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We use the hybrid steepest descent methods for finding a common element of the set of solutions
of an equilibrium problem and the set of fixed points of a strict pseudocontraction mapping in the
setting of real Hilbert spaces. We proved strong convergence theorems of the sequence generated
by our proposed schemes.

1. Introduction

Let H be a real Hilbert space and C a closed convex subset of H, and let ¢ be a bifunction of
C x Cinto R, where R is the set of real numbers. The equilibrium problem for ¢ : C xC — R
is to find x € C such that

EP:¢(x,y) >0 VyeC (1.1)

denoted the set of solution by EP(¢). Given a mapping T : C — H, let ¢(x,y) = (Tx,y — x)
forall x,y € C, then z € EP(¢) if and only if (Tz,y —z) >0 for all y € C, thatis, z
is a solution of the variational inequality. Numerous problems in physics, optimizations, and
economics reduce to find a solution of (1.1). Some methods have been proposed to solve the
equilibrium problem, see, for instance, [1, 2].

A mapping T of C into itself is nonexpansive if |[Tx-Ty|| < ||x—y||, forall x, y € C. The
set of fixed points of T is denoted by F(T). In 2007, Plubtieng and Punpaeng [3], S. Takahashi
and W. Takahashi [4], and Tada and W. Takahashi [5] considered iterative methods for finding
an element of EP(¢) N F(T).
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Recall that an operator A is strongly positive if there exists a constant y > 0 with the

property

(Ax,x) >7y|lx||>, VxeH. (1.2)

In 2006, Marino and Xu [6] introduced the general iterative method and proved that
for a given xo € H, the sequence {x,} is generated by the algorithm

Xn+1 = oY f(xn) + (I — a0y A)Tx,, n2>0, (1.3)

where T is a self-nonexpansive mapping on H, f is a contraction of H into itself with § € (0,1)
and {a,} C (0,1) satisfies certain conditions, and A is a strongly positive bounded linear
operator on H and converges strongly to a fixed-point x* of T which is the unique solution
to the following variational inequality:

((yf —A)x*,x —x*) <0, for x € F(T), and is also the optimality condition for some
minimization problem. A mapping S : C — H is said to be k-strictly pseudocontractive if
there exists a constant k € [0,1) such that

1Sx = Syl||* < ||x—y|* + k|1 - S)x - T - S)y|’, Vx,yeC. (14)

Note that the class of k-strict pseudo-contraction strictly includes the class of nonex-
pansive mapping, that is, S is nonexpansive if and only if S is 0-srictly pseudocontractive; it
is also said to be pseudocontractive if k = 1. Clearly, the class of k-strict pseudo-contractions
falls into the one between classes of nonexpansive mappings and pseudo-contractions.

The set of fixed points of S is denoted by F(S). Very recently, by using the general
approximation method, Qin et al. [7] obtained a strong convergence theorem for finding an
element of F(S). On the other hand, Ceng et al. [8] proposed an iterative scheme for finding
an element of EP(¢) N F(S) and then obtained some weak and strong convergence theorems.
Based on the above work, Y. Liu [9] introduced two iteration schemes by the general iterative
method for finding an element of EP(¢) N F(S).

In 2001, Yamada [10] introduced the following hybrid iterative method for solving the
variational inequality:

Xpe1 = Txy — ur,F(Tx,), n>0, (1.5)

where F is k-Lipschitzian and 7-strongly monotone operator with k > 0,7 > 0,0 < u < 21/k?,
then he proved that if {1,} satisfyies appropriate conditions, the {x,} generated by (1.5)
converges strongly to the unique solution of variational inequality

(F%,x-%) >0, Vxe€Fu(T), %€ Fu(T). (1.6)

Motivated and inspired by these facts, in this paper, we introduced two iteration methods by
the hybrid iterative method for finding an element of EP(¢) N F(S), where S : C — H is
a k-strictly pseudocontractive non-self mapping, and then obtained two strong convergence
theorems.
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2. Preliminaries

Throughout this paper, we always assume that C is a nonempty closed convex subset of a
Hilbert space H. We write x, — x to indicate that the sequence {x,} converges weakly to
X. x, — x implies that {x,} converges strongly to x. For any x € H, there exists a unique
nearest point in C, denoted by Pcx, such that

lx - Pex|| < ||x-y|, VyeC (2.1)

Such a Pcx is called the metric projection of H onto C. It is known that Pc is nonexpansive.
Furthermore, forxe Handu e C,u =p.x,& (x —u,u—y) >0,forally € C.

