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We introduce and consider some new systems of extended general variational inclusions involving
six different operators. We establish the equivalence between this system of extended general
variational inclusions and the fixed points using the resolvent operators technique. This equivalent
formulation is used to suggest and analyze some new iterativemethods for this system of extended
general variational inclusions. We also study the convergence analysis of the new iterative method
under certain mild conditions. Several special cases are also discussed.

1. Introduction

In the recent years, much attention has been given to study the system of variational
inclusions/inequalities, which occupies a central and significant role in the interdisciplinary
research between analysis, geometry, biology, elasticity, optimization, imaging processing,
biomedical sciences, and mathematical physics. One can see an immense breadth of
mathematics and its simplicity in the works of this research. A number of problems leading to
the system of variational inclusions/inequalities arise in applications to variational problems
and engineering, see; for example, [1–31]. Variational inclusions/inequalities can be viewed
as innovative and novel extension of the variational principles.

Inspired and motivated by research going on in this area, we introduce and consider
a new system of extended general variational inclusions involving six different nonlinear
operators. This new class of system of extended general variational inclusions includes the
system of variational inclusions/inequalities involving five, four, three, and two operators
and quasi variational inclusions/inequalities as special cases. Using the resolvent operator
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technique, we establish the equivalence between the new system of general variational
inclusions and the fixed point problem. This alternative equivalent formulation is used to
suggest and analyze some iterative methods for solving this system of extended general
variational inclusions. Several special cases of these iterative algorithms are also discussed.
We also prove the convergence of the proposed iterative methods under weaker conditions.
Since the new system of extended general variational inclusions/inequalities includes the
system of variational inclusions/inequalities and related optimization problems as special
cases, results proved in this paper continue to hold for these problems. Our result can
be viewed as refinement and improvement of the previous results in this field. The
interested readers are advised to explore this field further and discover some new and
novel applications of these system of extended general variational inclusions/inequalities in
various branches of pure and applied sciences. This field of study is not much developed and
offers several opportunities for future research. For example, see [5, 6] and the references
therein, for the applications of recurrent neural network regarding the extended general
variational inequalities.

2. Preliminaries

Let H be a real Hilbert space whose inner product and norm are denoted by 〈·, ·〉 and ‖ · ‖,
respectively, Let K be a closed and convex set in H. Let T1, T2, A, g, h, g1 : H → H be
nonlinear different operators, and let ϕ : H → R ∪ {+∞} be a continuous function.

We now consider the problem of finding x∗, y∗ ∈ H such that

0 ∈ ρT1
(
y∗) + ρA

(
g1(x∗)

) − g
(
y∗) + g1(x∗), ρ > 0,

0 ∈ ηT2(x∗) + ηA
(
h1
(
y∗)) + g1

(
y∗) − h(x∗), η > 0,

(2.1)

which is called the system of general variational inclusions involving seven different
operators.

We now discuss some special cases of the system of general variational inclusions
(2.1).

(i) If T1 = T2 = T and g = h = g1, ρ = η, x = x∗ = y∗, then (2.1) is equivalent to finding
x ∈ H, such that

0 ∈ ρT(x) + ρA
(
g(x)

)
, (2.2)

which is known as the variational inclusion problem or finding the zero of the sum
of two (more) monotone operators [8–12]. It is well known that a wide class of
linear and nonlinear problems can be studied via variational inclusion problems.

(ii) We note that, if A(·) = ∂ϕ(·), the subdifferential of a proper, convex, and lower-
semicontinuous function, then (2.1) is equivalent to finding x∗, y∗ ∈ H, such that

〈
ρT1

(
y∗) + g1(x

∗) − g
(
y∗), g(x) − g1(x∗)

〉 ≥ ρϕ
(
g1(x∗)

) − ρϕ
(
g(x)

)
, ∀x ∈ H, ρ > 0,

〈
ηT2(x∗) + h1

(
y∗) − h(x∗), h(x) − g1

(
y∗)〉 ≥ ηϕ

(
g1
(
y∗)) − ηϕ(h(x)), ∀x ∈ H, η > 0,

(2.3)
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which is called the system of mixed general variational inequalities involving five
different nonlinear operators and appears to be a new one.

