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We prove the generalized Hyers-Ulam stability of the following additive-cubic-quartic functional
equation: 11f(x+2y)+11f(x−2y) = 44f(x+y)+44f(x−y)+12f(3y)− 48f(2y)+ 60f(y)−66f(x)
in complete latticetic random normed spaces.

1. Introduction

Random theory is a powerful hand set for modeling uncertainty and vagueness in various
problems arising in the field of science and engineering. It has also very useful applications
in various fields, for example, population dynamics, chaos control, computer programming,
nonlinear dynamical systems, nonlinear operators, statistical convergence, and so forth. The
random topology proves to be a very useful tool to deal with such situations where the use
of classical theories breaks down. The usual uncertainty principle of Werner Heisenberg
leads to a generalized uncertainty principle, which has been motivated by string theory
and noncommutative geometry. In strong quantum gravity regime space-time points are
determined in a random manner. Thus impossibility of determining the position of particles
gives the space-time a random structure. Because of this random structure, position space
representation of quantum mechanics breaks down, and therefore a generalized normed
space of quasiposition eigenfunction is required. Hence, one needs to discuss on a new family
of random norms. There are many situations where the norm of a vector is not possible to be
found and the concept of random norm seems to be more suitable in such cases, that is, we
can deal with such situations by modeling the inexactness through the random norm [1, 2].

The stability problem of functional equations originated from a question of Ulam [3]
concerning the stability of group homomorphisms. Hyers [4] gave a first affirmative partial
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answer to the question of Ulam for Banach spaces. Hyers’ theorem was generalized by Aoki
[5] for additive mappings and by Th. M. Rassias [6] for linear mappings by considering an
unbounded Cauchy difference. The paper of Th. M. Rassias [6] has provided a lot of influence
in the development of what we call generalized Hyers-Ulam stability or as Hyers-Ulam-Rassias
stability of functional equations
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− 66f(x).

(1.1)

A generalization of the Th. M. Rassias theorem was obtained by Găvruţa [7] by replacing the
unbounded Cauchy difference by a general control function in the spirit of Th. M. Rassias
approach.

The stability problems of several functional equations have been extensively
investigated by a number of authors and there are many interesting results concerning this
problem (see [6, 8–24]).

In [25], Jun and Kim considered the following cubic functional equation:
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+ 12f(x). (1.2)

It is easy to show that the function f(x) = x3 satisfies the functional equation (1.2), which is
called a cubic functional equation, and every solution of the cubic functional equation is said to
be a cubic mapping.

In [26], Lee et al. considered the following quartic functional equation:
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. (1.3)

It is easy to show that the function f(x) = x4 satisfies the functional equation (1.3), which is
called a quartic functional equation and every solution of the quartic functional equation is said
to be a quartic mapping.

The study of stability of functional equations is important problem in nonlinear
sciences and application in solving integral equation via VIM [27–29] PDE and ODE [30–
34]. Let X be a set A function d : X × X → [0,∞] is called a generalized metric on X if d
satisfies

(1) d(x, y) = 0 if and only if x = y;

(2) d(x, y) = d(y, x) for all x, y ∈ X;

(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

We recall a fundamental result in fixed point theory.

Theorem 1.1 (see [35, 36]). Let (X, d) be a complete generalized metric space and let J : X → X
be a strictly contractive mapping with Lipschitz constant L < 1. Then for each given element x ∈ X,
either

d
(
Jnx, Jn+1x

)
= ∞ (1.4)
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for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) < ∞, for all n ≥ n0;

(2) the sequence {Jnx} converges to a fixed point y∗ of J ;

(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) < ∞};

(4) d(y, y∗) ≤ (1/(1 − L))d(y, Jy) for all y ∈ Y .

In 1996, Isac and Th. M. Rassias [37] were the first to provide applications of stability
theory of functional equations for the proof of new fixed point theoremswith applications. By
using fixed point methods, the stability problems of several functional equations have been
extensively investigated by a number of authors (see [38–43]).

2. Preliminaries

The theory of random normed spaces (RN-spaces) is important as a generalization
of deterministic result of linear normed spaces and also in the study of random
operator equations. The RN-spaces may also provide us the appropriate tools to study
the geometry of nuclear physics and have important application in quantum particle
physics. The generalized Hyers-Ulam stability of different functional equations in random
normed spaces, RN-spaces and fuzzy normed spaces has been recently studied by
Alsina [44], Mirmostafaee and Moslehian [45] and Mirzavaziri and Moslehian [40], Miheţ
and Radu [46], Miheţ et al. [47, 48], Baktash et al. [49], and Saadati et al. [50].

Let L = (L,≥L) be a complete lattice, that is, a partially ordered set in which every
nonempty subset admits supremum and infimum, and 0L = infL, 1L = supL. The space of
latticetic random distribution functions, denoted by Δ+

L, is defined as the set of all mappings
F : � ∪ {−∞,+∞} → L such that F is left continuous and nondecreasing on �, F(0) =
0L, F(+∞) = 1L.

