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We show that there exit E-J generalized Hausdorff matrices and unbounded sequences x such that
each matrix has convergence domain ¢ & x.

1. Introduction

The convergence domain of an infinite matrix A = (au) (n,k = 0,1,...) will be denoted by
(A) and is defined by (A) = {x = {x,,} | Au(x) € ¢}, where ¢ denotes the space of convergence
sequences, A,(x) := X anxk. The necessary and sufficient conditions of Silverman and
Toeplitz for a matrix to be conservative are lim,a,« = ax exists for each k, lim,, >;7 anc =t
exists, and [|Al| := sup, >{2 [axk| < oo. A conservative matrix A is called multiplicative if
each ai = 0 and regular if, in addition, ¢ = 1.

The E-] generalized Hausdorff matrices under consideration were defined indepen-
dently by Endl ([1, 2]) and Jakimovski [3]. Each matrix H /5“) is a lower triangular matrix with
nonzero entries

h® = ARy, (1.1)

where a is real number, {y,} is a real or complex sequence and A is forward difference
operator defined by Apx = pr — pks1, A" e = A(A™ui). We will consider here only
nonnegative a. For a = 0, one obtains an ordinary Hausdorff matrix.
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From [1] or [3] a E-J generalized Hausdorff matrix (for & > 0) is regular if and only if
there exists a function y € BV[0, 1] with y(1) — y(0+) = 1 such that

1
i = [ eayo, (12)
0

in which case y is called the moment generating function, or mass function, for H ,5“) and ‘uff)

is called moment sequence.

For ordinary Hausdorff summability [4], the necessary and sufficient conditions, for
regularity are that function y € BV[0,1], y(1) — x(0) = 1, x(0+) = x(0), and (1.2) is satisfied
with a = 0.

As noted in [5], the set of all multiplicative Hausdorff matrices forms a commutative
Banach algebra that is also an integral domain, making it possible to define the concepts of
unit, prime, divisibility, associate, multiple, and factor. Hille and Tamarkin ([6, 7]), using
some techniques from [8], showed that every Hausdorff matrix with moment function

u(z) = :Z R(@) >0, R(b)>0 (1.3)

is prime. In 1967, Rhoades [9] showed that the convergence domain of every known prime
Hausdorff matrix is of the form ¢ @ x for a particular unbounded sequence x.

Given any unbounded sequence x, Zeller [10] constructed a regular matrix A with
convergence domain (A) = ¢ ® x. It has been shown by Parameswaran [11] that if x is any
unbounded sequence such that {x, — x,-1} is bounded, divergent, and Borel summable, then
no Hausdorff matrix H exists with (H) = c & x.

The main result of this paper is to show that there exist E-] generalized Hausdorff

matrices H, }([’) whose moment sequences are

w__n-a
=— R R(b 14
e S (a) >0, (b) >0, (1.4)
and unbounded sequences x(* such that each matrix has convergent domain ¢ ® x(®.
Define the sequences x® by

(@) _ F(Tl+0€+1)
" S Tm—a+l) for R(a) >0, (1.5)

where it is understood that if a is positive integer, then xff) =0forn=0,1,...,a-1.

If )L,(f‘) is the moment sequence defined by (n - a)/(n + 1+ a), R(a) > 0, then it is clear
that (H ,5“)) = (H)(L“)). Hence, it will be sufficient to prove the theorem by using b = 1, in (1.4).
To have the convenience of regularity, we will use the sequence

(a) _ n—-a
Hn C—(a+a)(n+1+a)

(1.6)

since the constant —1/(a + &) does not affect the size of the convergence domain of H, ,(f).
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2. Auxiliary Results

In order to prove the main theorem of this paper, we will need the following results.

