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Let �+ = [0,∞), let R : �+ → �
+ be a continuous, nonnegative, and increasing function, and let

pn,ρ(x) be the orthonormal polynomials with the weight wρ(x) = xρe−R(x), ρ > −1/2. For the zeros
{xk,n,ρ}nk=1 of pn,ρ(x) = pn(w2

ρ ;x), we estimate p
(j)
n,ρ(xk,n,ρ), where j is a positive integer. Moreover,

we investigate the various weighted Lp-norms (0 < p �∞) of pn,ρ(x).

1. Introduction and Main Results

Let � = (−∞,∞) and �
+ = [0,∞). Let R : �+ → �

+ be a continuous, nonnegative, and
increasing function. Consider the exponential weights wρ(x) = xρ exp(−R(x)), ρ > −1/2, and
then we construct the orthonormal polynomials {pn,ρ(x)}∞n=0 with the weight wρ(x). In this

paper, for the zeros {xkn}nk=1 of pn,ρ(x) = pn(w2
ρ;x) we estimate p(j)n,ρ(xkn), where j is a positive

integer. Moreover, we investigate the various weighted Lp-norms (0 < p �∞) of pn,ρ(x).
We say that f : � → �

+ is quasi-increasing if there existsC > 0 such that f(x) � Cf(y)
for 0 < x < y. The notation f(x) ∼ g(x) means that there are positive constants C1, C2 such
that for the relevant range of x, C1 � f(x)/g(x) � C2. The similar notation is used for
sequences and sequences of functions.

Throughout, C,C1, C2, . . . denote positive constants independent of n, x, t. The same
symbol does not necessarily denote the same constant in different occurrences. We denote
the class of polynomials with degree n by Pn.

First, we introduce some classes of weights.
Levin and Lubinsky [1, 2] introduced the class of weights on �+ as follows. Let I =

[0, d), where 0 < d �∞.
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Definition 1.1 (see [1, 2]). We assume that R : I → [0,∞) has the following properties. Let
Q(t) = R(t2),

(a)
√
xR(x) is continuous in I, with limit 0 at 0 and R(0) = 0,

(b) R′′(x) exists in (0, d), while Q′′(t) is positive in (0,
√
d),

(c)

lim
x→ d−

R(x) = ∞; (1.1)

(d) the function

T(x) :=
xR′(x)
R(x)

(1.2)

is quasi-increasing in (0, d), with

T(x) � Λ >
1
2
, x ∈ (0, d); (1.3)

(e) there exists C1 > 0 such that

|R′′(x)|
R′(x)

� C1
R′(x)
R(x)

, a.e. x ∈ (0, d). (1.4)

Then, we writew ∈ L(C2). If there also exists a compact subinterval J∗ 	 0 of I∗ = (−
√
d,

√
d),

and C2 > 0 such that

Q′′(t)
|Q′(t)| � C2

|Q′(t)|
Q(t)

, a.e. t ∈ I∗ \ J∗, (1.5)

then we write w ∈ L(C2+).

We consider the case d = ∞, that is, the space �+ = [0,∞), and we strengthen
Definition 1.1 slightly.

Definition 1.2. We assume that R : �+ → �
+ has the following properties:

(a) R(x), R′(x) are continuous, positive in �+ , with R(0) = 0, R′(0) = 0,

(b) R′′(x) > 0 exists in �+ \ {0},
(c)

lim
x→∞

R(x) = ∞, (1.6)

(d) the function
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T(x) :=
xR′(x)
R(x)

(1.7)

is quasi-increasing in �+ \ {0}, with

T(x) � Λ >
1
2
, x ∈ �+ \ {0}, (1.8)

(e) there exists C1 > 0 such that

R′′(x)
R′(x)

� C1
R′(x)
R(x)

, a.e. x ∈ �+ \ {0}. (1.9)

There exists a compact subinterval J 	 0 of �+ , and C2 > 0 such that

R′′(x)
R′(x)

� C2
R′(x)
R(x)

, a.e. x ∈ �+ \ J, (1.10)

then we write w ∈ L2.

Let us consider the weight w ∈ L(C2+) in Definition 1.2. Levin and Lubinsky [2,
Theorem 1.3] have given the following theorem.

Theorem A (see [3, Theorem 1.3]). Let w ∈ L(C2+) and ρ > −1/2. There exists n0 such that
uniformly for n � n0, 1 � j � n,

∣
∣
∣p′n,ρwρ

∣
∣
∣

(

xjn

) ∼ ϕn

(

xjn

)−1[
xjn

(

an − xjn

)]−1/4
. (1.11)

Now, we will estimate the higher-order derivatives of the orthonormal polynomials
pn(w2

ρ;x). However, we need to focus on a smaller class of weights.

Definition 1.3. Letw = exp(−R) ∈ L2 and ν � 2 be an integer. For the exponent R,we assume
the following:

(a) R(j)(x) > 0, for 0 � j � ν and x > 0, and R(j)(0) = 0, 0 � j � ν − 1.

(b) there exist positive constants Ci > 0 such that for i = 1, 2, . . . , ν − 1

R(i+1)(x) � CiR
(i)(x)

R′(x)
R(x)

, a.e. x ∈ �+ \ {0}, (1.12)

(c) there exist positive constants C, 0 < c1 � 1 and 0 � δ < 1 such that for x ∈ (0, c1)

R(ν)(x) � C

(
1
x

)δ

, (1.13)
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(d) there exists c2 > 0 such that we have one among the following:

(d1) T(x)/
√
x is quasi-increasing on (c2,∞),

(d2) R(ν)(x) is nondecreasing on (c2,∞).

Then, we write w(x) = e−R(x) ∈ L̃ν .

Example 1.4 (see [1, 4]). Let ν � 2 be a fixed integer. There are some typical examples
satisfying all conditions of Definition 1.3 constructed as follows: let α > 1, l � 1, where l
is an integer. Then, we define

Rl,α(x) = expl(x
α) − expl(0), (1.14)

where expl(x) = exp(exp(exp · · · exp(x)) · · · ) is the lth iterated exponential.

(1) When α > ν, we consider w(x) = e−Rl,α(x), then w ∈ L̃ν .

(2) When α � ν, α is an integer, we define

Rl,α(x) = expl

(|x|α) − expl(0) −
r∑

j=1

R
(j)
l,α(0)

j!
xj . (1.15)

Then, w(x) = e−Rl,α(x) ∈ L̃ν .

In the rest of this paper, we consider the classes L2 and L̃ν ; let w ∈ L2 or w ∈ L̃ν

(ν � 2). For ρ > −1/2, we set wρ(x) := xρw(x). Then, we can construct the orthonormal
polynomials pn,ρ(x) = pn(w2

ρ;x) of degree n with respect to w2
ρ(x). That is,

∫∞

0
pn,ρ(u)pm,ρ(u)w2

ρ(u)du = δnm (Kronecker’s delta) n,m = 0, 1, 2, . . . . (1.16)

Let us denote the zeros of pn,ρ(x) by

0 < xn,n,ρ < · · · < x2,n,ρ < x1,n,ρ < ∞. (1.17)

The Mhaskar-Rahmanov-Saff numbers av are defined as follows:

v =
1
π

∫1

0
avtR

′(avt){t(1 − t)}−1/2dt, v > 0. (1.18)

In this paper, we will consider the orthonormal polynomials pn,ρ(x)with respect to the
weight class L̃ν . Our main themes in this paper are to estimate the higher-order derivatives
of pn,ρ(x) at the zeros of pn,ρ(x) and to investigate the various weighted Lp-norms (0 < p �
∞) of pn,ρ(x). More precisely, we will estimate the higher-order derivatives of pn,ρ(x) at all
zeros of pn,ρ(x) for two cases of an odd order and of an even order. In addition, we will give
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asymptotic relation of the odd order derivatives of pn,ρ(x) at the zeros of pn,ρ(x) in a certain
finite interval. These estimations will play an important role in investigating convergence or
divergence of higher-order Hermite-Fejér interpolation polynomials (see [3, 5–17]).