D+
L ⊆ Δ+

L is defined as D+
L = {F ∈ Δ+

L : l−F(+∞) = 1L}, where l−f(x) denotes the left
limit of the function f at the point x. The space Δ+

L is partially ordered by the usual point-
wise ordering of functions, that is, F ≥ G if and only if F(t)≥L G(t) for all t in �. The maximal
element for Δ+

L in this order is the distribution function given by

ε0(t) =

⎧
⎨

⎩

0L, if t ≤ 0,

1L, if t > 0.
(2.1)

Definition 2.1 (see [51]). A triangular norm (t-norm) on L is a mappingT : (L)2 → L satisfying
the following conditions:

(a) (∀x ∈ L) (T(x, 1L) = x) (boundary condition);

(b) (∀(x, y) ∈ (L)2) (T(x, y) = T(y, x)) (commutativity);

(c) (∀(x, y, z) ∈ (L)3) (T(x,T(y, z)) = T(T(x, y), z)) (associativity);

(d) (∀(x, x′, y, y′) ∈ (L)4) (x≤L x′ and y ≤L y′ ⇒ T(x, y)≤LT(x′, y′)) (monotonicity).
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Let {xn} be a sequence in Lwhich converges to x ∈ L (equipped order topology). The
t-norm T is said to be a continuous t-norm if

lim
n→∞

T
(
xn, y

)
= T
(
x, y
)
, (2.2)

for all y ∈ L.
A t-normT can be extended (by associativity) in a unique way to an n-array operation

taking for (x1, . . . , xn) ∈ Ln the value T(x1, . . . , xn) defined by

T0
i=1xi = 1, Tn

i=1xi = T
(
Tn−1
i=1 xi, xn

)
= T(x1, . . . , xn). (2.3)

T can also be extended to a countable operation taking for any sequence (xn)n∈N in L
the value

T∞
i=1xi = lim

n→∞
Tn
i=1xi. (2.4)

The limit on the right side of (2.4) exists since the sequence (Tn
i=1xi)n∈� is nonincreasing

and bounded from below.
Note that we put T = T whenever L = [0, 1]. If T is a t-norm then x(n)T is defined for all

x ∈ [0, 1] and n ∈ N ∪ {0} by 1, if n = 0 and T(x(n−1)T , x), if n ≥ 1. A t-norm T is said to be of
Hadžić-type (we denote by T ∈ H) if the family (x(n)T )n∈N is equicontinuous at x = 1 (cf. [52]).

Definition 2.2 (see [51]). A continuous t-norm T on L = [0, 1]2 is said to be continuous t-
representable if there exist a continuous t-norm ∗ and a continuous t-conorm  on [0, 1] such
that, for all x = (x1, x2), y = (y1, y2) ∈ L,

T
(
x, y
)
=
(
x1 ∗ y1, x2  y2

)
. (2.5)

For example,

T(a, b) = (a1b1,min{a2 + b2, 1}),

M(a, b) = (min{a1, b1},max{a2, b2})
(2.6)

for all a = (a1, a2), b = (b1, b2) ∈ [0, 1]2 are continuous t-representable.
Define the mapping T∧ from L2 to L by

T∧
(
x, y
)
=

⎧
⎨

⎩

x, if y ≥L x,

y, if x≥L y.
(2.7)

Recall (see [52, 53]) that if {xn} is a given sequence in L, (T∧)
n
i=1xi is defined recurrently by

(T∧)
1
i=1xi = x1 and (T∧)

n
i=1xi = T∧((T∧)

n−1
i=1 xi, xn) for n ≥ 2.
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A negation on L is any decreasing mapping N : L → L satisfying N(0L) = 1L and
N(1L) = 0L. If N(N(x)) = x, for all x ∈ L, then N is called an involutive negation. In the
following, L is endowed with a (fixed) negation N.

Definition 2.3. A latticetic random normed space is a triple (X, μ,T∧), where X is a vector space
and μ is a mapping from X into D+

L such that the following conditions hold:

(LRN1) μx(t) = ε0(t) for all t > 0 if and only if x = 0;

(LRN2) μαx(t) = μx(t/|α|) for all x in X, α/= 0 and t ≥ 0;

(LRN3) μx+y(t + s)≥LT∧(μx(t), μy(s)) for all x, y ∈ X and t, s ≥ 0.

We note that from (LPN2) it follows that μ−x(t) = μx(t) (x ∈ X, t ≥ 0).

Example 2.4. Let L = [0, 1] × [0, 1] and operation ≤L be defined by

L = {(a1, a2) : (a1, a2) ∈ [0, 1] × [0, 1], a1 + a2 ≤ 1},

(a1, a2)≤L (b1, b2) ⇐⇒ a1 ≤ b1, a2 ≥ b2, ∀a = (a1, a2), b = (b1, b2) ∈ L.
(2.8)

Then (L,≤L) is a complete lattice (see [51]). In this complete lattice, we denote its units by 0L =
(0, 1) and 1L = (1, 0). Let (X, ‖ · ‖) be a normed space. Let T(a, b) = (min{a1, b1},max{a2, b2})
for all a = (a1, a2), b = (b1, b2) ∈ [0, 1] × [0, 1] and μ be a mapping defined by

μx(t) =
(

t

t + ‖x‖
,

‖x‖
t + ‖x‖

)
, ∀t ∈ �+ . (2.9)

Then (X, μ,T) is a latticetic random normed space.

If (X, μ,T∧) is a latticetic random normed space, then

V = {V (ε, λ) : ε >L 0L, λ ∈ L \ {0L, 1L}}, V (ε, λ) = {x ∈ X : Fx(ε)>LN(λ)} (2.10)

is a complete system of neighborhoods of null vector for a linear topology on X generated by
the norm F.