It is widely known that H satisfies Opial’s condition [11], that is, for any sequence
{xn} with x,, — x, the inequality

lim inflx, - x|| < lim inf[|x, - ||, (22)

holds for every y € H with y # x. In order to solve the equilibrium problem for a bifunction
¢ : CxC — R, let us assume that ¢ satisfies the following conditions:

(Al) ¢(x,x) =0, forall x € C,
(A2) ¢ is monotone, thatis, ¢(x,v) + P(y,x) <0, forallx,y € C,
(A3) Forall x,y,z € C.

ltilr(l)r@(tz +(1-t)x,y) <P(x,v); (2.3)

(A4) For each fixed x € C, the function y — ¢(x, v) is convex and lower semicontinuous.
Let us recall the following lemmas which will be useful for our paper.

Lemma 2.1 (see [12]). Let ¢ be a bifunction from C x C into R satisfying (A1), (A2),(A3) and (A4)
then, for any r > 0 and x € H, there exists z € C such that

¢(Z/y)+%<y—z,z—x> >0, VYyeC (2.4)
Further, if T,x ={z€ C: ¢(z,y) +1/r{y — z,z — x) > 0,Vy € C}, then the following hold:
(1) T, is single-valued,
(2) T, is firmly nonexpansive, that is,
|Tox - Toy|)> < (Tx - T,y,x-y), Vx,yeH; (2.5)

(3) F(T,) = EP(9),
(4) EP(¢) is nonempty, closed and convex.
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Lemma 2.2 (see [13]). If S: C — H is a k-strict pseudo-contraction, then the fixed-point set F(S)
is closed convex, so that the projection Pr(s) is well difened.

Lemma 2.3 (see [14]). Let S : C — H be a k-strict pseudo-contraction. Define T : C — H by
Tx = Ax + (1 — A)Sx for each x € C, then, as A € [k,1), T is nonexpansive mapping such that
F(T) = F(S).

Lemma 2.4 (see [15]). In a Hilbert space H, there holds the inequality
lx+ ylI* < Il + 20y, (x + ), Vx,y € H. (2.6)
Lemma 2.5 (see [16]). Assume that {a,} is a sequence of nonnegative real numbers such that

ans1 < (1 - Yn)an +¥n0n, n20, (2.7)

where {y,} is a sequence in (0,1) and {6, } is a sequence in R, such that

(1) 201 ¥n = o,

(ii) limsup, _, 6, <0o0r 37 [6nYul < o0.
Then lim,, _, ,a, = 0.

3. Main Results

Throughout the rest of this paper, we always assume that F is a L-lipschitzian continuous and
n-strongly monotone operator with L, 7 > 0 and assume that 0 < y < 21n/L? 7 = pu(n—puL?/2).
Let {T),} be mappings defined as Lemma 2.1. Define a mapping S, : C — H by S,x =
Pnx + (1 - p,)Sx, for all x € C, where §, € [k, 1), then, by Lemma 2.3, S,, is nonexpansive. We
consider the mapping G, on H defined by

Gnx = (I - ayuF)S,Ty,x, x€H, neN, (3.1)
where a,, € (0,1). By Lemmas 2.1 and 2.3, we have

|Gux =Gyl < (1 - )| Tox ~ Toy

(3.2)
<1 -ay7)|[x -yl

It is easy to see that G, is a contraction. Therefore, by the Banach contraction principle,
Gy, has a unique fixed-point x; € H such that

xf = (I - auuF)S,T), L. (3.3)
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For simplicity, we will write x, for x! provided no confusion occurs. Next, we prove
that the sequence {x,} converges strongly to a g € F(S) N EP(¢) which solves the variational
inequality

(Fq,p—q) >0, VpeF(S)NEP(¢). (3.4)

