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A new Kantorovich type inequality for Hermite matrices is proposed in this paper. It holds for the

invertible Hermite matrices and provides refinements of the classical results. Elementary methods
suffice to prove the inequality.

1. Introduction

We first state the well-known Kantorovich inequality for a positive definite Hermite matrix
(see [1,2]), let A € M, be a positive definite Hermite matrix with real eigenvalues 1; < A, <
-++ < Ay. Then

- ()ll + )‘n)2
1<x*Axx* Al < 0 1.1
<xTAxxTATx < L, (L.1)
for any x € C", ||x|]| = 1, where A* denotes the conjugate transpose of the matrix A. An
equivalent form of this result is incorporated in
Ay = 1)°
0<x*Axx*A'x - 1< G = h)? (1.2)

40,

forany x € C", ||x|| = 1.

This famous inequality plays an important role in statistics and numerical analysis, for
example, in discussions of converging rates and error bounds of solving systems of equations
(see [2—4]). Motivated by interests in applied mathematics outlined above, we establish in this
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paper a new Kantorovich type inequality, the classical Kantorovich inequality is modified to
apply not only to positive definite but also to all invertible Hermitian matrices. An elementary

proof of this result is also presented.

In the next section, we will state the main theorem and its proof. Before starting, we
quickly review some basic definitions and notations. Let A € M, be an invertible Hermite
matrix with real eigenvalues Ay < Ay < --- < A, and the corresponding orthonormal
eigenvectors 1, ¢y, ..., ¢, with ||¢;|| =1 (i = 1,2,...,n), where ||¢;|| denotes 2-norm of the

vector of C,,.
For A, we define the following transform

C(A x)=x" (I - A)(A-MI)x.
If A1, > 0, then,
1 1
-1 _ ok _ a1 -1_
C(A ,x>—x (MI A ><A )LnI>x.

Otherwise, A1\, <0, then,

1 1
-1 o e -1 _
C(A ,x> =x <1k+1I A )(A —)LkI>x,

where

M€ S <0< hr o < e

2. New Kantorovich Inequality for Hermite Matrices

Theorem 2.1. Let A be an n x n invertible Hermite matrix with real eigenvalues Ay < Ay <--- <

Then

_ 2
% ~1/C(A,x)C(A, %)
X*Axx*Alx - 1| < e
(An = A1) (Mge1 = Ax)

4 A1l

if LA, >0,

~1/C(A,x)C(A,x) if L1k, <0

(1.3)

(1.4)

(1.5)

(1.6)

(2.1)

forany x € C", ||x|| = 1, where C(A, x), C(A™}, x), Ak, Aks1 defined by (1.3), (1.4), (1.5), and (1.6).
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To simplify the proof, we first introduce some lemmas.

Lemma 2.2. With the assumptions in Theorem 2.1, then

M <x*Ax <A, 0< (N, —x*Ax)(x"Ax —\y) < }L(An - )%,

N2
J\l <x*Alx < %, 0< (% - x*A‘lx) (x*A‘lx - l) < M if A4, >0,
n 1

1 An 4(Aphe)?
482
i <x*A'x < ! , 0< ( ! —x*A‘1x> <x*A"1x - l) < M if A, <0
Ak Akt st Ak 4()Lk+1)lk)2
(2.2)
forany x € C", ||x|]| = 1.
Lemma 2.3. With the assumptions in Theorem 2.1, then
1 2
0<C(Ax) < 7 (= A1),
2
Gzl i, 50, 23)
-1 4()L1/\11)
0< C<A ,x) < )
Qe = Li)” A")z if LA, <0
4 (e hies1)

forany x € C*, ||x|]| = 1.

Proof. Let x = Y kip;, then

C(A,x) = (X k05 (= 1)) (S el = 1)) = D kP = 1) (i =) 20 (24)

while

o A= Ay + 0 Ay — M A+
) (Rt (A=t Y (B (et ),

() ( _Anml) 2 ()
R — A > I)x ST.