(iii) If T1 = T2 = T , then (2.3) reduces to the following system of mixed general
variational inequalities of finding x∗, y∗ ∈ H, such that

〈ρT(y∗) + g1(x∗) − g
(
y∗), g(x) − g1(x∗)〉 ≥ ρϕ

(
g1(x∗)

) − ρϕ
(
g(x)

)
, ∀x ∈ H, ρ > 0,

〈ηT(x∗) + h1
(
y∗) − h(x∗), h(x) − g1

(
y∗)〉 ≥ ηϕ

(
g1
(
y∗)) − ηϕ(h(x)), ∀x ∈ H, η > 0.

(2.4)

(iv) If ϕ is an indicator function of a closed and convex set K in H, then (2.4) is
equivalent to finding x∗, y∗ ∈ K, such that

〈
ρT

(
y∗) + g1(x∗) − g

(
y∗), g(x) − g1(x∗)

〉 ≥ 0, ∀x ∈ H : g(x) ∈ K, ρ > 0,
〈
ηT(x∗) + g1

(
y∗) − h(x∗), h(x) − g1

(
y∗)〉 ≥ 0, ∀x ∈ H : h(x) ∈ K, η > 0,

(2.5)

is called the system of extended general variational inequalities involving five
different operators, which has been studied by Noor [23].

(v) If T1 = T2 = T, h = g1, then (2.5) is equivalent to finding x∗ ∈ K such that

〈
Tx∗, g(x) − h(x∗)

〉 ≥ 0, ∀x ∈ H : g(x) ∈ K, (2.6)

which is known as the extended general variational inequality introduced and
studied by Noor [16] in 2009. It has been shown [16] that the minimum of a
differentiable nonconvex function on the nonconvex set can be characterized by
the extended general variational inequality (2.6). For the neural network technique
for solving (2.6), see [5, 6]. In particular, for suitable and appropriate choice of
the operators, one can obtain the various classes of variational inclusions and
variational inequalities. This shows that the system of extended general variational
inclusions involving seven different operators (2.1) is more general and includes
several classes of variational inclusions/inequalities and related optimization
problems as special cases. For the recent applications, numerical methods, and
formulations of variational inequalities and variational inclusions, see [1–31] and
the references therein.

3. Iterative Algorithms

In this section, we suggest some explicit iterative algorithms for solving the system of general
variational inclusion (2.1). First of all, we establish the equivalence between the system of
variational inclusions and fixed point problems. For this purpose, we recall the following
well-known result.
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Definition 3.1 (see [1]). For any maximal operator T , the resolvent operator associated with
T , for any ρ > 0, is defined as

JT (u) =
(
I + ρT

)−1(u), ∀u ∈ H. (3.1)

It is well known that an operator T is maximal monotone if and only if its resolvent operator
JT is defined everywhere. It is single valued and nonexpansive, that is,

‖JAu − JAv‖ ≤ ‖u − v‖, ∀u, v ∈ H. (3.2)

We now show that the system of extended general variational inclusions (2.1) is
equivalent to the fixed point problem and this is the motivation of our next result.

Lemma 3.2. If the operator A is maximal monotone, then (x∗, y∗) ∈ H is a solution of (2.1), if and
only if, x∗, y∗ ∈ H satisfies

g1(x∗) = JA
[
g
(
y∗) − ρT1

(
y∗)],

g1
(
y∗) = JA

[
h(x∗) − ηT2(x∗)

]
.

(3.3)

Proof. Let (x∗, y∗) ∈ H be a solution of (2.1). Then

g
(
y∗) − ρT1

(
y∗) ∈ (

I + ρA
)(
g1(x∗)

)
,

h(x∗) − ηT2(x∗) ∈ (
I + ηA

)(
g1
(
y∗)),

(3.4)

which implies that

g1(x∗) = JA
[
g
(
y∗) − ρT1

(
y∗)],

g1
(
y∗) = JA

[
h(x∗) − ηT2(x∗)

]
,

(3.5)

the required result.

