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We establish some maximal inequalities for demimartingales which generalize the result of Wang
(2004). The maximal inequality for demimartingales is used as a key inequality to establish other
results including Doob’s type maximal inequality, strong law of large numbers, strong growth rate,
and integrability of supremum for demimartingales, which generalize and improve partial results
of Christofides (2000) and Prakasa Rao (2007).

1. Introduction

Definition 1.1. Let S1, S2, . . . be an L1 sequence of random variables. Assume that for j =
1, 2, . . .

E
{(

Sj+1 − Sj

)
f
(
S1, . . . , Sj

)} ≥ 0 (1.1)

for all coordinatewise nondecreasing functions f such that the expectation is defined. Then
{Sj, j ≥ 1} is called a demimartingale. If in addition the function f is assumed to be
nonnegative, then the sequence {Sj, j ≥ 1} is called a demisubmartingale.

Definition 1.2. A finite collection of random variables X1, X2, . . . , Xm is said to be associated if

Cov
{
f(X1, . . . , Xm), g(X1, . . . , Xm)

} ≥ 0 (1.2)
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for any two coordinatewise nondecreasing functions f, g on R
m such that the covariance

is defined. An infinite sequence {Xn, n ≥ 1} is associated if every finite subcollection is
associated.

Definition 1.3. A finite collection of random variables X1, X2, . . . , Xn is said to be strongly
positive dependent if

P
(
X1 ∈ Λ1;X2 ∈ Λ2

)
≥ P
(
X1 ∈ Λ1

)
P
(
X2 ∈ Λ2

)
(1.3)

for all Borel measurable and increasing (or decreasing) set pairs (Λ1,Λ2) ⊂ R1 × R2 (A set Λ
is said increasing (or decreasing) if x ≤ (or ≥)y implies y ∈ Λ for any x ∈ Λ), where

X1 = (Xi, i ∈ I), X2 = (Xi, i ∈ Ic), I ⊂ (1, 2, . . . , n), Ic = (1, 2, . . . , n) \ I,

R1 = R
|I|, R2 = R

|Ic | (|I| stands for the base of I).
(1.4)

An infinite sequence {Xn, n ≥ 1} is strongly positive dependent if every finite subcollection is
strongly positive dependent.

Remark 1.4. Chow [1] proved a maximal inequality for submartingales. Newman and
Wright [2] extended Doob’s maximal inequality and upcrossing inequality to the case of
demimartingales, and pointed out that the partial sum of a sequence of mean zero associated
random variables is a demimartingale. Christofides [3] showed that the Chow’s maximal
inequality for (sub)martingales can be extended to the case of demi(sub)martingales.
Wang [4] obtained Doob’s type inequality for more general demimartingales. Hu et al.
[5] gave a strong law of large numbers and growth rate for demimartingales. Prakasa
Rao [6] established some maximal inequalities for demisubmartingales and N-demisuper-
martingales.

It is easily seen that the partial sum of a sequence of mean zero strongly positive
dependent random variables is also a demimartingale by the inequality (3) in Zheng [7],
that is, for all n ≥ 1,

E
{
f(S1, . . . , Sn)(Sn+1 − Sn)

}
= E
{
f(X1, X1 +X2, . . . , X1 +X2 + · · · +Xn)Xn+1

} ≥ 0 (1.5)

for all coordinatewise nondecreasing functions f such that the expectation is defined.
Therefore, the main results of this paper hold for the partial sums of sequences of mean zero
associated random variables and strongly positive dependent random variables.