Then, our main purpose is to obtain estimations with respect to p
(j)
n,ρ(xk,n,ρ), k =

1, 2, . . . , n, j = 1, 2, . . . , ν as follows.

Theorem 1.5. Let w(x) = exp(−R(x)) ∈ L(C2+) and ρ > −1/2. For each k = 1, 2, . . . , n and
j = 0, 1, . . . , ν − 1 one has

∣
∣
∣p

(j)
n,ρ

(

xk,n,ρ

)
∣
∣
∣ � C

(

n
√
a2n − xk,n,ρ

)j−1
x
−(j−1)/2
k,n,ρ

∣
∣
∣p′n,ρ
(

xk,n,ρ

)
∣
∣
∣. (1.19)

Theorem 1.6. Let w(x) = exp(−R(x)) ∈ L̃ν and ρ > −1/2. Assume that 1 + 2ρ − δ/2 � 0 for
ρ < −1/4, and if T(x) is bounded, then assume that

an � Cn2/(1+ν−δ), (1.20)

where 0 � δ < 1 is defined in (1.13). For each k = 1, 2, . . . , n and j = 0, 1, . . . , ν − 1, one has

∣
∣
∣p

(j)
n,ρ

(

xk,n,ρ

)
∣
∣
∣ � C

(

n√
a2n − √

xk,n,ρ
+
T(an)√

an

)j−1
x
−(j−1)/2
k,n,ρ

∣
∣
∣p′n,ρ
(

xk,n,ρ

)
∣
∣
∣, (1.21)

and in particular if j is even, then

∣
∣
∣p

(j)
n,ρ

(

xk,n,ρ

)
∣
∣
∣ � C

(

T(an)√
anxk,n,ρ

+ R′(xk,n,ρ

)

+
1

xk,n,ρ

)

×
(

n√
a2n − √

xk,n,ρ
+
T(an)√

an

)j−2
x
−(j−2)/2
k,n,ρ

∣
∣
∣p′n,ρ
(

xk,n,ρ

)
∣
∣
∣.

(1.22)

Theorem 1.7. Let w(x) = exp(−R(x)) ∈ L̃ν and ρ > −1/2. Let (1/ε)(an/n2) � xk,n,ρ � εan,
0 < ε < 1/4, and ν = 2, 3, . . ., s = 0, 1, . . . , (ν − 1)/2. Then, under the same conditions as the
assumptions of Theorem 1.6, there exist β(n, k), 0 < D1 � β(n, k) � D2 for absolute constants D1,
D2 such that the following equality holds:

p
(2s+1)
n,ρ

(

xk,n,ρ

)

= (−1)sβs2n(2n, k)
(

n√
an

)2s
(

1 + ρs
(

ε, xk,n,ρ, n
))

p′n
(

xk,n,ρ

)

x−s
k,n,ρ, (1.23)

and |ρs(ε, xk,n,ρ, n)| → 0 as n → ∞ and ε → 0.
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Define

Φn(x) = max

{

ηn, 1 −
(

x

an

)1/2
}

, ηn = {nT(an)}−2/3,

z+ =

⎧

⎪⎨

⎪⎩

z, z > 0,

0, z � 0.

(1.24)

Let us define

Θn(x) =
x/an

1 + x/an
. (1.25)

We consider the class of weights,F(C2), which is defined inDefinition 2.1 below. Levin
and Lubinsky have obtained the following theorem.

Theorem B (see [18, Theorem 13.6]). Assume that W ∈ F(C2). Let 0 < p < ∞. Then uniformly
for n � 1,

‖PnW‖Lp(I) ∼

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪
⎩

a
1/p−1/2
n , p < 4,

a−1/4
n

(

log(n + 1)
)1/4

, p = 4,

a
1/p−1/2
n (nT(an))(2/3)(1/4−1/p), p > 4.

(1.26)

We remark that Levin and Lubinsky have shown Theorem B for more wider class
F(lip(1/2)) ⊇ F(C2). In the following, we investigate the various weighted Lp-norms (0 <
p �∞) of pn,ρ(x).

Theorem 1.8. Letw ∈ L2. Let 0 < p < ∞ and ρ > −1/2. Then one has for n � 1,

∥
∥
∥
∥
Θ1/4

n (x)pn,ρ(x)w(x)
(

x +
an

n2

)ρ∥
∥
∥
∥
Lp(�+)

∼ a
1/p−1/2
n

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪
⎩

1, p < 4,

(

log(1 + nT(an))
)1/4

, p = 4,

(nT(an))(2/3)(1/4−1/p) , p > 4.

(1.27)

Theorem 1.9. Letw ∈ L2. Let 0 < p < ∞ and ρ > −1/2. Then one has for n � 1,

∥
∥
∥
∥
pn,ρ(x)w(x)

(

x +
an

n2

)ρ∥
∥
∥
∥
Lp(�+)

∼ a
1/p−1/2
n

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, p < 4,

(

log n
)1/4

, p = 4,

n2(1/4−1/p), p > 4.

(1.28)
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Theorem 1.10. Let w ∈ L2, 0 � s � r, and n � 1. Suppose that ρ > −1/2. For 0 � s � r and
n � 1, one has

∥
∥
∥
∥
Θr/4

n (x)Φ(r/4−1/p)+
n (x)

∣
∣
∣
∣
pn,ρ(x)w(x)

(

x +
an

n

)ρ∣
∣
∣
∣

s∥
∥
∥
∥
Lp(�+)

∼
⎧

⎨

⎩

a
1/p−r/2
n logn, if s = r, pr � 4,

a
1/p−s/2
n , otherwise,

(1.29)

and for p = ∞

∥
∥
∥
∥
Θr/4

n (x)Φ(r/4−1/p)+
n (x)

∣
∣
∣
∣
pn,ρ(x)w(x)

(

x +
an

n

)ρ∣
∣
∣
∣

s∥
∥
∥
∥
Lp(�+)

∼ a−s/4
n . (1.30)

This paper is organized as follows. In Section 2, we will introduce the weight class F̃ν

as an analogy of the class L̃ν and the known results of orthonormal polynomials with respect
to F̃ν in order to prove the main results. In Section 3, we will prove Theorems 1.5, 1.6, and 1.7.
Finally, we will prove the results for the various weighted Lp-norms (0 < p � ∞) of pn,ρ(x),
that is, Theorems 1.8, 1.9, and 1.10, in Section 4.

2. Preliminaries

Levin and Lubinsky introduced the classes L(C2) and L(C2+) as an analogy of the classes
F(C2) and F(C2+) which they already defined on I∗ = (−

√
d,

√
d). They defined the

following.

Definition 2.1 (see [18]). We assume thatQ : I∗ → [0,∞) has the following properties:

(a) Q(t) is continuous in I∗, with Q(0) = 0,

(b) Q′′(t) exists and is positive in I∗ \ {0},
(c)

lim
t→

√
d−
Q(t) = ∞, (2.1)

(d) the function

T∗(t) :=
tQ′(t)
Q(t)

(2.2)

is quasi-increasing in (0,
√
d), with

T∗(t) � Λ∗ > 1, t ∈ I∗ \ {0}, (2.3)



8 Journal of Inequalities and Applications

(e) there exists C1 > 0 such that

Q′′(t)
|Q′(t)| � C1

|Q′(t)|
Q(t)

, a.e. t ∈ I∗ \ {0}. (2.4)

Then, we write W ∈ F(C2). If there also exists a compact subinterval J∗ 	 0 of I∗, and C2 > 0
such that

Q′′(t)
|Q′(t)| � C2

|Q′(t)|
Q(t)

, a.e. t ∈ I∗ \ J∗, (2.5)

then, we write W ∈ F(C2+).