Definition 2.5. Let (X, μ,T∧) be a latticetic random normed space.

(1) A sequence {xn} in X is said to be convergent to x in X if, for every t > 0 and
ε ∈ L \ {0L}, there exists a positive integerN such that μxn−x(t)>LN(ε) whenever
n ≥N.

(2) A sequence {xn} in X is called Cauchy sequence if, for every t > 0 and ε ∈ L \ {0L},
there exists a positive integerN such that μxn−xm(t)>LN(ε) whenever n ≥ m ≥N.

(3) A latticetic random normed spaces (X, μ,T∧) is said to be complete if and only if
every Cauchy sequence in X is convergent to a point in X.

Theorem 2.6. If (X, μ,T∧) is a latticetic random normed space and {xn} is a sequence such that
xn → x, then limn→∞μxn(t) = μx(t).

Proof. The proof is the same as classical random normed spaces, see [54].
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Lemma 2.7. Let (X, μ,T∧) be a latticetic random normed space and x ∈ X. If

μx(t) = C, ∀t > 0, (2.11)

then C = 1L and x = 0.

Proof. Let μx(t) = C for all t > 0. Since Ran(μ) ⊆ D+
L, we have C = 1L, and by (LRN1) we

conclude that x = 0.

3. Generalized Hyers-Ulam Stability of the Functional Equation (1.1):
An Odd Case

One can easily show that an even mapping f : X → Y satisfies (1.1) if and only if the even
mapping f : X → Y is a quartic mapping, that is,

f
(
2x + y

)
+ f
(
2x − y

)
= 4f

(
x + y

)
+ 4f

(
x − y

)
+ 24f(x) − 6f

(
y
)
, (3.1)

and that an oddmapping f : X → Y satisfies (1.1) if and only if the oddmapping f : X → Y
is an additive-cubic mapping, that is,

f
(
x + 2y

)
+ f
(
x − 2y

)
= 4f

(
x + y

)
+ 4f

(
x − y

)
− 6f(x). (3.2)

It was shown in Lemma 2.2 of [55] that g(x) := f(2x) − 2f(x) and h(x) := f(2x) − 8f(x) are
cubic and additive, respectively, and that f(x) = (1/6)g(x) − (1/6)h(x).

For a given mapping f : X → Y , we define

Df
(
x, y
)
: = 11f

(
x + 2y

)
+ 11f

(
x − 2y

)
− 44f

(
x + y

)
− 44f

(
x − y

)

− 12f
(
3y
)
+ 48f

(
2y
)
− 60f

(
y
)
+ 66f(x)

(3.3)

for all x, y ∈ X.
Using the fixed point method, we prove the generalized Hyers-Ulam stability of the

functional equation Df(x, y) = 0 in complete LRN-spaces: an odd case.

Theorem 3.1. Let X be a linear space, (Y, μ,T∧) a complete LRN -space and Φ a mapping from X2

to D+
L (Φ(x, y) is denoted by Φx,y) such that, for some 0 < α < 1/8,

Φ2x,2y(t)≤LΦx,y(αt)
(
x, y ∈ X, t > 0

)
. (3.4)

Let f : X → Y be an odd mapping satisfying

μDf(x,y)(t)≥LΦx,y(t) (3.5)
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for all x, y ∈ X and all t > 0. Then

C(x) := lim
n→∞

8n
(
f

(
x

2n−1

)
− 2f

( x
2n
))

(3.6)

exists for each x ∈ X and defines a cubic mapping C : X → Y such that

μf(2x)−2f(x)−C(x)(t) ≥ T∧

(
Φ0,x

(
(33 − 264α)

17α
t

)
,Φ2x,x

(
(33 − 264α)

17α
t

))
(3.7)

for all x ∈ X and all t > 0.

Proof. Letting x = 0 in (3.5), we get

μ12f(3y)−48f(2y)+60f(y)(t)≥LΦ0,y(t) (3.8)

for all y ∈ X and all t > 0.
Replacing x by 2y in (3.5), we get

μ11f(4y)−56f(3y)+114f(2y)−104f(y)(t)≥LΦ2y,y(t) (3.9)

for all y ∈ X and all t > 0.
By (3.8) and (3.9),

μf(4y)−10f(2y)+16f(y)

(
14
33
t +

1
11
t

)

≥LT∧

(
μ(14/33)(12f(3y)−48f(2y)+60f(y))

(
14
33
t

)
, μ(1/11)(11f(4y)−56f(3y)+114f(2y)−104f(y))

(
1
11
t

))

≥LT∧
(
Φ0,y(t),Φ2y,y(t)

)

(3.10)

for all y ∈ X and all t > 0. Letting y := x/2 and g(x) := f(2x) − 2f(x) for all x ∈ X, we get

μg(x)−8g(x/2)

(
17
33
t

)
≥LT∧(Φ0,x/2(t),Φx,x/2(t)) (3.11)

for all x ∈ X and all t > 0.
Consider the set

S :=
{
g : X −→ Y

}
, (3.12)

and introduce the generalized metric on S:

d
(
g, h
)
= inf

{
u ∈ �+ : μg(x)−h(x)(ut)≥LT∧(Φ0,x(t),Φ2x,x(t)), ∀x ∈ X, ∀t > 0

}
, (3.13)
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where, as usual, inf ∅ = +∞. It is easy to show that (S, d) is complete. (See the proof of Lemma
2.1 of [46].)