This equivalent formulation is used to suggest and analyze an iterative method for
solving (2.1). To do so, one rewrite (3.3) in the following form:

x∗ = (1 − an)x∗ + an

(
x∗ − g1(x∗)

)
+ anJA

[
g
(
y∗) − ρT1

(
y∗)], (3.6)

y∗ = y∗ − g1
(
y∗) + JA

[
h(x∗) − ηT2(x∗)

]
, (3.7)

where an ∈ [0, 1] for all n ≥ 0 satisfies some suitable conditions.
This alternative equivalence formulation enables us to suggest the following explicit

iterative method for solving (2.1).
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Algorithm 1. For arbitrarily chosen initial points x0, y0 ∈ K compute the sequence {xn} and
{yn} by

xn+1 = (1 − an)xn + an

(
xn+1 − g1(xn+1)

)
+ anJA

[
g
(
yn

) − ρT1
(
yn

)]
,

yn+1 = yn+1 − g1
(
yn+1

)
+ JA

[
h(xn+1) − ηT2(xn+1)

]
,

(3.8)

where an ∈ [0, 1] for all n ≥ 0 satisfies some suitable conditions.
For g1 = g and g1 = h, Algorithm 1 reduces to the following algorithm for solving

(2.1).

Algorithm 2. For arbitrarily chosen initial points x0, y0 ∈ K compute the sequence {xn} and
{yn} by

xn+1 = (1 − an)xn + an

(
xn+1 − g(xn+1)

)
+ anJA

[
g
(
yn

) − ρT1
(
yn

)]
, (3.9)

yn+1 = yn+1 − h
(
yn+1

)
+ JA

[
h(xn+1) − ηT2(xn+1)

]
, (3.10)

where an ∈ [0, 1] for all n ≥ 0 satisfies some suitable conditions.
For suitable and appropriate choice of the operators T1, T2, A, g, h, g1 and spaces, one

can obtain a wide class of iterative methods for solving different classes of variational
inclusions and related optimization problems. This shows that Algorithm 1 is quite flexible
and general and includes various known and new algorithms for solving variational
inequalities and related optimization problems as special cases.

Definition 3.3. A mapping T : H → H is called r-strongly monotone, if and only if, there
exists a constant r > 0, such that

〈
Tx − Ty, x − y

〉 ≥ r‖x − y‖2, ∀x, y ∈ H. (3.11)

Definition 3.4. A mapping T : H → H is called relaxed γ-cocoercive, if and only if, there
exists a constant γ > 0, such that

〈
Tx − Ty, x − y

〉 ≥ −γ‖Tx − Ty‖2, ∀x, y ∈ H. (3.12)

Definition 3.5. A mapping T : H → H is called relaxed (γ, r)-cocoercive, if and only if, there
exists constants γ > 0, r > 0, such that

〈
Tx − Ty, x − y

〉 ≥ −γ‖Tx − Ty‖2 + r‖x − y‖2, ∀x, y ∈ H. (3.13)

The class of relaxed (γ, r)-cocoercive mappings is more general than the class of
strongly monotone mappings. It is known that the relaxed (γ, r)-cocoercivity implies strongly
monotonicity, but the converse is not true.
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Definition 3.6. A mapping T : H → H is called μ-Lipschitzian, if and only if, there exists a
constant μ > 0, such that

∥
∥Tx − Ty

∥
∥ ≤ μ

∥
∥x − y

∥
∥, ∀x, y ∈ H. (3.14)

4. Main Results

In this section, we consider the convergence criteria of Algorithm 2 under some suitable mild
conditions and this is the main motivation of this paper. In a similar way, one can consider
the convergence analysis of Algorithm 1.

Theorem 4.1. Let x∗, y∗ be a solution of (2.1). If T1 : H → H is relaxed (γ1, r1)-cocoercive and
μ1-Lipschitzian and T2 : H × H → H is relaxed (γ2, r2)-cocoercive and μ3-Lipschitzian, Let g be
a relaxed (γ3, r3)-cocoercive and μ3-Lipschitzian. Let the operator h be relaxed (γ4, r4)-cocoercive and
μ4-Lipschitzian. If the operator g1 is relaxed (γ5, r5)-cocoercive and μ5-Lipschitzian, then

∣∣∣∣∣
ρ − r1 − γ1μ

2
1

μ2
1

∣∣∣∣∣
<

√(
r1 − γ1μ

2
1

)2 − μ2
1μ
(
2 − μ

)

μ2
1

, r1 > γ1μ
2
1 + μ1

√
μ
(
2 − μ

)
, μ = k + k3 < 1,

(4.1)