Then we see that w ∈ L(C2) ⇔ F(C2) and w ∈ L(C2+) ⇔ F(C2+) from [1,
Lemma 2.2]. In addition, we easily have the following.

Lemma 2.2. Let Q(t) = R(t2), x = t2. Then one has

w ∈ L2 =⇒ W ∈ F
(

C2+
)

, (2.6)

whereW(t) = w(x), x = t2.

On �, we can consider the corresponding class to L̃ν as follows.

Definition 2.3 (cf. [19]). Let W = exp(−Q) ∈ F(C2+) and ν � 2 be an integer. Let Q be a
continuous and even function on �. For the exponent Q, we assume the following:

(a) Q(j)(t) > 0, for 0 � j � ν and t ∈ �+ \ {0},
(b) there exist positive constants Ci > 0 such that for i = 1, 2, . . . , ν − 1

Q(i+1)(t) � CiQ
(i)(t)

Q′(t)
Q(t)

, a.e. x ∈ �+ \ {0}, (2.7)

(c) there exist positive constants C, c1 > 0 and 0 � δ∗ < 1 such that for t ∈ (0, c1)

Q(ν)(t) � C

(
1
t

)δ∗

, (2.8)

(d) there exists c2 > 0 such that one has one among the following:

(d1) T∗(t)/t is quasi-increasing on (c2,∞),
(d2) Q(ν)(t) is nondecreasing on (c2,∞).

Then, we write W(t) = e−Q(t) ∈ F̃ν.
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LetW ∈ F̃ν and ν � 2. For ρ∗ > −1/2, we set

Wρ∗(t) := |t|ρ∗W(t). (2.9)

Then, we can construct the orthonormal polynomials Pn,ρ∗(t) = Pn(W2
ρ∗ ; t) of degree n with

respect toWρ∗(t). That is,

∫∞

−∞
Pn,ρ∗(v)Pm,ρ∗(v)W2

ρ∗(v)dt = δnm, n,m = 0, 1, 2, . . . . (2.10)

Let us denote the zeros of Pn,ρ∗(t) by

−∞ < tnn < · · · < t2n < t1n < ∞. (2.11)

Jung and Sakai [5, Theorems 3.3 and 3.6] estimate P (j)
n,ρ∗(tk,n), k = 1, 2, . . . , n, j = 1, 2, . . . , ν, and

we will obtain analogous estimations with respect to p
(j)
n,ρ(xk,n), k = 1, 2, . . . , n, j = 1, 2, . . . , ν

in Theorems 1.6 and 1.7.
There are many properties of Pn,ρ∗(t) = Pn(Wρ∗ ; t) with respect to Wρ∗(t), W ∈ F̃ν,

ν = 2, 3, . . . of Definition 2.3 in [4–6, 19–21]. They were obtained by transformations from
the results in [1, 2]. In this paper, we consider w = exp(−R) ∈ L̃ν and pn,ρ(x) = pn(wρ;x).

In [5] we got the estimations of P (j)
n,ρ∗(tkn), k = 1, 2, . . . , n, j = 1, 2, . . . , ν − 1 with the weight

Wρ∗(t) ∈ F̃ν. By a transformation of the results with respect to Pn,ρ∗(t), we estimate p(j)n,ρ(xkn),
k = 1, 2, . . . , n, j = 1, 2, . . . , ν − 1. In order to it we will give the transformation theorems in this
section. In the following, we will give some applications of them.

Theorem 2.4 (see [21, Theorem 2.1]). Let W(t) = w(x) with x = t2. Then, the orthonormal
polynomials Pn,ρ∗(t) on � can be entirely reduced to the orthonormal polynomials pn,ρ(x) in �+ as
follows: for n = 0, 1, 2, . . .,

P2n,2ρ+(1/2)(t) = pn,ρ(x), P2n+1,2ρ−(1/2)(t) = tpn,ρ(x). (2.12)

In this paper, we will use the fact that wρ(x) = xρ exp(−R(x)) is transformed into
W2ρ+1/2(t) = |t|2ρ+1/2 exp(−Q(t)) as meaning that

∫∞

0
pn,ρ(x)pm,ρ(x)w2

ρ(x)dx = 2
∫∞

0
pn,ρ
(

t2
)

pm,ρ

(

t2
)

t4ρ+1W2(t)dt

=
∫∞

−∞
P2n,2ρ+1/2(t)P2m,2ρ+1/2(t) W2

2ρ+1/2(t)dt.

(2.13)

Theorem 2.5. Let Q(t) = R(x), x = t2. Then one has

w(x) = exp(−R(x)) ∈ L̃ν =⇒ W(t) = exp(−Q(t)) ∈ F̃ν. (2.14)
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In particular, one has

Q(ν)(t) � C

(
1
t

)δ

, (2.15)

where 0 � δ < 1 is defined in (1.13).

Proof. Letw ∈ L̃2. Then, from Lemma 2.2, one hasW ∈ F(C2+). Let [x] denote the maximum
integer as [x] � x (Gaussian symbol). For 1 � j � ν, one has

Q(j)(t) =
[j/2]
∑

i=0

cijR
(j−i)(x)tj−2i, cij > 0

(

i = 0, 1, . . . ,
[

j/2
])

, x = t2. (2.16)

Therefore, we easily see that (a) of Definition 2.3 holds. Let x = t2. Since R(�)(x) is increasing
for x > 0 and � = 0, 1, . . . , ν − 1, there exists ξ with 0 < ξ < x such that for k = 0, 1, . . . , ν − 2,

R(k)(x)
x

= R(k+1)(ξ) � CR(k+1)(x). (2.17)

Then, since for 0 � k < j � ν − 1,

R(k)(x) � Cxj−kR(j)(x), (2.18)

one has by (b) of Definition 1.3 that

Q(j)(t) =
[j/2]
∑

i=0

cijR
(j−i)(x)tj−2i � CR(j)(x)tj � CR(j−1)(x)tj−1

(
tR′(x)
R(x)

)

� CQ(j−1)(t)
Q′(t)
Q(t)

, 1 � j � ν − 1.

(2.19)

Similarly, one has by (2.16), (d) of Definition 1.2, and (b) of Definition 1.3 that

Q(ν)(t) = c0,νR
(ν)(x)tν +

[ν/2]∑

i=1

ci,νR
(ν−i)(x)tν−2i

� c0,νR
(ν)(x)tν + CR(ν−1)(x)tν−2

� CR(ν−1)(x)tν−1
(
tR′(x)
R(x)

)

� CQ(ν−1)(t)
Q′(t)
Q(t)

.

(2.20)
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Consequently, one has (b) in Definition 2.3. We know that

[ν/2]∑

i=1

ci,νR
(ν−i)(x)tν−2i � C, t ∈ (0, c1), (2.21)

and since tν−δ � C on t ∈ (0, c1), one has from (1.13) that

R(ν)(x)tν � C

(
1
t2

)δ

tν � C

(
1
t2

)δ

tδ � C

(
1
t

)δ

. (2.22)

Therefore, one has by (2.16)

Q(ν)(t) � C

(
1
t

)δ

, (2.23)

where 0 � δ < 1 is defined in (1.13). The inequalities (d1) and (d2) of Definition 2.3 follow
easily from (d1) and (d2) of Definition 1.3. Therefore, one has (2.14).

3. Proofs of Theorems 1.5, 1.6, and 1.7

For convenience, in the rest of this paper, we put as follows:

ρ > −1
2
, ρ∗ := 2ρ +

1
2
, pn(x) := pn,ρ(x), Pn(t) := Pn,ρ∗(t), (3.1)

and xkn = xk,n,ρ, tkn = tk,n,ρ∗ . Then, we know that ρ∗ > −1/2 and

pn(x) = P2n(t), x = t2, xkn = t2k,2n, tk,2n > 0, k = 1, 2, . . . , n. (3.2)

In the following, we introduce some useful notations.