Now we consider the linear mapping J : S → S such that

Jg(x) := 8g
(x
2

)
(3.14)

for all x ∈ X.
Let g, h ∈ S be given such that d(g, h) = ε. Then

μg(x)−h(x)(εt)≥LT∧(Φ0,x(t),Φ2x,x(t)) (3.15)

for all x ∈ X and all t > 0. Hence

μJg(x)−Jh(x)(8αεt) = μ8g(x/2)−8h(x/2)(8αεt)

= μg(x/2)−h(x/2)(αεt)

≥LT∧(Φ0,x/2(αt),Φx,x/2(αt))

≥LT∧(Φ0,x(t),Φ2x,x(t))

(3.16)

for all x ∈ X and all t > 0. So d(g, h) = ε implies that

d
(
Jg, Jh

)
≤ 8αε. (3.17)

This means that

d
(
Jg, Jh

)
≤ 8αd

(
g, h
)

(3.18)

for all g, h ∈ S.
It follows from (3.11) that

μg(x)−8g(x/2)

(
17
33
αt

)
≥LT∧(Φ0,x(t),Φ2x,x(t)) (3.19)

for all x ∈ X and all t > 0. So

d
(
g, Jg

)
≤ 17
33
α. (3.20)

By Theorem 1.1, there exists a mapping C : X → Y satisfying the following:

(1) C is a fixed point of J , that is,

C
(x
2

)
=
1
8
C(x) (3.21)
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for all x ∈ X. Since g : X → Y is odd, C : X → Y is an odd mapping. The mapping
C is a unique fixed point of J in the set

M =
{
g ∈ S : d

(
f, g
)
<∞

}
. (3.22)

This implies that C is a unique mapping satisfying (3.21) such that there exists a
u ∈ (0,∞) satisfying

μg(x)−C(x)(ut)≥LT∧(Φ0,x(t),Φ2x,x(t)) (3.23)

for all x ∈ X and all t > 0;

(2) d(Jng, C) → 0 as n → ∞. This implies the equality

lim
n→∞

8ng
( x
2n
)
= C(x) (3.24)

for all x ∈ X;

(3) d(g, C) ≤ (1/(1 − 8α))d(g, Jg), which implies the inequality

d
(
g, C
)
≤ 17α
33 − 264α

. (3.25)

This implies that inequality (3.7) holds.
FromDg(x, y) = Df(2x, 2y) − 2Df(x, y), by (3.5), we deduce that

μDf(2x,2y)(t)≥LΦ2x,2y(t), μ−2Df(x,y)(t) = μDf(x,y)
(
t

2

)
≥LΦx,y

(
t

2

)
, (3.26)

and so, by (LRN3) and (3.4), we obtain

μDg(x,y)(3t)≥LT∧
(
μDf(2x,2y)(t), μ−2Df(x,y)(2t)

)
≥LT∧

(
Φ2x,2y(t),Φx,y(t)

)
≥LΦ2x,2y(t).

(3.27)

It follows that

μ8nDg(x/2n,y/2n)(3t) = μDg(x/2n,y/2n)
(
3
t

8n

)
≥LΦx/2n−1,y/2n−1

(
t

8n

)
≥L · · · ≥LΦx,y

(
1
8

t

(8α)n−1

)

(3.28)

for all x, y ∈ X, all t > 0 and all n ∈ �. Since 0 < 8α < 1,

lim
n→∞

Φx,y

(
t

(8α)n

)
= 1L (3.29)

for all x, y ∈ X and all t > 0. Then
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μDC(x,y)(t) = 1L (3.30)

for all x, y ∈ X and all t > 0. Thus the mapping C : X → Y is cubic, as desired.

Corollary 3.2. Let θ ≥ 0 and let p be a real number with p > 3. Let X be a normed vector space with
norm ‖ · ‖ and let (X, μ,T∧) be an LRN -space in which L = [0, 1] and T∧ = min. Let f : X → Y be
an odd mapping satisfying

μDf(x,y)(t) ≥
t

t + θ
(
‖x‖p +

∥∥y
∥∥p) (3.31)

for all x, y ∈ X and all t > 0. Then

C(x) := lim
n→∞

8n
(
f

(
x

2n−1

)
− 2f

( x
2n
))

(3.32)

exists for each x ∈ X and defines a cubic mapping C : X → Y such that

μf(2x)−2f(x)−C(x)(t) ≥
33(2p − 8)t

33(2p − 8)t + 17(1 + 2p)θ‖x‖p
(3.33)

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 3.1 by taking

Φx,y(t) :=
t

t + θ
(
‖x‖p +

∥
∥y
∥
∥p) (3.34)

for all x, y ∈ X. Then we can choose α = 2−p and we get the desired result.