(2.5)

The proof about C(A™!, x) is similar. O
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Lemma 2.4. With the assumptions in Theorem 2.1, then

2
JAxt? - (v < Lo (A,
2
(= A1) C(A™x)  if Ly >0,
5 2 4:(-)Ln-)tl)2
o= s
k+1k

forany x € C*, ||x|]| = 1.

Proof. Thus,

| AX|2 = (x* Ax)? = (Ap — X* Ax) (x* Ax — A1) + x* <A2 M+ A)A + m,,1>x

=\, —x"Ax)(x*Ax - M) + x" (A - M) (A- N, Dx
= Ay —x"Ax) (x*Ax — A1) —x" (A - M) (L] - A)x

2
< M -C(A,x) (by Lemma 2.2).

The other inequality can be obtained similarly, the proof is completed.

We are now ready to prove the theorem.

Proof of the Theorem 2.1. Thus,

x*Axx* A x - 1|2 = x*((x*A‘1x>I - A‘1>((x*Ax)I - A)x ?

< (G )= Al e anr -

while
((x* Ax) - A)x]|? = x* ((x*Ax)21 ~2(x*Ax)A + A2>x
= x*A%x - (x* Ax)*
= || Ax|]* - (x* Ax)*.
By the Lemma 2.4, we have

()‘n - )ll)z

(AT = AP < 21

- C(A, x).

(2.6)

2.7)

(2.8)

(2.9)

(2.10)
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Similarly, we can get that,

) ) . %—C(Al,x) if Ay A, >0,
AT - A D x| = [[A x| - (x*A7'x) < ni1
el b=
(2.11)
Therefore,

<(.)Ln ;)Ll)Z B C(A,x)> <(/\n - A1)? ~ C(A_l’x)> if L34, >0,

* * A—1 2 4(.)‘”)”)2
x*Axx*A T x — 1| < ) 5
<—("" —h)” C(A,x)> <M . C(Al,x)> if A1, <0,
4 4()Lk+1-)‘k)
(2.12)

From (a2 — b?)(c? — d?) < (ac — bd)? for real numbers a, b, ¢, d, we have

(= A)? ’
n — Al _ 1 .
X < e \/C(A,x)C(A ,x)> , if LA, > 0
x*Axx* A x - 1' <
(An = A1) (Mges1 — Ai) )2 .
-1/C(A,x)C(A1,x) ), if ML, <O.
(2 - eamciat) :
(2.13)
The proof of Theorem 2.1 is completed. O

Remark 2.5. Let A € M,, be a positive definite Hermite matrix. From Theorem 2.1, we have

G = )7 _ff - \/C(A,x)C(A—l,x) < — )’

0<x"Axx*Alx—1< Unzha)
SOAXCA TS T, AN,

(2.14)

our result improves the Kantorovich inequality (1.2), so we conclude that Theorem 2.1 gives
an improvement of the Kantorovich inequality that applies all invertible Hermite matrices.

Example 2.6. Let

1
- 0 0
200 2 )
a=losz) atofo L 1 x= (1,10 (2.15)
0214 . _1 §
4 8
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The eigenvalues of A are: \; = (7 - v17)/2, A, =2, A3 = (7 + v/17) /2 by easily calculating, we
have

_ 1 A3 -\)> 17 - 1
A Ay -1 = ~ W)y L7 1) 2 216
X Axx ATx-1= 1, TR C(A,x)c(A ,x> = (2.16)
Therefore,
()‘3 - )‘1)2 -1 ()‘3 - -)‘1)2 217
T \/C(A,x)C(A ’x)<—4xlx3 ) (2.17)

we get a sharpen upper bound.

3. Conclusion

In this paper, we introduce a new Kantorovich type inequality for the invertible Hermite
matrices. In Theorem 2.1, if A; > 0, A,, > 0, the result is well-known Kantorovich inequality.
Moreover, it holds for negative definite Hermite matrices, even for any invertible Hermite
matrix, there exists a similar inequality.
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