(a) The Mhaskar-Rahmanov-Saff numbers av and a∗
u are defined as the positive roots

of the following equations:

v =
1
π

∫1

0
avtR

′(avt){t(1 − t)}−1/2dt, v > 0,

u =
2
π

∫1

0
a∗
utQ

′(a∗
ut)
(

1 − t2
)−1/2

dt, u > 0.

(3.3)

(b) Let

ηn = {nT(an)}−2/3, η∗
n = {nT∗(a∗

n)}−2/3. (3.4)

Then, one has the following.
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Lemma 3.1 (see [1, (2.5), (2.7), (2.9)]).

an = a∗
2n

2, ηn = 42/3η∗
2n, T(an) =

1
2
T∗(a∗

2n

)

. (3.5)

To prove Theorem 1.6, we need some lemmas as follows.

Lemma 3.2 (see [21, Theorem 2.2, Lemma 3.7]). For the minimum positive zero t[n/2],n ([n/2] is
the largest integer n/2), one has

t[n/2],n ∼ a∗
nn

−1, (3.6)

and for the maximum zero x1n, one has for large enough n,

1 − t1n
a∗
n
∼ η∗

n, η∗
n = (nT∗(a∗

n))
−2/3. (3.7)

Moreover, for some constant 0 < ε � 2, one has

T∗(a∗
n) � Cn2−ε. (3.8)

Lemma 3.3 (see [6, Theorem 2.5]). Let W ∈ F(C2+) and r = 1, 2, . . .. Then, uniformly for 1 �
k � n,

∣
∣
∣
∣
∣
∣

P
(r)
n,ρ

(

tk,ρ,n
)

P ′
n,ρ

(

tk,ρ,n
)

∣
∣
∣
∣
∣
∣

� C

⎛

⎜
⎝

n
√

a∗
2n

2 − t2k,ρ,n

⎞

⎟
⎠

r−1

. (3.9)

Lemma 3.4 (see [5, Theorem 3.6 and Lemma 3.7 (3.20)]). Let ρ∗ > −1/2 and W(x) =
exp(−Q(x)) ∈ F̃ν , ν � 2. Assume that 1 + 2ρ∗ − δ∗ � 0 for ρ∗ < 0 and if T∗(t) is bounded,
then assume

a∗
n � Cn1/(1+ν−δ∗), (3.10)

where 0 � δ∗ < 1 is defined in (2.8). If tkn /= 0, then one has for j = 1, 2, . . . , ν

∣
∣
∣P

(j)
n (tkn)

∣
∣
∣ � C

(

n

a∗
2n − |tkn| +

T∗(a∗
n)

a∗
n

)j−1
∣
∣P ′

n(tkn)
∣
∣, (3.11)

and in particular, if j is even, then

∣
∣
∣P

(j)
n (tkn)

∣
∣
∣ � C

(
T∗(a∗

n)
a∗
n

+
∣
∣Q′(tkn)

∣
∣ +

1
|tkn|
)(

n

a∗
2n − |tkn| +

T∗(a∗
n)

a∗
n

)j−2
∣
∣P ′

n(tkn)
∣
∣. (3.12)
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Remark 3.5. Let W(t) ∈ F(C2+). Then, from [19, Theorem 1.6] we know that when T∗(t) is
unbounded, for any η > 0, there exists C(η) > 0 such that for t ≥ 1,

a∗
t � C

(

η
)

tη. (3.13)

In addition, since T(x) = T∗(t)/2, we know that

(i) T(x) is bounded ⇔ T∗(t) is bounded,

(ii) T(x) is unbounded ⇒ an � Cnη for any η > 0,

(iii) T(an) � Cn2−ε for some constant 0 < ε � 2.

Lemma 3.6. For j = 1, 2, 3, . . ., one has

p
(j)
n (x) =

j
∑

i=1

(−1)j−icj,iP (i)
2n (t)t

−2j+i, (3.14)

where cj,i > 0 satisfy that for k = 1, 2, . . .,

ck+1,1 =
2k − 1

2
ck,1, ck+1,k+1 =

1
2k+1

, c1,1 =
1
2
, (3.15)

and for 2 � i � k

ck+1,i =
ck,i−1 + (2k − i)ck,i

2
. (3.16)

Proof. It is easily proved, using the mathematical induction on j.

Proof of Theorem 1.5. By Lemmas 3.3, 3.6 and (3.2), one has

∣
∣
∣p

(j)
n (xkn)

∣
∣
∣ � C

j
∑

i=1

∣
∣
∣P

(i)
2n (tk,2n)

∣
∣
∣

∣
∣
∣t

−2j+i
k,2n

∣
∣
∣

� C
j
∑

i=1

⎛

⎜
⎝

2n
√

a∗
4n

2 − t2k,2n

⎞

⎟
⎠

i−1
∣
∣P ′

2n(tk,2n)
∣
∣

∣
∣
∣t

−2j+i
k,2n

∣
∣
∣.

(3.17)
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Since by Lemma 3.2

j
∑

i=1

⎛

⎜
⎝

2n
√

a∗
4n

2 − t2
k,2n

⎞

⎟
⎠

i−1
∣
∣
∣ti−1k,2n

∣
∣
∣ � C

⎧

⎪⎨

⎪⎩

1 +

⎛

⎜
⎝

2n
√

a∗
4n

2 − t2
k,2n

⎞

⎟
⎠

j−1
∣
∣
∣t

j−1
k,2n

∣
∣
∣

⎫

⎪⎬

⎪⎭

� C

⎧

⎪
⎨

⎪
⎩

∣
∣
∣t

−j+1
k,2n

∣
∣
∣ +

⎛

⎜
⎝

2n
√

a∗
4n

2 − t2k,2n

⎞

⎟
⎠

j−1⎫
⎪
⎬

⎪
⎭

∣
∣
∣t

j−1
k,2n

∣
∣
∣

� C

⎛

⎜
⎝

n
√

a∗
4n

2 − t2
k,2n

⎞

⎟
⎠

j−1
∣
∣
∣t

j−1
k,2n

∣
∣
∣,

(3.18)

one has from Lemma 3.1 that

∣
∣
∣p

(j)
n (xkn)

∣
∣
∣ � C

⎛

⎜
⎝

n
√

a∗
4n

2 − t2
k,2n

⎞

⎟
⎠

j−1
∣
∣P ′

2n(tk,2n)
∣
∣

∣
∣
∣t

−j
k,2n

∣
∣
∣

� C

(
n√

a2n − xk,n

)j−1
x
−(j−1)/2
k,n

∣
∣p′n(xk,n)

∣
∣.

(3.19)

Proof of Theorem 1.6. Since w(x) ∈ L̃ν , we know that W(t) ∈ F̃ν and we know that δ∗ = δ by
Theorem 2.5 and from (3.1), (3.2), and Lemma 3.1 that

(i) ρ > −1/2 ⇒ ρ∗ > −1/2,
(ii) 1 + 2ρ − δ/2 � 0 for ρ < −1/4 ⇒ 1 + 2ρ∗ − δ∗ � 0 for ρ∗ < 0,

(iii) an � Cn2/(1+ν−δ) ⇒ a∗
n � Cn1/(1+ν−δ∗).