Theorem 3.3. Let X be a linear space, (Y, μ,T∧) a complete LRN -space and Φ a mapping from X2

to D+
L (Φ(x, y) is denoted by Φx,y) such that, for some 0 < α < 8,

Φx,y(αt)≥LΦx/2,y/2(t)
(
x, y ∈ X, t > 0

)
. (3.35)

Let f : X → Y be an odd mapping satisfying (1.1). Then

C(x) := lim
n→∞

1
8n
(
f
(
2n+1x

)
− 2f(2nx)

)
(3.36)

exists for each x ∈ X and defines a cubic mapping C : X → Y such that

μf(2x)−2f(x)−C(x)(t) ≥ T∧

(
Φ0,x

(
(264 − 33α)

17
t

)
,Φ2x,x

(
(264 − 33α)

17
t

))
(3.37)

for all x ∈ X and all t > 0.
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Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 3.1.
Consider the linear mapping J : S → S such that

Jg(x) :=
1
8
g(2x) (3.38)

for all x ∈ X.
Let g, h ∈ S be given such that d(g, h) = ε. Then

μg(x)−h(x)(εt)≥LT∧(Φ0,x(t),Φ2x,x(t)) (3.39)

for all x ∈ X and all t > 0. Hence

μJg(x)−Jh(x)

(
α

8
εt

)
= μ(1/8)g(2x)−(1/8)h(2x)

(
α

8
εt

)

= μg(2x)−h(2x)(αεt)

≥LT∧(Φ0,2x(αt),Φ4x,2x(αt))

≥LT∧(Φ0,x(t),Φ2x,x(t))

(3.40)

for all x ∈ X and all t > 0. So d(g, h) = ε implies that

d
(
Jg, Jh

)
≤ α

8
ε. (3.41)

This means that

d
(
Jg, Jh

)
≤ α

8
d
(
g, h
)

(3.42)

for all g, h ∈ S.
It follows from (3.11) that

μg(x)−(1/8)g(2x)

(
17
264

t

)
≥LT∧(Φ0,x(t),Φ2x,x(t)) (3.43)

for all x ∈ X and all t > 0. So d(g, Jg) ≤ 17/264.
By Theorem 1.1, there exists a mapping C : X → Y satisfying the following:

(1) C is a fixed point of J , that is,

C(2x) = 8C(x) (3.44)

for all x ∈ X. Since g : X → Y is odd, C : X → Y is an odd mapping. The mapping
C is a unique fixed point of J in the set

M =
{
g ∈ S : d

(
f, g
)
<∞

}
. (3.45)
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This implies that C is a unique mapping satisfying (3.44) such that there exists a
u ∈ (0,∞) satisfying

μg(x)−C(x)(ut)≥LT∧(Φ0,x(t),Φ2x,x(t)) (3.46)

for all x ∈ X and all t > 0;

(2) d(Jng, C) → 0 as n → ∞. This implies the equality

lim
n→∞

1
8n
g(2nx) = C(x) (3.47)

for all x ∈ X;

(3) d(g, C) ≤ (1/(1 − α/8))d(g, Jg), which implies the inequality

d
(
g, C
)
≤ 17

264 − 33α
. (3.48)

This implies that inequality (3.37) holds.
The rest of the proof is similar to the proof of Theorem 3.1.

Corollary 3.4. Let θ ≥ 0, and let p be a real number with 0 < p < 3. Let X be a normed vector
space with norm ‖ · ‖, and let (X, μ,T∧) be an LRN-space in which L = [0, 1] and T∧ = min. Let
f : X → Y be an odd mapping satisfying (3.31). Then

C(x) := lim
n→∞

1
8n
(
f
(
2n+1x

)
− 2f(2nx)

)
(3.49)

exists for each x ∈ X and defines a cubic mapping C : X → Y such that

μf(2x)−2f(x)−C(x)(t) ≥
33(8 − 2p)t

33(8 − 2p)t + 17(1 + 2p)θ‖x‖p
(3.50)

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 3.3 by taking

Φx,y(t) :=
t

t + θ
(
‖x‖p +

∥∥y
∥∥p) (3.51)

for all x, y ∈ X. Then we can choose α = 2p, and we get the desired result.

Theorem 3.5. Let X be a linear space, (X, μ,T∧) an LRN-space and let Φ be a mapping from X2 to
D+
L (Φ(x, y) is denoted by Φx,y) such that, for some 0 < α < 1/2,

Φx,y(αt)≥LΦ2x,2y(t)
(
x, y ∈ X, t > 0

)
. (3.52)
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Let f : X → Y be an odd mapping satisfying (3.5). Then

A(x) := lim
n→∞

2n
(
f

(
x

2n−1

)
− 8f

( x
2n
))

(3.53)

exists for each x ∈ X and defines an additive mappingA : X → Y such that

μf(2x)−8f(x)−A(x)(t)≥LT∧

(
Φ0,x

(
(33 − 66α)

17α
t

)
,Φ2x,x

(
(33 − 66α)

17α
t

))
(3.54)

for all x ∈ X and all t > 0.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 3.1.
Letting y := x/2 and h(x) := f(2x) − 8f(x) for all x ∈ X in (3.10), we get

μh(x)−2h(x/2)

(
17
33
t

)
≥LT∧(Φ0,x/2(t),Φx,x/2(t)) (3.55)

for all x ∈ X and all t > 0.
Now we consider the linear mapping J : S → S such that

Jh(x) := 2h
(x
2

)
(3.56)

for all x ∈ X.
Let g, h ∈ S be given such that d(g, h) = ε. Then

μg(x)−h(x)(εt)≥LT∧(Φ0,x(t),Φ2x,x(t)) (3.57)

for all x ∈ X and all t > 0. Hence

μJg(x)−Jh(x)(2αεt) = μ2g(x/2)−2h(x/2)(2αεt)