Lemma 2.1. Let A, B€ C,d, n € NU {0}, d < n. Then, formally, for any n,

iF(A+k)_ 1 [(A+n+1) T(A+d) 1)
ZT(B+k) A-B+1| I'(B+n) I'(B-1+4d)]| ’
Proof. Lemma 2.1 appears as formula 12 on page 138 of [12]. O
Lemma 2.2. For m,n integersn >m+1> a, x( ) 45 in (1.5),
L 1 1 1 1
= —_— ). (2.2)
k;mx,@(k —a) ata <xfz> xy) >
Proof. Using Lemma 2.1,
i i T(k-a)
k= m+1x;((“)(k ﬂ) k= m+1r(k+a+1)
: 1 ll"(n+1—a)_1"(m+1—a) (2.3)
—a-(a+1)+1|T(n+1+a) T(m+1+a) '
1 1 1
Ca+a PO
O
Lemma 2.3. ForO<r<a
S (n <a>> L@ x  (a+a+l) (2.4)
S m T T(a+a+1) n-a
Proof. u* can be written as
-1 a+a+1
) = (2.5)

a+a (a+a)(n+a+1)’
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so that, for0 < k < n, h:;? =(a+a+1)/(a+a)(n+1+a). From Lemma 2.1 and (3.11),

- nl <h(a.)>_1h(.a) _ ”Z_l —xfla)(a +a)(a+a+1)?
e " j=a+1X](~a) (j—a)a+a)(j+a+1)
n-1 T(i-
= (a+a+1)%x" D —1"('(] > %) )
“ +2+a
ety (2.6)
__m+a+1fﬁﬁ< 1 . I(n-a) )
" (a+a+1) \T@a+a+2) T'(n+l+a)
(o)
3 X B (a+a+1)
" T(a+a+1) n-a
O

3. Main Result

Theorem 3.1. If for fixed a and b the matrix H ,i“) is defined by (1.4) and a sequence x® by (1.5),
then (H\") = c & x.

Proof. We will first show that c ® x@ C (H /(f)).
We can write the matrix H ,S“) =(-1/(a+a)) - H)(L“)), where the diagonal entries of
H)(L“) are

(@) _ at+a+1
An T n+a+1 GD
For each n and k,
1
Anfk)tl(cﬂ) — (a +a+ 1)J‘ tk+a(1 _ t)n—kdt
0
(3.2)
_(a+a+)I'(k+a+1)I(n-k+1)
B I'n+a+2) ’
Therefore,
@\  _ TN k@
<I_I)L )n,k B <71 — k>A )Lk
_fn+aN(a+a+DIk+a+1I(n-k+1) (3.3)
\n-k I'n+a+2)
a+a+1

n+a+l’
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Define y, = —u,/(a + a), where

=x - thle . (3.4)
From Lemma 2.1,
_I(n+a+1) a+a+1 T(n+a+2) T(a+1)
" T(n-a+1) (n+a+1)(zx+a+l)[1"(n a+1) T(-a)
_Tn+a+1) I(a+1)
" T(n-a+1) (-1 +W (3.5)
T(a+1)

S TCamsarn 0 B

This argument is valid provided a is not a positive integer. If a is a positive integer, then
D =0for0<k<a-1.
Then, u, =0for 0 <n < a-1,and for n > g, from Lemma 2.1, we get

@ (@+a+l)GTk+a+1)
Hn = X (n+a+1)ZT(k at1)

TI(n+a+1) (a+a+1)[T(a+a+1) 1 I'n+a+2) T(a+a+2)
"T(n-a+1) (n+a+1) r(1) ]_n+tx+1 T(n-a+1) I
_Tn+a+1) Tl@+a+2) I'n+a+2) +F(a+cx+2) (3.6)

" I'(n-a+1) (mm+l+a) Wm+l+a)T(n-a+1) (m+1+a)

TIn+a+1) n+1+a)
" T(n-a+1) - n+1l+a)

=0—0 asn— oo.

Since H ;,a) is regular, ¢ C (H ,ﬁ“)). Thus, c® x@ C (H,Sa)).