Then, using Remark 3.5, we can apply Lemma 3.4 to pn(x) = P2n,ρ∗(t), x = t2. In a similar way
to the proof of Theorem 1.5, one has from Lemma 3.4 and Lemma 3.1

∣
∣
∣p

(j)
n (xkn)

∣
∣
∣ � C

j
∑

i=1

∣
∣
∣P

(i)
2n (tk,2n)

∣
∣
∣

∣
∣
∣t

−2j+i
k,2n

∣
∣
∣

� C
j
∑

i=1

(

n

a∗
4n − |tk,2n| +

T∗(a∗
2n

)

a∗
2n

)i−1
∣
∣P ′

2n(tk,2n)
∣
∣

∣
∣
∣t

−2j+i
k,2n

∣
∣
∣

� C

(

n

a∗
4n − |tk,2n| +

T∗(a∗
2n

)

a∗
2n

)j−1
∣
∣P ′

2n(tk,2n)
∣
∣

∣
∣
∣t

−j
k,2n

∣
∣
∣

� C

(
n√

a2n − √
xk,n

+
T(an)√

an

)j−1
x
−(j−1)/2
k,n

∣
∣p′n(xk,n)

∣
∣.

(3.20)
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Let j be even. Then, one has from Lemma 3.4 that

∑

i:even

∣
∣
∣P

(i)
2n (tk,2n)

∣
∣
∣

∣
∣
∣t

−2j+i
k,2n

∣
∣
∣ � C

(

T∗(a∗
2n

)

a∗
2n

+
∣
∣Q′(tk,2n)

∣
∣ +

1
|tk,2n|

)

∣
∣P ′

2n(tk,2n)
∣
∣

∣
∣
∣t

−2j+2
k,2n

∣
∣
∣

×
∑

i:even

(

n

a∗
4n − |tk,2n| +

T∗(a∗
2n

)

a∗
2n

)i−2
∣
∣
∣ti−2k,2n

∣
∣
∣.

(3.21)

Since by Lemma 3.2 and

∑

i:even

(

n

a∗
4n − |tk,2n| +

T∗(a∗
2n

)

a∗
2n

)i−2
∣
∣
∣ti−2k,2n

∣
∣
∣ � C

(

n

a∗
4n − |tk,2n| +

T∗(a∗
2n

)

a∗
2n

)j−2
∣
∣
∣t

j−2
k,2n

∣
∣
∣, (3.22)

one has

∑

i:even

∣
∣
∣P

(i)
2n (tk,2n)

∣
∣
∣

∣
∣
∣t

−2j+i
k,2n

∣
∣
∣ � C

(

T∗(a∗
2n

)

a∗
2n

+
∣
∣Q′(tk,2n)

∣
∣ +

1
|tk,2n|

)

∣
∣P ′

2n(tk,2n)
∣
∣

∣
∣
∣t

−j
k,2n

∣
∣
∣

×
(

n

a∗
4n − |tk,2n| +

T∗(a∗
2n

)

a∗
2n

)j−2
,

j−1
∑

i:odd

∣
∣
∣P

(i)
2n (tk,2n)

∣
∣
∣

∣
∣
∣t

−2j+i
k,2n

∣
∣
∣ � C

(

n

a∗
4n − |tk,2n| +

T∗(a∗
2n

)

a∗
2n

)j−2
∣
∣P ′

2n(tk,2n)
∣
∣

∣
∣
∣t

−j−1
k,2n

∣
∣
∣

� C

(

T∗(a∗
2n

)

a∗
2n

+
∣
∣Q′(tk,2n)

∣
∣ +

1
|tk,2n|

)

×
(

n

a∗
4n − |tk,2n| +

T∗(a∗
2n

)

a∗
2n

)j−2
∣
∣P ′

2n(tk,2n)
∣
∣

∣
∣
∣t

−j
k,2n

∣
∣
∣.

(3.23)

Therefore, when j is even, one has by Lemma 3.1 that

∣
∣
∣p

(j)
n (xkn)

∣
∣
∣ � C

(

T∗(a∗
2n

)

a∗
2n|tk,2n|

+
|Q′(tk,2n)|
|tk,2n| +

1
t2k,2n

)

×
(

n

a∗
4n − |tk,2n| +

T∗(a∗
2n

)

a∗
2n

)j−2
∣
∣P ′

2n(tk,2n)
∣
∣

∣
∣
∣t

−j+1
k,2n

∣
∣
∣

� C

(
T(an)√
anxk,n

+ R′(xk,n) +
1

xk,n

)

×
(

n√
a2n − √

xk,n
+
T(an)√

an

)j−2
x
−(j−2)/2
k,n

∣
∣p′n(xk,n)

∣
∣.

(3.24)

Next, we will prove Theorem 1.7. To prove it, we need two lemmas as follows.



16 Journal of Inequalities and Applications

Lemma 3.7 ([5, Theorem 3.3]). LetW(x) = exp(−Q(x)) ∈ F̃ν , ν � 2. Let (1/ε)(a∗
n/n) � |tkn| �

εa∗
n, 0 < ε < 1/2, and s = 1, 2, . . . , (ν − 1)/2. Then, under the same conditions as the assumptions of

Lemma 3.4, there exist β(n, k), 0 < D1 � β(n, k) � D2 for absolute constants D1, D2 such that the
following equality holds:

P
(2s+1)
n (tkn) = (−1)sβsn(n, k)

(
n

a∗
n

)2s
(

1 + ρ̃2s+1(ε, tkn, n)
)

P ′
n(tkn), (3.25)

and |ρ̃2s+1(ε, tkn, n)| → 0 as n → ∞ and ε → 0.

From Lemma 3.3, we easily have the following.

Lemma 3.8. Let W ∈ F(C2+) and j = 1, 2, . . .. Then, uniformly for |tkn| � a∗
n/2,

∣
∣
∣P

(j)
n (tkn)

∣
∣
∣ � C

(
n

a∗
n

)j−1
∣
∣P ′

n(tkn)
∣
∣. (3.26)

Proof of Theorem 1.7. By Lemmas 3.4, 3.6 and Theorem 2.4, one has

p
(2s+1)
n (xkn) =

2s+1∑

i=1

(−1)2s+1−ic2s+1,iP (i)
2n (tk,2n)t

−2(2s+1)+i
k,2n

=
s∑

p=0

c2s+1,2p+1P
(2p+1)
2n (tk,2n)t

−4s+2p−1
k,2n −

s∑

p=1

c2s+1,2pP
(2p)
2n (tk,2n)t

−4s+2p−2
k,2n

=:
∑

odd

−
∑

even
.

(3.27)

Since we know that

1
ε

an

n2 � xk,n � εan =⇒ 2√
ε

a∗
2n

2n
� |tk,2n| �

√
εa∗

2n, 0 <
√
ε <

1
2
, (3.28)

by the same reason as the proof of Theorem 1.6, we can apply Lemma 3.7 to P
(2p+1)
2n (tk,2n).
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Then, using Lemmas 3.7 and 3.6, one has

∑

odd

=
s∑

p=0

c2s+1,2p+1(−1)pβp2n(2n, k)
(

2n
a∗
2n

)2p
(

1 + ρ̃2p+1
)

P ′
2n(tk,2n)t

−4s+2p−1
k,2n

= (−1)sβs2n(2n, k)
(

n√
an

)2s(1
2
+
ρ̃2s+1
2

)

P ′
2n(tk,2n)t

−2s−1
k,2n

+
s−1∑

p=0

c2s+1,2p+1(−1)pβp2n(2n, k)
(

2n
a∗
2n

)2p
(

1 + ρ̃2p+1
)

P ′
2n(tk,2n)t

−4s+2p−1
k,2n

= (−1)sβs2n(2n, k)
(

n√
an

)2s(1
2
+
ρ̃2s+1
2

)

P ′
2n(tk,2n)t

−2s−1
k,2n

+ (−1)sβs2n(2n, k)
(

n√
an

)2s

P ′
2n(tk,2n)t

−2s−1
k,2n

×
s−1∑

p=0

c2s+1,2p+1(−1)p−s22sβp−s2n (2n, k)

(

2n
a∗
2n

)2(p−s)
(

1 + ρ̃2p+1
)

t
2(p−s)
k,2n .