Equivalently, g = Pr(s)ngp(g) (I — uF)q.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H and ¢ a
bifunction from C x C into R satisfying (A1), (A2), (A3), and (A4). Let S : C — H be a k-
strictly pseudocontractive nonself mapping such that F(S) N EP(¢p) #¢. Let F : H — H be an
L-Lipschitzian continuous and n-strongly monotone operator on H with L, 7 > 0and 0 < pu < 2n/L?,
T = pu(n — uL?/2). Let {x,} be asequence generated by

1
¢(un,y) + r(y—un,un -x,) >0, VyeC,

Yn = ﬂnun + (1 - ﬁn)sun/
xy = (I —ayuF)y,, VneN,

(3.5)

where u, = T\, Xn, Yn = Spun, and {1} C (0, +00) satisfy liminf, A, > 0 if {a,} and {B,}
satisfy the following conditions:

(i) {an} € (0,1), limy ox, = 0,
(i) 0<k <Py <A<landlim,_ f, = A,

then {x,} converges strongly to a point g € F(S) N EP(¢$) which solves the variational inequality
(3.4).

Proof. First, take p € F(S) N EP(¢). Since u, = Ty, x, and p = T),p, from Lemma 2.1, for any
n € N, we have

lltn =Pl = 1 Ta, 20 = Topl < [~ pl|- (36)
Then, since S,p = p, we obtain that
lyn = Pl = | Snttn = Sup || < [lun —pl < |20 - pl|- (37)
Further, we have
l|xn = pll = [[-anpFp + (I - panF)yn — (I - panF)p|| 58)

< au||-pF (p) || + (1 = an) ||y — pl|-

It follows that ||x, — p|| < ||HE(p)||/ .
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Hence, {x,} is bounded, and we also obtain that {u,} and {y,} are bounded. Notice

that
140 =yl < llttn = ull + [l = yu|
(3.9)
= llun = 2ull + e[| = F .
By Lemma 2.1, we have
[ = p1* = | T, = Ta,p||* < (X = 1 — p)
1 ) R (3.10)
2
= 5 (1 =PI+ 1t = pII* =l = 20]%).
It follows that
e = pI1” < e = pII* =l =l (3.11)

Thus, from Lemma 2.4, (3.7), and (3.11), we obtain that
120 = pII* = llatw (~pFp) + (I - paF )y, = (I - pe F)p||*
< (1= a)*||yn = p||” + 20 (~4Fp, xu ~ p)
< (1= ay7)*||n = p||* + 200 (~1Fp, xu ~ p)
< (1= 2o~ ~ I~ ) + 22 Bl 0 ]
= (1-2a,7 + (@y7)?) |0 ~ |
= (1= ay7)||xn = wnl* + 120 ]| = pFp||xn = p||

< laen = p[|* + (an)?||2n = p||* = (1 = @T)* |10 — ttul” + 22t || ~Fp || |20 — p |-

(3.12)
It follows that
(1= @)’ = ttall* < (@) |12 = pI|” + 20| Fp |l || = - (3.13)
Since a,, — 0, therefore
i [lx, —uy|| = 0. (3.14)
From (3.9), we derive that
lim ||uy — yu|| = 0. (3.15)

n— oo
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Define T : C — H by Tx = Ax + (1 — 1)Sx, then T is nonexpansive with F(T) = F(S)
by Lemma 2.3. We note that
1Tt =10 < Tt = 9|+ 3 = 0]l < (2= Bl = Sl —mall. - (316)
So by (3.15) and ff, — A, we obtain that

im [|Twy, = un|| = 0. (3.17)

Since {u,} is bounded, so there exists a subsequence {u,, } which converges weakly to
q. Next, we show that g € F(S) N EP(¢). Since C is closed and convex, C is weakly closed. So
we have g € C. Let us show that g € F(S). Assume that g € F(T), Since u,, — g and q#Tjq, it
follows from the Opial’s condition that

limi£f||uni - q” < liﬂigf”uni - Tq”

n—

< liﬂi;lf(”uni = Tun|| + || Tun, - Tq||) (3.18)

< timinfJus, ~q]]

n—

This is a contradiction. So, we get g € F(T) and g € F(S).
Next, we show that g € EP(¢). Since u,, = T\, x,, for any y € C, we obtain