To prove the converse, we will use Zeller’s technique to construct a regular matrix A
with (A) = ¢ ® x® and then show that (H\") C (A).

Set Py = 0 and define a sequence {P,} inductively by selecting P,,; to be smallest
integer P > P, such that |x§f)| >2 |x1(;:)|. (Such a construction is clearly possible, since x(® is

not bounded.) Let q(a) =1- xl(,:il / xg), n=1,2,.... Define a matrix B by

boo =1,
1
byp1 = @’ n>1,
dn
@ (3.7)
— _ Pn 1
bn,n = @ (@)’ n>1,
n Xp,

b,k =0 otherwise.
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Now, define the matrix A as follows:

aPn,Pk = bnk/
ap,x =0,  k#D; for any integer i, (3.8)
apn =1, n# P; for any integer i.

If n# P; for any integer i, then there exists an integer r such that P, < n < P,,;. For this r,
define

a xT(:l)
i = T
xPr - xpr—l
(3.9)
a —xi,“)
nP, =
T () ()
.X'P .X'PFl

Set anx = 0 otherwise. From [10], A is regular and (A) = ¢ ® x@. There are three cases to
consider, based on whether a is real number and not a positive integer, a is positive integer,
or a is complex.

Proof of Case 1. If a is real and not a positive integer, the E-] generalized Hausdorff matrix
H P(,“) generated by (1.6) has a unique two sided inverse (H, }(f‘))_1 = ((hfsc))_l) with generating
sequence

1 —(a+a)(n+1+a) -~ (a+a)- (a+0c)(a+0c+1).

‘uil“) (n-a) n-a

(3.10)

For k <mn,

()= (1)

_—(a+a)(a+a+1)I(n+a+1)I'(k-a)
a I'k+a+1)I'(n-a+1)

(3.11)

B —xPa+a)a+a+1)

- 9 (k - a)

7

<h,(f,‘1)>_1= —(a+02(11;-1+a)‘ (3.12)

-1

To show that (H, ,(f)) C (A), it will be sufficent to show that D = A(H, /(f‘)) is a regular matrix.
-1

Each column of (Hﬁa)) is essentially a scalar multiple of (1.5), so it is obvious that each
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column of (H ;,a) )71 belongs to the convergence domain of A. However, it will be necessary to
calculate the terms of D explicitly, since we must show that t = 1 and that D has finite norm.

If k # P; for any integer i, and r denotes the integer such that P,_; < k < P,, then from
the definition of A,

j=r
_ 3.13
= bn n-1 (hgx)l,k> 1 + bnn (h;;x)k> ( )
=0.
If k=P, forr <n-1, then
dp,p, = Dan,p, <hg:/)pr>_1 =0. (3.14)
j=r

For k = P,_4,

-1 -1
— (a) (a)
dPann—‘l = Aap,,P,, <hpn,l,p,H +ap,p, h]i)n,p,,,1

1 <—(a+a)(P,,,1+a+1)> . —xy), ~(a+a)(a+a+1)xly
qila) P,1-a qﬁla)xl(;) x;jar:] (Po_i - a) (3.15)

_—(a+a)

i

For P,.1 <k < P,,

yo (a+a)(1+a+a)xs (3.16)

- (@)
dPn,k =4ap,,p, (hP k (k _ a)q(a)x(a)
n “k

ns

(@)
1 (a+a)(l+a+Py)x
dp,p, = ap,p, (h}f‘)p> = = '(la) USH (3.17)
(Pn—a)qn ' xp,

For n#P; for any i, if we now let r denote the integer such that P, < n < P,,4, then for
O<k< Pr_1,

n -1
= S0 (04
j=k (3.18)

-1 -1 -1
= au,p,_, <h§;31,k> + Qan,P, <hg?k> + Ann <h£sli> =0.
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Fork =P,_;,

1 1 1
dn’Pr’1 = aTl,Prq <h§)arzlrpr—l) + an’Pr <hg?Prfl> + an’n (hifrtl))rJ)

—@+a)x® (P +a+1 (a+a+1)x1(:f) a+a+1

P - () () (@) (o) () ()
- a xpr - xPrfl xpr - xpr—l xprfl xpr—l

(3.19)

B —@+a)x® (Pi+a+1 (a+a+1)

_ (a) () (@) (a)
Pr71 a xpr - xPrfl xpr - xpr—l
_—(a+ a)xfla)
() (@)
.X'P - .'X'Pr .