= μg(x/2)−h(x/2)(αεt)

≥LT∧(Φ0,x/2(αt),Φx,x/2(αt))

≥LT∧(Φ0,x(t),Φ2x,x(t))

(3.58)

for all x ∈ X and all t > 0. So d(g, h) = ε implies that d(Jg, Jh) ≤ 2αε. This means that

d
(
Jg, Jh

)
≤ 2αd

(
g, h
)

(3.59)

for all g, h ∈ S.
It follows from (3.55) that

μh(x)−2h(x/2)

(
17
33
αt

)
≥LT∧(Φ0,x(t),Φ2x,x(t)) (3.60)

for all x ∈ X and all t > 0. So d(h, Jh) ≤ 17α/33.
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By Theorem 1.1, there exists a mapping A : X → Y satisfying the following:

(1) A is a fixed point of J , that is,

A
(x
2

)
=
1
2
A(x) (3.61)

for all x ∈ X. Since h : X → Y is odd,A : X → Y is an odd mapping. The mapping
A is a unique fixed point of J in the set

M =
{
g ∈ S : d

(
f, g
)
<∞

}
. (3.62)

This implies that A is a unique mapping satisfying (3.61) such that there exists a
u ∈ (0,∞) satisfying

μh(x)−A(x)(ut)≥LT∧(Φ0,x(t),Φ2x,x(t)) (3.63)

for all x ∈ X and all t > 0;

(2) d(Jnh,A) → 0 as n → ∞. This implies the equality

lim
n→∞

2nh
( x
2n
)
= A(x) (3.64)

for all x ∈ X;

(3) d(h,A) ≤ (1/(1 − 2α))d(h, Jh), which implies the inequality

d(h,A) ≤ 17α
33 − 66α

. (3.65)

This implies that inequality (3.54) holds.

The rest of the proof is similar to the proof of Theorem 3.1.

Corollary 3.6. Let θ ≥ 0, and let p be a real number with p > 1. Let X be a normed vector space with
norm ‖ · ‖, and let (X, μ,T∧) be an LRN-space in which L = [0, 1] and T∧ = min. Let f : X → Y be
an odd mapping satisfying (3.31). Then

A(x) := lim
n→∞

2n
(
f

(
x

2n−1

)
− 8f

( x
2n
))

(3.66)

exists for each x ∈ X and defines an additive mappingA : X → Y such that

μf(2x)−8f(x)−A(x)(t) ≥
33(2p − 2)t

33(2p − 2)t + 17(1 + 2p)θ‖x‖p
(3.67)

for all x ∈ X and all t > 0.
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Proof. The proof follows from Theorem 3.5 by taking

Φx,y(t) :=
t

t + θ
(
‖x‖p +

∥∥y
∥∥p) (3.68)

for all x, y ∈ X. Then we can choose α = 2−p and we get the desired result.

Theorem 3.7. Let X be a linear space, (X, μ,T∧) an LRN-space and let Φ be a mapping from X2 to
D+
L (Φ(x, y) is denoted by Φx,y) such that, for some 0 < α < 2,

Φx,y(αt)≥LΦx/2,y/2(t)
(
x, y ∈ X, t > 0

)
. (3.69)

Let f : X → Y be an odd mapping satisfying (3.5). Then

A(x) := lim
n→∞

1
2n
(
f
(
2n+1x

)
− 8f(2nx)

)
(3.70)

exists for each x ∈ X and defines an additive mappingA : X → Y such that

μf(2x)−8f(x)−A(x)(t)≥LT∧

(
Φ0,x

(
(66 − 33α)

17
t

)
,Φ2x,x

(
(66 − 33α)

17
t

))
(3.71)

for all x ∈ X and all t > 0.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 3.1.
Consider the linear mapping J : S → S such that

Jh(x) :=
1
2
h(2x) (3.72)

for all x ∈ X.
Let g, h ∈ S be given such that d(g, h) = ε. Then

μg(x)−h(x)(εt)≥LT∧(Φ0,x(t),Φ2x,x(t)) (3.73)

for all x ∈ X and all t > 0. Hence

μJg(x)−Jh(x)(Lεt) = μ(1/2)g(2x)−(1/2)h(2x)
(α
2
εt
)

= μg(2x)−h(2x)(αεt)

≥LT∧(Φ0,2x(αt),Φ4x,2x(αt))

≥LT∧(Φ0,x(t),Φ2x,x(t))

(3.74)
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for all x ∈ X and all t > 0. So d(g, h) = ε implies that

d
(
Jg, Jh

)
≤ α

2
ε. (3.75)

This means that

d
(
Jg, Jh

)
≤ α

2
d
(
g, h
)

(3.76)

for all g, h ∈ S.
It follows from (3.55) that

μh(x)−(1/2)h(2x)

(
17
66
t

)
≥LT∧(Φ0,x(t),Φ2x,x(t)) (3.77)

for all x ∈ X and all t > 0. So d(h, Jh) ≤ 17/66.
By Theorem 1.1, there exists a mapping A : X → Y satisfying the following:

(1) A is a fixed point of J , that is,

A(2x) = 2A(x) (3.78)

for all x ∈ X. Since h : X → Y is odd,A : X → Y is an odd mapping. The mapping
A is a unique fixed point of J in the set

M =
{
g ∈ S : d

(
f, g
)
<∞

}
. (3.79)

This implies that A is a unique mapping satisfying (3.78) such that there exists a
u ∈ (0,∞) satisfying

μh(x)−A(x)(ut)≥LT∧(Φ0,x(t),Φ2x,x(t)) (3.80)

for all x ∈ X and all t > 0;

(2) d(Jnh,A) → 0 as n → ∞. This implies the equality

lim
n→∞

1
2n
h(2nx) = A(x) (3.81)

for all x ∈ X;

(3) d(h,A) ≤ (1/(1 − α/2))d(h, Jh), which implies the inequality

d(h,A) ≤ 17
66 − 33α

. (3.82)

This implies that inequality (3.71) holds.