(3.29)

Here, ρ̃2p+1 := ρ̃2p+1(ε, tk,2n, 2n), p = 0, 1, . . . , s. Since from (3.28) we see that for 0 � p � s − 1,

(
a∗
2n

2n
1

tk,2n

)2(s−p)
�

(√
ε

2

)2(s−p)
�

(
1
4

)s−p
ε, (3.30)

one has that

∣
∣
∣
∣
∣
∣

s−1∑

p=0

c2s+1,2p+1(−1)p−s22sβp−s2n (2n, k)
(
a∗
2n

2n
1

tk,2n

)2(s−p)
(

1 + ρ̃2p+1
)

∣
∣
∣
∣
∣
∣

−→ 0, (3.31)

as n → ∞ and ε → 0. If we let

ξ′n,1(s;xkn) := ρ̃2s+1 +
s−1∑

p=0

c2s+1,2p+1(−1)p−s22s+1βp−s2n (2n, k)

(

2n
a∗
2n

)2(p−s)
(

1 + ρ̃2p+1
)

t
2(p−s)
k,2n ,

(3.32)

then one has

∑

odd

= (−1)sβs2n(2n, k)
(

n√
an

)2s
(

1
2
+
ξ′n,1(s;xk,n)

2

)

P ′
2n(tk,2n)t

−2s−1
k,2n

= (−1)sβs2n(2n, k)
(

n√
an

)2s(
1 + ξ′n,1(s;xk,n)

)

p′n(xk,n)x−s
k,n,

(3.33)
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and |ξ′n,1(s;xkn)| → 0 as n → ∞ and ε → 0. On the other hand, we obtain

∑

even
=

s∑

p=1

c2s+1,2p
P
(2p)
2n (tk,2n)
P ′
2n(tk,2n)

P ′
2n(tk,2n)t

−4s+2p−2
k,2n

=
s∑

p=1

2c2s+1,2p
P
(2p)
2n (tk,2n)
P ′
2n(tk,2n)

p′n(xk,n)t
−4s+2p−1
k,2n

= (−1)sβs2n(2n, k)
(

n√
an

)2s

p′n(xk,n)x−s
k,n

×
s∑

p=1

2c2s+1,2p(−1)sβ−s2n(2n, k)
(

n

a∗
2n

)−2s
P
(2p)
2n (tk,2n)
P ′
2n(tk,2n)

t
−2s+2p−1
k,2n

:= ξ′n,2(s;xk,n)(−1)sβs2n(2n, k)
(

n√
an

)2s

p′n(xk,n)x−s
k,n.

(3.34)

Here, one has from Lemma 3.8 and (3.28) that

∣
∣
∣ξ′n,2(s;xk,n)

∣
∣
∣ =

∣
∣
∣
∣
∣
∣

s∑

p=1

2c2s+1,2p(−1)sβ−s2n(2n, k)
(

n

a∗
2n

)−2s
P
(2p)
2n (tk,2n)
P ′
2n(tk,2n)

t
−2s+2p−1
k,2n

∣
∣
∣
∣
∣
∣

� C
s∑

p=1

(
a∗
2n

n

1
tk,2n

)2s−2p+1
� C

√
ε.

(3.35)

Finally, if we let ρs(ε, xkn, n) := ξ′n,1(s;xk,n) − ξ′n,2(s;xk,n), then the result is proved.

4. Proofs of Theorems 1.8, 1.9, and 1.10

Lemma 4.1. Let W(t) ∈ F(C2), and let 0 < p < ∞ and ρ∗ > −1/2. Then, one has for n � 1 that

∥
∥
∥
∥
∥
Pn,ρ∗(t)W(t)

(

|t| + a∗
n

n

)ρ∗
∥
∥
∥
∥
∥
Lp(�)

∼
∥
∥
∥
∥
∥
Pn,ρ∗(t)W(t)

(

|t| + a∗
n

n

)ρ∗
∥
∥
∥
∥
∥
Lp(a∗n/2�|t|�2a∗n)

∼ a∗
n
1/p−1/2

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, p < 4,

{

log (1 + nT∗(a∗
n))
}1/4

, p = 4,

{nT∗(a∗
n)}2/3(1/4−1/p), p > 4.

(4.1)
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Proof. In [21, theorem 2.6]we showed that

∥
∥
∥
∥
∥
Pn,ρ∗(t)W(t)

(

|t| + a∗
n

n

)ρ∗
∥
∥
∥
∥
∥
Lp(�)

∼ a∗
n
1/p−1/2

⎧

⎪⎪⎪⎪⎪
⎨

⎪⎪⎪⎪⎪⎩

1, p < 4,

{

log (1 + nT∗(a∗
n))
}1/4

, p = 4,

{nT∗(a∗
n)}2/3(1/4−1/p), p > 4.

(4.2)

But, seeing our proof of [21, Theorem 2.6] carefully, we can easily prove the first equivalence.

Lemma 4.2 (see [21, Theorem 2.4]). Let W(t) ∈ F(C2), 0 < p � ∞ and L � 0. Let β ∈ �. Then,
given r > 1, there exists a positive constant C2 such that one has for any polynomial P ∈ Pn that

∥
∥
(

PWβ

)

(t)
∥
∥
Lp(a∗rn�|t|) � exp(−C2n

α)
∥
∥
(

PWβ

)

(t)
∥
∥
Lp(L(a∗n/n)�|t|�a∗n(1−Lηn)). (4.3)

Proof of Theorem 1.8. From Theorem 2.4 and Lemmas 4.2 and 4.1, one has

∥
∥
∥
∥
Θ1/4

n (x)pn,ρ(x)w(x)
(

x +
an

n2

)ρ∥
∥
∥
∥
Lp(�+)

� C

∥
∥
∥
∥
∥
∥

(

t2

a∗2
2n

)1/4

P2n,ρ∗(t)W(t)

(

t2 +
a∗2
2n

n2

)ρ

|t|1/p
∥
∥
∥
∥
∥
∥
Lp(�)

� C

(

1
a∗
2n

)1/2∥
∥
∥
∥
∥
P2n,ρ∗(t)W(t)

(

|t| + a∗
2n

n

)ρ∗

|t|1/p
∥
∥
∥
∥
∥
Lp(|t|�2a∗2n)

� Ca∗
2n

1/p−1/2
∥
∥
∥
∥
∥
P2n,ρ∗(t)W(t)

(

|t| + a∗
2n

n

)ρ∗
∥
∥
∥
∥
∥
Lp(�)

∼ a∗
2n

2/p−1

⎧

⎪⎪⎪⎪
⎨

⎪⎪⎪⎪⎩

1, p < 4,
{

log
(

1 + nT∗(a∗
2n

))}1/4
, p = 4,

{

nT∗(a∗
2n

)}2/3(1/4−1/p)
, p > 4.

(4.4)
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On the other hand, one has by Theorem 2.4 and Lemma 4.1 that

∥
∥
∥
∥
Θ1/4

n (x)pn,ρ(x)w(x)
(

x +
an

n2

)ρ∥
∥
∥
∥
Lp(�+)

≥
∥
∥
∥
∥
∥
Θ1/4

n

(

t2
)

P2n,ρ∗(t)W(t)

(

t2 +
a∗2
2n

n2

)ρ

|t|1/p
∥
∥
∥
∥
∥
Lp(a2∗n/2�|t|�2a∗2n)

∼ a∗
2n

1/p−1/2
∥
∥
∥
∥
∥
P2n,ρ∗(t)W(t)

(

|t| + a∗
2n

n

)ρ∗
∥
∥
∥
∥
∥
Lp(a2∗n/2�|t|�2a∗2n)

∼ a∗
2n

2/p−1

⎧

⎪⎪⎪⎪
⎨

⎪⎪⎪⎪
⎩

1, p < 4,
{

log
(

1 + nT∗(a∗
2n

))}1/4
, p = 4,

{

nT∗(a∗
2n

)}2/3(1/4−1/p)
, p > 4.