∣∣∣∣∣
η − r2 − γ2μ

2
2

μ2
2

∣∣∣∣∣
<

√(
r2 − γ2μ

2
2

)2 − μ2
2ν(2 − ν)

μ2
2

, r2 > γ2μ
2
2 + μ2

√
ν(2 − ν), ν = k1 + k3 < 1,

(4.2)

where

k =
√
1 − 2

(
r3 − γ3μ

2
3

)
+ μ2

3, k1 =
√
1 − 2

(
r4 − γ4μ

2
4

)
+ μ2

4, k3 =
√
1 − 2

(
r5 − γ5μ

2
5

)
+ μ2

5,

(4.3)

and an ∈ [0, 1],
∑∞

n=0 an = ∞, then for arbitrarily chosen initial points x0, y0 ∈ H, xn and yn

obtained from Algorithm 1 converge strongly to x∗ and y∗, respectively.

Proof. From (3.6), (3.9), and the nonexpansive property of the resolvent operator JA, we have

‖xn+1 − x∗‖
=
∥∥xn+1 − g1(xn+1) + Jϕ

[
g
(
yn

) − ρT1
(
yn

)] − (
x∗ − g1(x∗)

) − Jϕ
[
g
(
y∗) − ρT1

(
y∗)]∥∥

≤ ∥∥xn+1 − x∗ − (
g1(xn+1) − g1(x∗)

)∥∥ +
∥∥Jϕ

[
g
(
yn

) − ρT1
(
yn

)] − Jϕ
[
g
(
y∗) − ρT1

(
y∗)]∥∥

≤ ∥∥xn+1 − x∗ − (
g1(xn+1) − g1(x∗)

)∥∥ +
∥∥[g

(
yn

) − ρT1
(
yn

)] − [
g
(
y∗) − ρT1

(
y∗)]∥∥

=
∥∥xn+1 − x∗ − (

g1(xn+1) − g1(x∗)
)∥∥ +

∥∥yn − y∗ − ρ
[
T1
(
yn

) − T1
(
y∗)]∥∥

+
∥∥yn − y∗ − (

g
(
yn

) − g
(
y∗))∥∥.

(4.4)
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From the relaxed (γ1, r1)-cocoercive and μ1-Lipschitzian of T1, we have

∥
∥yn − y∗ − ρ

[
T1
(
yn

) − T1
(
y∗)]∥∥2

=
∥
∥yn − y∗∥∥2 − 2ρ

〈
T1
(
yn

) − T1
(
y∗), yn − y∗〉 + ρ2

∥
∥T1

(
yn

) − T1
(
y∗)∥∥2

≤ ∥
∥yn − y∗∥∥2 − 2ρ

[
−γ1

∥
∥T1

(
yn

) − T1
(
y∗)∥∥2 + r1

∥
∥yn − y∗∥∥2

]

+ ρ2
∥
∥T1

(
yn

) − T1
(
y∗)∥∥2

≤ ∥
∥yn − y∗∥∥2 + 2ργ1μ2

1

∥
∥yn − y∗∥∥2 − 2ρr1

∥
∥yn − y∗∥∥2 + ρ2μ2

1

∥
∥yn − y∗∥∥2

=
[
1 + 2ργ1μ2

1 − 2ρr1 + ρ2μ2
1

]∥
∥yn − y∗∥∥2

.

(4.5)

In a similar way, using the (γ3, r3)-cocoercivity and μ3-Lipschitz continuity of the operator g
and (γ5, r5)-cocoercivity and μ5-Lipschitz continuity of the operator g1, we have

∥∥yn − y∗ − (
g
(
yn

) − g
(
y∗))∥∥ ≤ k

∥∥yn − y∗∥∥, (4.6)
∥∥yn − y∗ − (

g1
(
yn

) − g1
(
y∗))∥∥ ≤ k3

∥∥yn − y∗∥∥, (4.7)

where k and k3 are defined by (4.3). Set

θ1 =
k +

[
1 + 2ργ1μ2

1 − 2ρr1 + ρ2μ2
1

]1/2

1 − k3
. (4.8)

It is clear from condition (4.1) that 0 ≤ θ1 < 1. Hence from (4.5),(4.6), and (4.7), it follows that

