z ∈ U.

If J is analytic function in U and

θ(J(z)) + zJ ′(z)φ(J(z)) ≺ θ
(
q(z)

)
+ zq′(z)φ

(
q(z)

)
, (4.7)

then J(z) ≺ q(z) and q is the best dominant.

Lemma 4.2 (see [20]). Let w, γ ∈ C and φ is convex and univalent in U with φ(0) = 1 and
Re{wφ(z) + γ} > 0 for all z ∈ U. If q is analytic in U with q(0) = 1 and

q(z) +
zq′(z)

wq(z) + γ
≺ φ(z) (z ∈ U), (4.8)

then q(z) ≺ φ(z) and φ is the best dominant.

Theorem 4.3. Let q(z)/= 0 be univalent in U such that zq′(z)/q(z) is starlike univalent in U and

Re
{
1 +

ε

γ
q(z) +

zq′′(z)
q′(z)

− zq′(z)
q(z)

}
> 0,

(
ε, γ ∈ C, γ /= 0

)
. (4.9)

If f ∈ Σp satisfies the subordination

ε
z
[
Dn

λ
f(z)

]′
[
Dn

λ
f(z)

] + γ

[
1 +

z
[
Dn

λ
f(z)

]′′
[
Dn

λ
f(z)

]′ − z
[
Dn

λ
f(z)

]′
[
Dn

λ
f(z)

]
]
≺ εq(z) +

γzq′(z)
q(z)

, (4.10)

then z[Dn
λ
f(z)]′/[Dn

λ
f(z)] ≺ q(z) and q is the best dominant.

Proof. Our aim is to apply Lemma 4.1. Setting

J(z) =
z
[
Dn

λf(z)
]′

[
Dn

λf(z)
] =

−p +
∑∞

k=p+1 k
(
kλ + pλ + 1

)n
akzk+p

1 +
∑∞

k=p+1
(
kλ + pλ + 1

)n
akzk+p

,
(
n ∈ N0; p ∈ N

)
, (4.11)

θ(w) = w and φ(w) = γ/w, γ /= 0. It can be easily observed that J is analytic inU, θ is analytic
in C, φ is analytic in C/{0} and φ(w)/= 0. By computation shows that

zJ ′(z)
J(z)

= 1 +
z
[
Dn

λ
f(z)

]′′
[
Dn

λ
f(z)

]′ − z
[
Dn

λ
f(z)

]′
[
Dn

λ
f(z)

] (4.12)
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which yields, by (4.10), the following subordination:

εJ(z) + γ
zJ ′(z)
J(z)

≺ εq(z) +
γzq′(z)
q(z)

, (4.13)

that is,

θ(J(z)) + zJ ′(z)φ(J(z)) ≺ θ
(
q(z)

)
+ zq′(z)φ

(
q(z)

)
. (4.14)

Now by letting

Q(z) = zq′(z)φ
(
q(z)

)
=
γzq′(z)
q(z)

,

h(z) = θ
(
q(z)

)
+Q(z) = εq(z) +

γzq′(z)
q(z)

.

(4.15)

We find Qi starlike univalent in U and that

Re
{
zh′(z)
Q(z)

}
= Re

{
1 +

ε

γ
q(z) +

zq′′(z)
q′(z)

− zq′(z)
q(z)

}
> 0. (4.16)

Hence by Lemma 4.1, z[Dn
λ
f(z)]′/[Dn

λ
f(z)] ≺ q(z) and q is the best dominant.

Corollary 4.4. If f ∈ Σp and assume that (4.9) holds, then

1 +
z
[
Dn

λ
f(z)

]′′
[
Dn

λ
f(z)

]′ ≺ 1 +Az

1 + Bz
+

(A − B)z
(1 +Az)(1 + Bz)

(4.17)

implies that z[Dn
λ
f(z)]′/[Dn

λ
f(z)] ≺ (1 +Az)/(1 + Bz), −1 ≤ B < A ≤ 1 and (1 +Az)/(1 + Bz)

is the best dominant.

Proof. By setting ε = γ = 1 and q(z) = (1 +Az)/(1 + Bz) in Theorem 4.3, then we can obtain
the result.

Corollary 4.5. If f ∈ Σp and assume that (4.9) holds, then

1 +
z
[
Dn

λf(z)
]′′

[
Dn

λf(z)
]′ ≺ eαz + αz (4.18)

implies that z[Dn
λf(z)]

′/[Dn
λf(z)] ≺ eαz, |α| < π and eαz is the best dominant.

Proof. By setting ε = γ = 1 and q(z) = eαz in Theorem 4.3, where |α| < π .
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Theorem 4.6. Letw, γ ∈ C, and φ be convex and univalent inUwith φ(0) = 1 andRe{wφ(z)+γ} >
0 for all z ∈ U. If f ∈ Σp satisfies the subordination

1 + γ +
(
z
[
Dn

λ
f(z)

]′′/
[
Dn

λ
f(z)

]′) − ((
w/p

)
+ 1

)(
z
[
Dn

λ
f(z)

]′
/
[
Dn

λ
f(z)

])

w − γ
(
p
[
Dn

λ
f(z)

]
/z

[
Dn

λ
f(z)

]′) ≺ φ(z), (4.19)

then −z[Dn
λf(z)]

′/p[Dn
λf(z)] ≺ φ(z) and φ is the best dominant.

Proof. Our aim is to apply Lemma 4.2. Setting

q(z) =
−z[Dn

λ
f(z)

]′

p
[
Dn

λ
f(z)

] =
p +

∑∞
k=p+1 k

(
kλ + pλ + 1

)n
akzk+p

p +
∑∞

k=p+1 p
(
kλ + pλ + 1

)n
akzk+p

,
(
n ∈ N0; p ∈ N

)
. (4.20)

It can be easily observed that q is analytic in U and q(0) = 1. Computation shows that

zq′(z)
q(z)

= 1 +
z
[
Dn

λ
f(z)

]′′
[
Dn

λ
f(z)

]′ − z
[
Dn

λ
f(z)

]′
[
Dn

λ
f(z)

] (4.21)

which yields, by (4.19), the following subordination:

q(z) +
zq′(z)

wq(z) + γ
≺ φ(z), (z ∈ U). (4.22)

Hence by Lemma 4.2, −z[Dn
λf(z)]

′/[pDn
λf(z)] ≺ φ(z) and φ is the best dominant.
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