()b(u"/ ]/) + %<y — Un, Un — xn) > 0. (3.19)
From (A2), we have
1
A—(y = Up, Up — Xn) = P(Y, Un). (3.20)
n
Replacing n by n;, we have
Uy, — Xn,
(v, 255 > ). @21)

Since (up, — xpn;)/An, — 0 and u,, — g, it follows from (A4) that 0 > ¢(y, gq), for all
yeC Letzy=ty+(1-t)gforallt € (0,1] and y € C, then we have z; € C and hence
¢(zt,q) £0. Thus, from (Al) and (A4), we have

0=z, zt) <tP(z1,y) + (1 - P(2z1,q) < tP(z1,y), (3.22)
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and hence 0 < ¢(z;, y). From (A3), we have 0 < ¢(q,y) for all y € C and hence g € EP(¢).
Therefore, g € F(S) NEP(¢$). On the other hand, we note that

Xn = q =—anpFq+ (I - panF)y, - (I - payF)q. (3.23)
Hence, we obtain

10 = qlI* = (~awpuFaq, %, = q) + (T = panF)yn — (I - panF)q, x, - q)

(3.24)
< an(—uFq, %0 = q) + (1= au7) 0 —q]|"
It follows that
1
|| xn — q”z < ;(—qu, Xn = q). (3.25)
This implies that
gl < SHE9X =) (3.26)
T
In particular,
2, — g < (P —a). (3.27)
T

Since x,, — g, it follows from (3.27) that x,, — gasi — oo. Next, we show that g
solves the variational inequality (3.4).
As a matter of fact, we have

Xn = (I = &npF)yn
= (I - anuF)S,T\,xn,

(3.28)

and we have
uFx, = —ain{(f - 5,T\,)xn — pty(Fxy — FS, Ty, x,) }. (3.29)
Hence, for p € F(S) NEP(¢),
((uF)xn, xn = p) = —ain<{(1 = SuT,)2n = pat (FXn = FSuT1, %n) }, Xu = p)

1
= _a_<(I = S.T0,) %0 — (I = SuT0,)p, Xn — p) + pu{(Fxn = FS,Ty,xu), Xp — p)-
(3.30)
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Since I - S, T, is monotone (i.e., (x -y, (I - S,Ty,)x - (I - S,Ty,)y) >0, for all x, y € H. This

is due to the nonexpansivity of S,T),).
Now replacing n in (3.30) with n; and letting i — oo, we obtain

((#F)q,q-p) = lim (uFxy, xn, = p)
(3.31)
< lim p(Fxy, — FS,Ty, Xy, Xn, — p) = 0.

1— o0

Thatis, g € F(S)NEP(¢) is a solution of (3.4). To show that the sequence {x, } converges
strongly to g, we assume that x,, — X. Similiary to the proof above, we derive x € F(S) N
EP(¢). Moreover, it follows from the inequality (3.31) that

((uF)q,9-x) < 0. (332)
Interchange g and X to obtain
((uF)%,% - q) <0. (3.33)
Adding up (3.32) and (3.33) yields
(um)llq - %|1* < (g - %, (uF)q - (uF)%) <O. (3.34)
Hence, g = X, and therefore x, — gasn — oo,
((I-puF)q—-q,9-p)>0,Yp e F(S)NEP(¢). (3.35)
This is equivalent to the fixed-point equation

Prsyner) (I - pF)q = q. (3.36)
0

Theorem 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H and ¢ a bifunction
from C x C into R satisfying (A1), (A2), (A3) and (A4). Let S : C — H be a k-strictly
pseudocontractive nonself mapping such that F(S)NEP(¢) #¢. Let F : H — H be an L-Lipschitzian
continuous and n-strongly monotone operator on H with L,n > 0. Suppose that 0 < pu < 2n/L?,
T = pu(n — uL?/2). Let {x,} and {uy,} be sequences generated by x1 € H and

d(un,y) + %(y — U, Up —Xp) 20, Yy eC,
n
Yn = ﬂnun + (1 - ﬁn)Sun/ (337)
Xpe1 = (I — aypF)y,, VYneN,
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where u, = Ty, Xn, Yn = Sultn if {0}, {Pn}, and {A,,} satisfy the following conditions:

(i) {an} € (0,1), limy 0oty =0, X072y ay = 00, Dooq e — | < 0,
() 0<Sk<Pu<A<landlimy_oofn =X Doy |Bus1 — Pul < oo,

(iii) {An) € (0, +00), limy oy > 0 and 32 [Nyt — Al < o0,

then {x,} and {u, } converge strongly to a point q € F(S)NEP(¢) which solves the variational
inequality(3.4).