‖xn+1 − x∗‖ ≤ θ1
∥∥yn − y∗∥∥. (4.9)

Similarly, from the relaxed (γ2, r2)-cocoercive and μ2-Lipschitzian of T2, we obtain

∥∥xn+1 − x∗ − η[T2(xn+1) − T2(x∗)]
∥∥2

= ‖xn+1 − x∗‖2 − 2η〈T2(xn+1) − T2(x∗), xn+1 − x∗〉 + η2‖T2(xn+1) − T2(x∗)‖2

≤ ‖xn+1 − x∗‖2 − 2η
[
−γ2‖T2(xn+1) − T2(x∗)‖2 + r2‖xn+1 − x∗‖2

]

+ η2‖T2(xn+1) − T2(x∗)‖2

= ‖xn+1 − x∗‖2 + 2ηγ2‖T2(xn+1) − T2(x∗)‖2 − 2ηr2‖xn+1 − x∗‖2

+ η2‖T2(xn+1) − T2(x∗)‖2

≤ ‖xn+1 − x∗‖2 + 2ηγ2μ2
2‖xn+1 − x∗‖2 − 2ηr2‖xn+1 − x∗‖2 + η2μ2

2‖xn+1 − x∗‖2

=
[
1 + 2ηγ2μ2

2 − 2ηr2 + η2μ2
2

]
‖xn+1 − x∗‖2.

(4.10)
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Also, using the (γ4, r4)-cocoercivity and μ4-Lipschitz continuity of the operator h, we have

∥
∥yn − y∗ − (

h
(
yn

) − h
(
y∗))∥∥ ≤ k1

∥
∥yn − y∗∥∥, (4.11)

where k1 is defined by (4.3).
Hence from (3.7), (3.10), (4.7), (3.7), and (4.11), we have

∥
∥yn+1 − y∗∥∥ =

∥
∥yn+1 − y∗ − (

g1
(
yn+1

) − g1
(
y∗))∥∥

+
∥
∥Jϕ

[
h(xn+1) − ηT2(xn+1)

] − Jϕ
[
h(x∗) − ηT2(x∗)

]∥∥

≤ ∥
∥yn+1 − y∗ − (

g1
(
yn+1

) − g1
(
y∗))∥∥ +

∥
∥xn+1 − x∗ − η(T2(xn+1)−T2(xn))

∥
∥

+ ‖xn+1 − x∗ − (h(xn+1) − h(x∗))‖,
(4.12)

which implies that

∥∥yn+1 − y∗∥∥≤ θ2‖xn+1 − x∗‖, (4.13)

where

θ2 =
k1 +

[
1 + 2ργ1μ2

1 − 2ρr1 + ρ2μ2
1

]1/2

1 − k3
. (4.14)

From (4.2), it follows that θ2 < 1.
From (4.9) and (4.13), we obtain that

‖xn+1 − x∗‖ ≤ θ1θ2‖xn − x∗‖. (4.15)

Since θ1θ2 < 1, it follows that limn→∞{‖xn −x∗‖} = 0. Hence the result limn→∞{‖yn −y∗‖} = 0
is from (4.11). This completes the proof.

Remarks 4.2. It is well known [5, 6] that the traditional algorithms may not be efficient due
to the structure of the problems. To overcome this drawback, one usually uses the artificial
neural network based on the circuit implementation. It has been shown [5, 6] that the neural
network models are efficient in solving variational inequalities and related optimization
problems. The recurrent neural network methods have applications in kinematics control,
support vector machine learning, and related branches of engineering. Using the technique
and ideas of Liu and Cao [5] and Liu and Yang [6], one can consider the recurrent
neural network based on the resolvent operator for solving the system of extended general
variational inclusions (2.1) and its special cases. This is an interesting problem for future
research. Such type of systems of extended general variational inclusionsmay have important
and significant applications in engineering and applied sciences. For more general systems of
general variational inequalities/inclusions, see the work of Noor and Noor [27, 28] and the
references therein.
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5. Conclusion

In this paper, we have introduced and considered a new system of extended general
variational inclusions involving six different operators. We have established the equivalent
between the system of variational inclusions and the fixed point problem using the resolvent
operator. This equivalence is used to suggest and analyze some iterative methods for solving
the extended general system of variational inclusion. Several special cases are also discussed.
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