(4.5)

Consequently, using Lemma 3.1, one has the result.

Lemma 4.3. Let ρ > −1/2, and let w(x) ∈ L(C2+). Then, uniformly for n ≥ 1 and 1 � j � n, one
has the following:

(a)

sup
x∈I

∣
∣pn,ρ(x)w(x)

∣
∣

(

x +
an

n2

)ρ∣
∣
∣

(

x + ann
−2
)

(an − x)
∣
∣
∣

1/4
∼ 1, (4.6)

(b) for j � n − 1 and x ∈ [xj+1,n, xjn],

∣
∣pn,ρ(x)

∣
∣w(x)

(

x +
an

n2

)ρ

∼ min
{∣
∣x − xjn

∣
∣,
∣
∣x − xj+1,n

∣
∣
}

ϕn

(

xjn

)−1[
xjn

(

an − xjn

)]−1/4
, (4.7)

(c) for 1 � j � n − 1,

xjn − xj+1,n ∼ ϕn

(

xjn

)

, (4.8)

where

ϕu(x) =

⎧

⎪⎪
⎨

⎪⎪⎩

√

x + auu−2(a2u − x)
u
√
au − x + auηu

, 0 � x � au,

ϕu(au), au < x.

(4.9)

Proof. (a) It is from [1, Theorem 1.2]. (b) It is from [2, Theorem 1.3]. (c) It is from [2,
Theorem 1.4].
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Proof of Theorem 1.9. By Theorem 1.8, one has for 0 < p � 4,

∥
∥
∥
∥
pn,ρ(x)w(x)

(

x +
an

n2

)ρ∥
∥
∥
∥
Lp(�+)

� C

∥
∥
∥
∥
Θ1/4

n (x)pn,ρ(x)w(x)
(

x +
an

n2

)ρ∥
∥
∥
∥
Lp(�+)

∼ an
1/p−1/2

⎧

⎨

⎩

1, p < 4,
{

log (nT(an))
}1/4

, p = 4.

(4.10)

For p > 4, we know by (4.7) and (4.8) that

∫an/3

xnn

∣
∣
∣
∣
pn,ρ(x)w(x)

(

x +
an

n2

)ρ∣
∣
∣
∣

p

dx

� C
∑

xnn�xjn�an/3

∫xjn

xj+1,n

∣
∣x − xj+1,n

∣
∣pdxϕ

−p
n

(

xjn

)[

xjn

(

an − xjn

)]−p/4

∼ a
−p/4
n

∑

xnn�xjn�an/3

ϕn

(

xjn

)

x
−p/4
jn

∼ a
−p/4
n

∫an/3

ann−2
t−p/4dt

∼ a
−p/2+1
n n2(p/4−1).

(4.11)

Then, for p > 4

∥
∥
∥
∥
pn,ρ(x)w(x)

(

x +
an

n2

)ρ∥
∥
∥
∥
Lp(�+)

� Ca
−1/2+1/p
n n2(1/4−1/p). (4.12)

Therefore, one has

∥
∥
∥
∥
pn,ρ(x)w(x)

(

x +
an

n2

)ρ∥
∥
∥
∥
Lp(�+)

� Can
1/p−1/2

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪
⎩

1, p < 4,
{

log (nT(an))
}1/4

, p = 4,

n2(1/4−1/p), p > 4.

(4.13)
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On the other hand, one has from Theorem 1.8 that

∥
∥
∥
∥
pn,ρ(x)w(x)

(

x +
an

n2

)ρ∥
∥
∥
∥
Lp(x≥an/3)

∼
∥
∥
∥
∥
Θ1/4

n (x)pn,ρ(x)w(x)
(

x +
an

n2

)ρ∥
∥
∥
∥
Lp(x≥an/3)

�

∥
∥
∥
∥
Θ1/4

n (x)pn,ρ(x)w(x)
(

x +
an

n2

)ρ∥
∥
∥
∥
Lp(�+)

∼ an
1/p−1/2

⎧

⎪⎪⎪⎪
⎨

⎪⎪⎪⎪
⎩

1, p < 4,
{

log(nT(an))
}1/4

, p = 4,

{nT(an)}2/3(1/4−1/p) , p > 4,

(4.14)

and by (4.6) that

∥
∥
∥
∥
pn,ρ(x)w(x)

(

x +
an

n2

)ρ∥
∥
∥
∥
Lp(x�an/3)

� Ca−1/4
n

(∫an/3

0

(

x +
an

n2

)−p/4
dx

)1/p

∼ an
1/p−1/2

⎧

⎪⎪⎪⎪
⎨

⎪⎪⎪⎪
⎩

1, p < 4,
{

log an

}1/4
, p = 4,

n2(1/4−1/p), p > 4.

(4.15)

Therefore, one has

∥
∥
∥
∥
pn,ρ(x)w(x)

(

x +
an

n2

)ρ∥
∥
∥
∥
Lp(�+)

∼ an
1/p−1/2

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪
⎩

1, p < 4,
{

log(nT(an))
}1/4

, p = 4,

n2(1/4−1/p), p > 4.

(4.16)

From Remark 3.5(iii), we see that nT(an) < Cn3. So, consequently, one has the result.

Let

Φ∗
n(t) = max

{

η∗
n, 1 −

|t|
a∗
n

}

, η∗
n = {nT∗(a∗

n)}−2/3. (4.17)

Then, we obtain by Lemma 3.1 that

Φn(x) ∼ Φ∗
2n(t), x = t2. (4.18)
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Lemma 4.4 (see [21, Theorem 2.7]). Let Wρ∗ ∈ F(C2) and ρ∗ > −1/2. For 0 � s � r and n � 1,
one has

∥
∥
∥
∥
∥
Φ∗

n(t)
(r/4−1/p)+

∣
∣
∣
∣
∣
Pn,ρ∗(t)W(t)

(

|t| + a∗
n

n

)ρ∗
∣
∣
∣
∣
∣

s∥
∥
∥
∥
∥
Lp(�)

∼
∥
∥
∥
∥
∥
Φ∗

n(t)
(r/4−1/p)+

∣
∣
∣
∣
∣
Pn,ρ∗(t)W(t)

(

|t| + a∗
n

n

)ρ∗
∣
∣
∣
∣
∣

s∥
∥
∥
∥
∥
Lp(a∗n/2�|t|�2a∗n)

∼
⎧

⎨

⎩

a
∗1/p−r/2
n log n, s = r, 4 � pr < ∞,

a
∗1/p−s/2
n , otherwise.

(4.19)

Proof of Theorem 1.10. By Theorem 2.4, we can transform pn,ρ(x) on �+ to P2n,ρ∗(t) on �.

∥
∥
∥
∥
Θr/4

n (x)Φ(r/4−1/p)+
n (x)

∣
∣
∣
∣
pnw(x)

(

x +
an

n2

)ρ∣
∣
∣
∣

s∥
∥
∥
∥
Lp(�+)

=

∥
∥
∥
∥
∥
Θr/4

n

(

t2
)

Φ∗(r/4−1/p)+
2n (t)

∣
∣
∣
∣
∣
P2nW(t)

(

t2 +
a∗2
2n

n2

)ρ∣∣
∣
∣
∣

s

(2|t|)1/p
∥
∥
∥
∥
∥
Lp(�)

.