Proof. We first show that {x,} is bounded. Indeed, pick any p € F(S) N EP(¢) to derive that

|xns1 = p| = ||-anpFp + (I = panF)yn = (I = pan F)p||
< an||[-pF (p) || + (1 = ) || - p| (3.38)
< (1= ay) |20 = pl| + an||-#F (p) |-

By induction, we have
1
¢ — pll < maxq [lx1 —pl|, ;II -uF(p)llt, VneN, (3.39)

and hence {x,} is bounded. From (3.6) and (3.7), we also derive that {u,} and {y,} are
bounded. Next, we show that ||x,,1 — x,,|| — 0. We have

Ixnea = xull = {| (1 = anptF)yn = (I = w1 pF) yua |
= (T - awpF)yn = (I = anpF)yns + (I = anpF)yn-1 = (I = ana poF )y |
< (= an?)|[yn = yu-a || + l@n = @naal [ #Fyna ||
< (1= an?) [yn = yna || + Klan — an-a,

(3.40)
where
K =sup{||uFyn| : n € N} < co. (3.41)
On the other hand, we have
|y = yn-1| = ISnutn — Snattnl]
<|Suttn = Spttn-a || + ||Snttn-1 — Su-1tn-1 || (3.42)

< ”un - un—l” + ||Snun—1 - Sn—lun—lll‘
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From u,,1 = Ty,,, xys1 and u, = T, x,, we note that

n+1
¢ (uni1, y) + L(y — Uns1, Uns1 = Xn1) 20, Vy €C, (3.43)
J\n+1
1
P, y) + (Y = thythn = x0) 20, ¥y €C. (3.44)
Putting v = u, in (3.43) and y = 1,1 in (3.44), we have

1
(,b(unﬂ/ un) + )L_ (un — Up+1, Unl — Xn+l > >0,
n+l (3.45)

¢(un/ Uns1) + r(unﬂ — Uy, Uy — Xp) 2 0.
n

So, from (A2), we have

<un+1 —u, Un = Xn  Un+l = Xn+l > >0, (3.46)
)‘n )Ln+1
and hence
An
Uptl — Up, Uy — Upy1 + Upy1 — Xy — -)L—l (Uns1 — Xpe1) ) 2 0. (3.47)
n+

Since lim, —, xA, > 0, without loss of generality, let us assume that there exists a real
number a such that A,, > a > 0 for all n € N. Thus, we have

A
[ttns1 — un”z < <un+1 —Un, Xn+1 — Xn + (1 - 1 & >(un+1 - xn+1)>
n+1

A
< ||un+1 - un”{”XnH - xn” + 11— —/\ " ||un+1 - xn+1”} (348)
n+1

1
”un+1 - un” < ||xn+1 - xn” + Elf\nﬂ - )LnlMOI

where My = sup{||lu, — x,|| : n € N}. Next, we estimate ||S,un-1 — Sp-11,-1||. Notice that

ISnttn-1 — Sn-1ttn]| = ” (ﬂnun—l + (1 - ﬁn)Sun—l) - (ﬂn—lun—l + (1 - ﬂn—l)sun—l) ”

(3.49)
< |Bn = Bu-1|llttn-1 = Stana]-
From (3.48), (3.49), and (3.42), we obtain that
M
”]/n ~ Yn-1 ” < ”xn - xn—lll + _OMn - -)Ln—1| + |ﬂn - ﬂn—l | ”un—l - Sun_1||
a (3.50)

< ”xn - xn—l” + |-)Ln - -)‘n—1|Ml + |ﬂn - ﬂn—l |M1/
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where M; is an appropriate constant such that
M
M; > 70 + |[up1 — Stall, VneN.