For P,.y <k < P,

Fork =P,

INW
3
]

|

-1 -1
duc = anp, (W) + ana (RS

3.20
~ (a+oc)(a+ac+1)x£,”’)x1(,‘ﬁ1 (3.20)

T @ (@ ‘
X, <xpr —xPH)(k—a)

-1 -1
=anp, (hSp)  +ana (R

B —@a+a)x® | -(P,+a+1) a+a+1

For P, < k <m,

+
(Pr - a) xg:) - x;,'ﬁl xg:) (3.21)
()
—(a+a)xy @ (@ _ @
b YN [—(Pr +a+1)xp’ + <xPY - xPH>(a +a+ 1)].
( r a)xpr <xPr - xPy—l)
The quantity in brackets is equal to — (P, - a)xg:) - xgﬁl (a+a+1),giving
PNCE Dx 0 (ata)(atay Dl 62
@ @ @y (x(“) _ @ > ' '
P=""Pr P, r Py P
1 " (a+ +a+1
duje = ann(H)) = =2 (@rm)a+atl) (3.23)

(@) - !
x (k-a)
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and finally,
—(a+a)(n+l1+a
dyn = ( T)l(— A ). (3.24)
By using (3.13)—(3.17),
P,-1
denk_dpnpnl+ Z dpnk+dPnPn
k=0 k=P,_1+1
(3.25)
Pl (P, +a+1)x(a)
_(a:x)) 14X (ata+1) 3 ! + o |-
n k=P, ]+1xk (k a) (Pn — a)xp,
By using Lemma 2.2, and noting that
P,+a+1 14 l+a+a
P,—a P,—a’
P, I L0 @
d _(a+a) 1+ (@) (a+0c+1) 1 _ 1 +1+a+(x p]+ P,y
2dn, = (a) P gt a (@) (@) P,—a @ (@)
k=0 Gn Xp,, *p-1 " Xp,  Xp,
_(a+a) 14 a+a+l a+a+l xl(fﬁl 1+a+ax;a)1 x}ﬁfl
qila) i a+a a+a xg)_l P,-a xg;’) xg)
(3.26)
Note that
a+a+1 xé“) 1 +a+ax§>j: 55:)1 xg)l
- =(a+a+1)|- +
a+a xg) Py-a xg) | (a+ a)xp ' (Pa- a)x(a)
x@ rp, - a) x® I(P,—a+1)
=(a+a+1)|- Pt Poa” V1
(a+a)T(P, + ) (Pn -—a)[(P,+a+1)

(o) (@)
. r(P, - a) x
= (““”)r(mm) [(a+a) * (P,,+zx)]

(a+a+1)I(P,—a+1) x(a)
(P, +a+1)(a+a)

(3.27)
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Finally,
Lo _@ra| (arasn ) (@rar DI -a+ D)
— 7 ata <a> (a+a) (P, +a+1)

_(a+a) 1 (a+a+1) 1- ng)l xg:
S [ ——— @ )T @
qn Pn xpn

-

(3.28)

-

(o) x(a)
@O rara( )
(a) a+a (a)
qn | xpn

(a)
X
=_(a:x)“) (1— 1:,1)1> +(1+a+a)=1
qn Xp,

For n # P; for any i, r the integer such that P, < n < P,,1, and using (3.18)—(3.24), we have