The rest of the proof is similar to the proof of Theorem 3.1.
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Corollary 3.8. Let θ ≥ 0, and let p be a real number with 0 < p < 1. Let X be a normed vector
space with norm ‖ · ‖, and let (X, μ,T∧) be an LRN-space in which L = [0, 1] and T∧ = min. Let
f : X → Y be an odd mapping satisfying (3.31). Then

A(x) := lim
n→∞

1
2n
(
f
(
2n+1x

)
− 8f(2nx)

)
(3.83)

exists for each x ∈ X and defines an additive mappingA : X → Y such that

μf(2x)−8f(x)−A(x)(t) ≥
33(2 − 2p)t

33(2 − 2p)t + 17(1 + 2p)θ‖x‖p
(3.84)

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 3.7 by taking

Φx,y(t) :=
t

t + θ
(
‖x‖p +

∥∥y
∥∥p) (3.85)

for all x, y ∈ X. Then we can choose α = 2p and we get the desired result.

4. Generalized Hyers-Ulam Stability of the Functional Equation (1.1):
An Even Case

Using the fixed point method, we prove the generalized Hyers-Ulam stability of the
functional equation Df(x, y) = 0 in complete RN-spaces: an even case.

Theorem 4.1. Let X be a linear space, (X, μ,T∧) an LRN-space and let Φ be a mapping from X2 to
D+
L (Φ(x, y) is denoted by Φx,y) such that, for some 0 < α < 1/16,

Φx,y(αt)≥LΦ2x,2y(t)
(
x, y ∈ X, t > 0

)
. (4.1)

Let f : X → Y be an even mapping satisfying f(0) = 0 and (3.5). Then

Q(x) := lim
n→∞

16nf
( x
2n
)

(4.2)

exists for each x ∈ X and defines a quartic mappingQ : X → Y such that

μf(x)−Q(x)(t)≥LT∧

(
Φ0,x

(
(22 − 352α)

13α
t

)
,Φx,x

(
(22 − 352α)

13α
t

))
(4.3)

for all x ∈ X and all t > 0.

Proof. Letting x = 0 in (3.5), we get

μ12f(3y)−70f(2y)+148f(y)(t)≥LΦ0,y(t) (4.4)

for all y ∈ X and all t > 0.
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Letting x = y in (3.5), we get

μf(3y)−4f(2y)−17f(y)(t)≥LΦy,y(t) (4.5)

for all y ∈ X and all t > 0.
By (4.4) and (4.5),

μf(2y)−16f(y)

(
1
22
t +

12
22
t

)

≥LT∧

(
μ(1/22)(12f(3y)−70f(2y)+148f(y))

(
1
22
t

)
, μ(12/22)(f(3y)−4f(2y)−17f(y))

(
12
22
t

))

≥LT∧
(
Φ0,y(t),Φy,y(t)

)

(4.6)

for all y ∈ X and all t > 0.
Consider the set

S :=
{
g : X −→ Y

}
, (4.7)

and introduce the generalized metric on S

d
(
g, h
)
= inf

{
u ∈ �+ : N

(
g(x) − h(x), ut

)
≥LT∧(Φ0,x(t),Φx,x(t)), ∀x ∈ X, ∀t > 0

}
, (4.8)

where, as usual, inf ∅ = +∞. It is easy to show that (S, d) is complete. (See the proof of Lemma
2.1 of [46].)

Now we consider the linear mapping J : S → S such that

Jg(x) := 16g
(x
2

)
(4.9)

for all x ∈ X.
Let g, h ∈ S be given such that d(g, h) = ε. Then

μg(x)−h(x)(εt)≥LT∧(Φ0,x(t),Φx,x(t)) (4.10)

for all x ∈ X and all t > 0. Hence

μJg(x)−Jh(x)(16αεt) = μ16g(x/2)−16h(x/2)(16αεt)

= μg(x/2)−h(x/2)(αεt)

≥LT∧(Φ0,x/2(αt),Φx/2,x/2(αt))

≥LT∧(Φ0,x(t),Φx,x(t))

(4.11)
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for all x ∈ X and all t > 0. So d(g, h) = ε implies that

d
(
Jg, Jh

)
≤ 16αε. (4.12)

This means that

d
(
Jg, Jh

)
≤ 16αd

(
g, h
)

(4.13)

for all g, h ∈ S.
It follows from (4.6) that

μf(x)−16f(x/2)

(
13
22
αt

)
≥LT∧(Φ0,x(t),Φx,x(t)) (4.14)

for all x ∈ X and all t > 0. So d(f, Jf) ≤ 13α/22.
By Theorem 1.1, there exists a mapping Q : X → Y satisfying the following:

(1) Q is a fixed point of J , that is,

Q
(x
2

)
=

1
16
Q(x) (4.15)

for all x ∈ X. Since f : X → Y is even, Q : X → Y is an even mapping. The
mapping Q is a unique fixed point of J in the set

M =
{
g ∈ S : d

(
f, g
)
<∞

}
. (4.16)

This implies that Q is a unique mapping satisfying (4.15) such that there exists a
u ∈ (0,∞) satisfying

μf(x)−Q(x)(ut)≥LT∧(Φ0,x(t),Φx,x(t)) (4.17)

for all x ∈ X and all t > 0;

(2) d(Jnf,Q) → 0 as n → ∞. This implies the equality

lim
n→∞

16nf
( x
2n
)
= Q(x) (4.18)

for all x ∈ X;

(3) d(f,Q) ≤ (1/(1 − 16α))d(f, Jf), which implies the inequality

d
(
f,Q
)
≤ 13α
22 − 352α

. (4.19)

This implies that inequality (4.3) holds.

The rest of the proof is similar to the proof of Theorem 3.1.
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Corollary 4.2. Let θ ≥ 0, and let p be a real number with p > 4. Let X be a normed vector space with
norm ‖ · ‖, and let (X, μ,T∧) be an LRN-space in which L = [0, 1] and T∧ = min. Let f : X → Y be
an even mapping satisfying f(0) = 0 and (3.31). Then

Q(x) := lim
n→∞

16nf
( x
2n
)

(4.20)

exists for each x ∈ X and defines a quartic mappingQ : X → Y such that

μf(x)−Q(x)(t) ≥
11(2p − 16)t

11(2p − 16)t + 13θ‖x‖p
(4.21)

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 4.1 by taking

Φx,y(t) :=
t

t + θ
(
‖x‖p +

∥∥y
∥∥p) (4.22)

for all x, y ∈ X. Then we can choose α = 2−p, and we get the desired result.

Similarly, we can obtain the following. We will omit the proof.

Theorem 4.3. Let X be a linear space, (X, μ,T∧) an LRN -space and let Φ be a mapping from X2 to
D+
L (Φ(x, y) is denoted by Φx,y) such that, for some 0 < α < 16,

Φx,y(αt)≥LΦx/2,y/2(t)
(
x, y ∈ X, t > 0

)
. (4.23)

Let f : X → Y be an even mapping satisfying f(0) = 0 and (3.5). Then

Q(x) := lim
n→∞

1
16n

f(2nx) (4.24)

exists for each x ∈ X and defines a quartic mappingQ : X → Y such that

μf(x)−Q(x)(t)≥LT∧

(
Φ0,x

(
(352 − 22α)

13
t

)
,Φx,x

(
(352 − 22α)

13
t

))
(4.25)

for all x ∈ X and all t > 0.

Corollary 4.4. Let θ ≥ 0, and let p be a real number with 0 < p < 4. Let X be a normed vector
space with norm ‖ · ‖, and let (X, μ,T∧) be an LRN-space in which L = [0, 1] and T∧ = min. Let
f : X → Y be an even mapping satisfying f(0) = 0 and (3.31). Then

Q(x) := lim
n→∞

1
16n

f(2nx) (4.26)
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exists for each x ∈ X and defines a quartic mappingQ : X → Y such that

μf(x)−Q(x)(t) ≥
11(16 − 2p)t

11(16 − 2p)t + 13θ‖x‖p
(4.27)

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 4.3 by taking

Φx,y(t) :=
t

t + θ
(
‖x‖p +

∥∥y
∥∥p) (4.28)

for all x, y ∈ X. Then we can choose α = 2p, and we get the desired result.

References

[1] M. S. El Naschie, “On a fuzzy Kähler-like manifold which is consistent with the two slit experiment,”
International Journal of Nonlinear Sciences and Numerical Simulation, vol. 6, no. 2, pp. 95–98, 2005.

[2] L. D. G. Sigalotti and A.Mejias, “On El Naschie’s conjugate complex time, fractal E(∞) space-time and
faster-than-light particles,” International Journal of Nonlinear Sciences and Numerical Simulation, vol. 7,
no. 4, pp. 467–472, 2006.

[3] S. M. Ulam, A Collection of Mathematical Problems, Interscience Publishers, New York, NY, USA, 1960.
[4] D. H. Hyers, “On the stability of the linear functional equation,” Proceedings of the National Academy of

Sciences of the United States of America, vol. 27, pp. 222–224, 1941.
[5] T. Aoki, “On the stability of the linear transformation in Banach spaces,” Journal of the Mathematical

Society of Japan, vol. 2, pp. 64–66, 1950.
[6] Th. M. Rassias, “On the stability of the linear mapping in Banach spaces,” Proceedings of the American

Mathematical Society, vol. 72, no. 2, pp. 297–300, 1978.
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Boston, Mass, USA, 1998.
[9] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic

Press, Palm Harbor, Fla, USA, 2001.
[10] C. Park, “Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras,” Bulletin des
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[22] Th. M. Rassias and P. Šemrl, “On the behavior of mappings which do not satisfy Hyers-Ulam
stability,” Proceedings of the American Mathematical Society, vol. 114, no. 4, pp. 989–993, 1992.
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