From (3.41) and (3.50), we obtain

12741 = x| < Klay — ap-1| + (1 - “nT)(”xn = Xp-1ll + [An = Lpo1| My + |ﬂn _ﬂn—l |M1)

< (1= ap7)||xn = xp1]| + M(lan — |+ Ay = A | + |ﬁn - ﬁn—1|>/

where M = max[K, M;]. Hence, few by Lemma 2.5, we have
Jim [ 241 = x| = 0.
From (3.48) and (3.50), |\, — Ay—1] — O and |B, — fn-1| — O, we have
1 s~ =0, B [y~ | = 0.
Since
Xp1 = (I = anplF)Yn,

it follows that

”xn - yn” < ||xn - xn+1” + ”xn+1 - yn”

= [|%n = Xna1 | + &n || - Fya |-
From a,, — 0and (3.53), we have

lim ||x, — ya|| = 0.

n— oo

For p € F(S) N EP(¢), we have

> < (xu = p,un — p)

lten = plI* = || T2, 200 = o, p
1
= 5 (llen = I + Ml = pII* =l = ).
This implies that

[t = p|I* < |20 =PI = 1t = xal .

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)
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Then, from (3.7) and (3.59), we derive that

%1 = pI* = |l-panFp + (I = panF)yn = (I - pes F)p||*

< (1= @) |lyn ~plI” + al|-Fpl” + 20| -eFpll |y ~p

) , (3.60)
< lun = pII” + ez |l -1Fpl|” + 2an||-uFp| ||y - P
<l = I = 120 = el + |- Fp|* + 22 || -pFp]| Iy - .
Since a, — 0, ||x; — Xu41|| — 0, we have
nlijr(}o”xn —uy| = 0. (3.61)
From (3.57) and (3.61), we obtain that
[, — yn” < = x| + |26 = }/n” — 0, asn — co. (3.62)

Define T : C — H by Tx = Ax + (1 — 1)Sx, then T is nonexpansive with F(T) = F(S)
by Lemma 2.3. Notice that

Tt = ) < || Tt = yul| + [y = 0|

(3.63)
< = Bl lttn = Sunll + || yn = ta |-
By (3.62) and f, — 1, we obtain that
A [ Tttn = 4l = 0. (3.64)

Next, we show that limsup, _, (uFq,q — x,) < 0, where q = Pr(s)nep(g)(I — pF)q is a
unique solution of the variational inequality (3.4). Indeed, take a subsequence {x,,} of {x;,}
such that

lim (uFq,q - xy,) = limsup(uFq, q - x,). (3.65)

n— oo

Since {x,,} is bounded, there exists a subsequence {xnij} of {u,} which converges
weakly to w.

Without loss of generality, we can assume that u,, — w. From (3.61) and (3.64), we
obtain x,, — w and Tu,, — w. By the same argument as in the proof of Theorem 3.1, we have
w € F(S) NEP(¢). Since q = Pr(s)rep(g) (I — uF)q, it follows that

limsup (uFq,q - x,) = (uFq,q —w) <0. (3.66)

n—oo
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From xy41 —q = —ayuFq + (I — pa, F)y, — (I — pa,F)g, we have

%1 = qll* < (T = paF )y = (I = patuF)q||* + 200 (~pF 3, X1 - g)

i (3.67)
< (1= an7)’ [l = q|" + 200 (~pF g, X1 - q)-
This implies that
||xcn1 - q||2 < {1 —2a,T + (can)z}”xn - q||2 + 20, (—puFq, xpa — q)
= (1= 2ay7) |0 = q* + (@7)? [l = ql|” + 200 (~F g, 3001 — q)
(3.68)

2
2 anT
= (1 -2a,7)||xn — q|| +2anT{ ;T

1
M + —(=pFq, xn1 = fﬂ}
= (1= y)|lxn = qll” + 160,

where M* = sup{||x,—q||* : n € N}, y, = 2a,7,and 6, = (7% /27) M*+(1/7){(—pFq, Xns1-9q)-
It is easy to see thaty, — 0, 3,2 y» = o, and limsup, _, 6, < 0 by (3.66). Hence by
Lemma 2.5, the sequence {x,} converges strongly to g. O
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