_ (“)
n a+ax(a) P-1 1 (a+0c+1)
i = ((a) )<Z> lex) (avasl) 3 - i (a)
k=0 Xp = Xp’ k=P,_1+1 X (k—a) (P - a)
(3.29)
. 2 xDara)ya+a+l) _(ata)(n+l+a)
K (k- a) (n-a)

Writing (n+1+a)/(n—a) = 1+( )(1 +a+ a)/x (n a)) and using Lemma 2.2, the quantity
in brackets, which we call I, takes the form

Ilzx(“) (a+tx+1) 1 _ 1 +x§3521(a+“+1)
P4 (a + [X) x(“) (a) xl(;:)(Pr _ a)

Py Xp-1
(3.30)
= xp) (a+a+1) ! ! + ! .
(a+ (x)xg’: (a + zx)x(“) xg:)(Pr -a)
The sum
1 N 1 [(P, —a) . I(P,—a+1)
(a + a)x(“) xg’) (P, - a) (a+a)(P+a) (P—-a)l(P+a+1)
(3.31)

1
(a + a)x(a)
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Thus,
(e) ()
1 1
(E:;ra)% Il_(i;ra)% xp (a+a+1) @ @
xpff - xP‘:_l xp” xp‘f : (a+ oc)xpor'_1 (a+a)x, .
(3.32)
~ xPa+a+1)
=
xp
Finally,
n (@) i n-1
1 1 1
>k = % (a+a)(1+a+a)x® o @ —(a+a)
xp | k2px, (k — a) Xy (n—a)
(a) i
(a +a+ 1) () 1 1 1
_T (a+a)(1+a+a)xn m E—W —(a+a)
P, L by n
(a+a+1)
= [xi, %) (x,(f x?)] —(a+a)
Xp
=1.
(3.33)
Clearly, D has null columns. It remains to show that D has finite norm.
For all integers, n > [a] + 1, x ) is positive and (1/2) < q(“) <1. From (3.25),
P, P-1
Dldek| =ldpp. |+ D) ldpk| +|dp,p,
k=0 k=P,_1+1
(3.34)
(a+a) )
= 1+ +1+a+a
() (a)
qn Xp,

Since x| > 2|x(“) |, then, x(“) /x(“) < 1/2, and the above sum is bounded by 4a + 4a + 1.
From (3.29),

B 2(a+cx)x(“) 2a+a+1)x®
Z|d,,k| (a) @ +(a+a)+ —x(“)

Prl Pr

—(a+a+1). (3.35)

From choice of n, |xn )| < 2|x(“)| Again, using the fact that |xP )| > 2|x("‘)1 |, we have

)

n (a+(x)< | (@)
Z|dnk| < (a)
k=0 |XP - ‘xpr

+4(a+a+1)+2(a+a)+1=14(a+a) +5. (3.36)
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Since there are only a finite number of rows of D with n < [a] + 1, D has finite norm and is
regular. O

Proof of Case 1I. If a is a positive integer, yff) =0,and H L“) fails to have a two-sided inverse.
However, if we define a new matrix F = (fux) with f,, = 1 and which agrees with H ;,“)
elsewhere, then F does possess a unique two-sided inverse. Morever, (F) = (H, ;la)) and, for
k>a, fl (h(”)) , where the (hff;{))_l are computed using (3.11) and (3.12).

From (1.5), x(”) 0 for 0 < n < a. Consequently, Py =0, P, = aand P, = a+ 1. Now, let
E := AF' = (ew). To prove that E is regular, we are concerned with the behavior of the ey
for all n sufficiently large. We will restrict our attention to n > a + 1. Since f} = h("c))_1 for
all k > a, it is clear that e, = d,i for k > a. If we can show that e, = 0 forall0 < k < a and
n > a+ 1, then it will follow that E is regular, since D is.