(4.20)

Using Lemma 4.4 and noting (3.1), one has

∥
∥
∥
∥
∥
Θr/4

n

(

t2
)

Φ∗(r/4−1/p)+
2n (t)

∣
∣
∣
∣
∣
P2nW(t)

(

t2 +
a∗2
2n

n2

)ρ∣
∣
∣
∣
∣

s

(2|t|)1/p
∥
∥
∥
∥
∥
Lp(�)

�

∥
∥
∥
∥
∥
Θr/4

n

(

t2
)

Φ∗(r/4−1/p)+
2n (t)

∣
∣
∣
∣
∣
P2nW(t)

(

t2 +
a∗2
2n

n2

)ρ∣
∣
∣
∣
∣

s

(2|t|)1/p
∥
∥
∥
∥
∥
Lp(a∗2n/2�|t|�2a∗2n)

� C

∥
∥
∥
∥
∥
Φ∗(r/4−1/p)+

2n (t)

∣
∣
∣
∣
∣
P2nW(t)

(

|t| + a∗
2n

n2

)ρ∗
∣
∣
∣
∣
∣

s

|t|1/p−s/2
∥
∥
∥
∥
∥
Lp(a∗2n/2�|t|�2a∗2n)

∼ a
∗1/p−s/2
2n

∥
∥
∥
∥
∥
Φ∗(r/4−1/p)+

2n (t)

∣
∣
∣
∣
∣
P2nW(t)

(

|t| + a∗
2n

n2

)ρ∗
∣
∣
∣
∣
∣

s∥
∥
∥
∥
∥
Lp(a∗2n/2�|t|�2a∗2n)

∼
⎧

⎨

⎩

a
∗2/p−r
2n log n, if s = r, 4 � pr < ∞,

a
∗2/p−s
2n , otherwise.

(4.21)

On the other hand, by Lemma 4.2, we see

∥
∥
∥
∥
∥
Θr/4

n (x)Φ∗(r/4−1/p)+
2n (t)

∣
∣
∣
∣
∣
P2n(t)W(t)

(

t2 +
a∗2
2n

n2

)ρ∣
∣
∣
∣
∣

s

(2t)1/p
∥
∥
∥
∥
∥
Lp(a∗2n�|t|)

� Cη
(r/4−1/p)+
2n e−cn, (4.22)
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where c > 0 is a constant. Therefore, using Lemma 4.4 and noting (3.1) and the definition of
Θn, one has

∥
∥
∥
∥
∥
Θr/4

n

(

t2
)

Φ∗(r/4−1/p)+
2n (t)

∣
∣
∣
∣
∣
P2nW(t)

(

t2 +
a∗2
2n

n2

)ρ∣
∣
∣
∣
∣

s

(2|t|)1/p
∥
∥
∥
∥
∥
Lp(�)

� Ca∗−r/2
2n

∥
∥
∥
∥
∥
Φ∗(r/4−1/p)+

2n (t)

∣
∣
∣
∣
∣
P2nW(t)

(

|t| + a∗
2n

n

)ρ∗
∣
∣
∣
∣
∣

s

|t|1/p+r/2−s/2
∥
∥
∥
∥
∥
Lp(|t|�2a∗2n)

� Ca
∗1/p−s/2
2n

∥
∥
∥
∥
∥
Φ∗(r/4−1/p)+

2n (t)

∣
∣
∣
∣
∣
P2nW(t)

(

|t| + a∗
2n

n

)ρ∗
∣
∣
∣
∣
∣

s∥
∥
∥
∥
∥
Lp(|t|�2a∗2n)

� Ca
∗1/p−s/2
2n

∥
∥
∥
∥
∥
Φ∗(r/4−1/p)+

2n (t)

∣
∣
∣
∣
∣
P2nW(t)

(

|t| + a∗
2n

n

)ρ∗
∣
∣
∣
∣
∣

s∥
∥
∥
∥
∥
Lp(�)

∼
⎧

⎨

⎩

a
∗2/p−r
2n log n, if s = r, 4 � pr < ∞,

a
∗2/p−s
2n , otherwise.

(4.23)

Therefore, one has

∥
∥
∥
∥
Θr/4

n (x)Φ(r/4−1/p)+
n (x)

∣
∣
∣
∣
pnw(x)

(

x +
an

n2

)ρ∣
∣
∣
∣

s∥
∥
∥
∥
Lp(�+)

∼
⎧

⎨

⎩

a
∗2/p−r
2n logn, if s = r, 4 � pr < ∞,

a
∗2/p−s
2n , otherwise,

∼
⎧

⎨

⎩

a
1/p−r/2
n log n, if s = r, 4 � pr < ∞,

a
1/p−s/2
n , otherwise.

(4.24)

Acknowledgments

The authors thank the referees for many kind suggestions and comments. H. S. Jung was
supported by SEOK CHUN Research Fund, Sungkyunkwan University, 2010.

References

[1] E. Levin and D. Lubinsky, “Orthogonal polynomials for exponential weights x2ρe−2Q(x) on [0, d),”
Journal of Approximation Theory, vol. 134, no. 2, pp. 199–256, 2005.

[2] E. Levin and D. Lubinsky, “Orthogonal polynomials for exponential weights x2ρe−2Q(x) on [0, d)—II,”
Journal of Approximation Theory, vol. 139, no. 1-2, pp. 107–143, 2006.

[3] T. Kasuga and R. Sakai, “Orthonormal polynomials for generalized Freud-type weights and higher-
order Hermite-Fejér interpolation polynomials,” Journal of Approximation Theory, vol. 127, no. 1, pp.
1–38, 2004.



Journal of Inequalities and Applications 25

[4] H. Jung and R. Sakai, “Specific examples of exponential weights,” Korean Mathematical Society.
Communications, vol. 24, no. 2, pp. 303–319, 2009.

[5] H. S. Jung and R. Sakai, “Derivatives of orthonormal polynomials and coefficients of Hermite-Fejér
interpolation polynomials with exponential-type weights,” Journal of Inequalities and Applications, vol.
2010, Article ID 816363, 29 pages, 2010.

[6] H. S. Jung and R. Sakai, “The Markov-Bernstein inequality and Hermite-Fejér interpolation for
exponential-type weights,” Journal of Approximation Theory, vol. 162, no. 7, pp. 1381–1397, 2010.

[7] T. Kasuga and R. Sakai, “Uniform ormean convergence of Hermite-Fejér interpolation of higher order
for Freud weights,” Journal of Approximation Theory, vol. 101, no. 2, pp. 330–358, 1999.

[8] T. Kasuga and R. Sakai, “Orthonormal polynomials with generalized Freud-type weights,” Journal of
Approximation Theory, vol. 121, no. 1, pp. 13–53, 2003.

[9] T. Kasuga and R. Sakai, “Orthonormal polynomials for Laguerre-type weights,” Far East Journal of
Mathematical Sciences, vol. 15, no. 1, pp. 95–105, 2004.

[10] T. Kasuga and R. Sakai, “Conditions for uniform or mean convergence of higher order Hermite-
Fejér interpolation polynomials with generalized Freud-typeweights,” Far East Journal of Mathematical
Sciences, vol. 19, no. 2, pp. 145–199, 2005.

[11] Y. Kanjin and R. Sakai, “Pointwise convergence of Hermite-Fejér interpolation of higher order for
Freud weights,” The Tohoku Mathematical Journal, vol. 46, no. 2, pp. 181–206, 1994.

[12] Y. Kanjin and R. Sakai, “Convergence of the derivatives of Hermite-Fejér interpolation polynomials
of higher order based at the zeros of Freud polynomials,” Journal of Approximation Theory, vol. 80, no.
3, pp. 378–389, 1995.

[13] R. Sakai, “Hermite-Fejér interpolation,” in Approximation Theory, vol. 58, pp. 591–601, North-Holland,
Amsterdam, The Netherlands, 1991.

[14] R. Sakai, “The degree of approximation of differentiable by Hermite interpolation polynomials,” in
Progress in Approximation Theory, P. Nevai and A. Pinkus, Eds., pp. 731–759, Academic Press, Boston,
Mass, USA, 1991.

[15] R. Sakai, “Certain unbounded Hermite-Fejér interpolatory polynomial operators,” Acta Mathematica
Hungarica, vol. 59, no. 1-2, pp. 111–114, 1992.
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