Forn>a+1,

Z f]a: ’

(3.37)
e _ N (@) @ @\ @
nufaa— an f]u—_z<hnj> h]'a _<hnn> hna-
j=a+l j=a+1
Since fuq = 1and (K9) h® = —(a+a+1)/(n-a), f;1 = x'¥ /T(a+a+1). By induction
it is showed that f,5_, = k@ (a)x(“) where k' (a) is a function of a.
Forn>a+1,P,.1>P,>Pi=a>r
Zapn] jr = = byn- 1fP,,1r +bunfp, P r
j=r
(3.38)

(@)
1 K@ @ *p, @@ _
<u>< r(a)xp,, - <a>< r, Ka- (”)> =0

qn Xp,

Forn > a+1,n#P, for any integer i, 0 < r < a, and s the integer such that P; <n < Py,

n
enr = 20nifj = anpfpl ,+ anpfpl, + @unfor

" (3.39)
a
= Xn < K (a)x(“> — k= (a)x(“)> +k (a)x™ = 0.
(a) _ ()
Xp, ~Xp, O

Proof of Case 111. If a is complex, then none of the ‘ufl”) vanish, and we may use the matrix D
of Case I. It will be sufficient to show that D has finite norm. From (3.25),

P (a) P,-1
! —(a+a (a+a)(Py+a+1)xp’ i
> I,k = ‘ ara)), 2Ll 3 el +ldppal (340)
(a) (a) (a)
k=0 dn qn (P a)x k=Py-1+2
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Again, |xP 9| > 2|x(“) |. It can be shown that 1/2 < |g{”| < 3/2. Since

(a+a)(a+a+1)
4 P +1+a) |

|dp, P, +1] = (3.41)

the first two and last terms of (3.40), are clearly bounded in n.
For P,1 +1 < k < P,, using (3.16),

(a+a)(a+a+ 1) (P +1+a)l(k-a)

ldp, k| = @
IF(Ppi+1-a)(k+1+a)g,

[(Pyo1+1+a)

(a+a)(a+a+1)(k-a-1)-- (Pnl—a+l)(
(a)

I'(k+1+a)g,
(a+a)(a+a+DI(Pq+1+a)
q(a)

|Pn—l+1_a|(|Pn—1+1_a|+1)"'(|Pn—1+1_a|+k_Pn—1_2)
IMNk+1+a)

(3.42)

IN

(a+a)(a+a+DI(Py+1+0a)
g\ T(|Pacy + 1 - al)

I'(k +w)
I'k+l+a)’

where w = |P,_1 +1—a| - P,.1 — 1. w < 0 for all n sufficiently large. From Lemma 2.1, we can
write

P'f dp 4 < (a+a)(a+a+1)(Pyq+1+a) Fx+w) ™
P k| <
kb 4w T(|Puy +1-al) (w -l (x+a)lp, 0
(3.43)
(a+a)(a+a+DI'(P1+1+a) (P, +2+w)
q7(1a)1-(|Pn_1 +1-al) (a—w)(Ppq+2+a)
and the sum is uniformly bounded in #, since —w is bounded away from zero.
If n# P, for any i, then from (3.29),
Zu | Harapd] A @ @)@ D o
nk| = | ==~
(”:) xg:zl k=P, 1+1 (xl(f> x}f‘) ) x, 9 (k - a)
(a+a)x® (a+a)(a+a+ l)x}f‘) X (3.44)
ng) - xl(,‘fjl (x(“) x}f’ > )(P - a)
.\ E (a+a)(a+a+1)x® ‘—(a+a)(n+1+a)
| 2P (k-a) n-a
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Terms 1,3,4, and 6 of (3.44) are clearly bounded in 7. Recalling that qf“) =1- x;,"gl / xl(,‘:), the
first summation may be written in the form

@+a)a+a+)x@| 2|« 3.45
(o) (@) (o) ( ’ )
qr Xp, k=P,_1+1| X} (k - a)

The summation is identical with the one in (3.40), and the above expression is uniformly

bounded, since |x,(,a)| < 2|ng)|. Using an argument similar to the one used in establishing

(3.40), the second summation of (3.44) can be shown to be uniformly bounded. O
O
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