Let {Xn, n ≥ 1} and {Sn, n ≥ 1} be sequences of random variables defined on a fixed
probability space (Ω,F, P) and I(A) the indicator function of the event A. Denote S0 = 0,
X+ = max(0, X), X− = max(0,−X), logx = logex = lnx, log+x = ln(max(x, 1)). The main
results of this paper depend on the following lemmas.
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Lemma 1.5 (seeWang [4, Theorem 2.1]). Let {Sn, n ≥ 1} be a demimartingale and g a nonnegative
convex function onRwith g(0) = 0 and g(Si) ∈ L1, i ≥ 1. Let {ck, k ≥ 1} be a nonincreasing sequence
of positive numbers. Then for any ε > 0,

εP

[
max
1≤k≤n

ckg(Sk) ≥ ε

]
≤

n∑

j=1

cjE

[
(
g
(
Sj

) − g
(
Sj−1
))
I

(
max
1≤k≤n

ckg(Sk) ≥ ε

)]
. (1.6)

Lemma 1.6 (see Fazekas and Klesov [8, Theorem 2.1] and Hu et al. [5, Lemma 1.5]). Let
{Xn, n ≥ 1} be a random variable sequence and Sn =

∑n
i=1 Xi for n ≥ 1. Let b1, b2, . . . be a

nondecreasing unbounded sequence of positive numbers and α1, α2, . . . nonnegative numbers. Let p
and C be fixed positive numbers. Assume that for each n ≥ 1,

E

(
max
1≤l≤n

|Sl|
)p

≤ C
n∑

l=1

αl,
∞∑

l=1

αl

b
p

l

< ∞, (1.7)

then

lim
n→∞

Sn

bn
= 0 a.s., (1.8)

and with the growth rate

Sn

bn
= O

(
βn
bn

)
a.s., (1.9)

where

βn = max
1≤k≤n

bkv
δ/p

k , ∀0 < δ < 1, vn =
∞∑

k=n

αk

b
p

k

, lim
n→∞

βn
bn

= 0. (1.10)

In addition,

E

(
max
1≤l≤n

∣∣∣∣
Sl

bl

∣∣∣∣

)p

≤ 4C
n∑

l=1

αl

b
p

l

< ∞, E

(

sup
l≥1

∣∣∣∣
Sl

bl

∣∣∣∣

)p

≤ 4C
∞∑

l=1

αl

b
p

l

< ∞. (1.11)

If further assumes one that αn > 0 for infinitely many n, then

E

(

sup
l≥1

∣∣∣∣
Sl

βl

∣∣∣∣

)p

≤ 4C
∞∑

l=1

αl

β
p

l

< ∞. (1.12)

Lemma 1.7 (see Christofides [3, Lemma 2.1, Corollary 2.1]). (i) If {Sn, n ≥ 1} is a
demisubmartingale (or a demimartingale) and g is a nondecreasing convex function such that g(Si) ∈
L1, i ≥ 1, then {g(Sn), n ≥ 1} is a demisubmartingale.

(ii) If {Sn, n ≥ 1} is a demimartingale, then {S+
n, n ≥ 1} is a demisubmartingale and {S−

n, n ≥
1} is a demisubmartingale.
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Lemma 1.8 (see Hu et al. [9, Theorem 2.1]). Let {Sn, n ≥ 1} be a demimartingale and {ck, k ≥ 1}
be a nonincreasing sequence of positive numbers. Let ν ≥ 1 and E|Sk|ν < ∞ for each k, then for any
ε > 0 and 1 ≤ n ≤ N,

P

{
max
n≤k≤N

ck|Sk| ≥ ε

}
≤ 2

εν

{

cνnE|Sn|ν +
N∑

k=n+1

cνkE
(|Sk|ν − |Sk−1|ν

)
}

. (1.13)

Lemma 1.9 (see Christofides [3, Corollary 2.4, Theorem 2.1]). (i) Let {Sn, n ≥ 1} be a
demisubmartingale. Then for any ε > 0,

εP

(
max
1≤k≤n

Sk ≥ ε

)
≤
∫

(max
1≤k≤n

Sk≥ε)
SndP. (1.14)

(ii) Let {Sn, n ≥ 1} be a demisubmartingale and {ck, k ≥ 1} a nonincreasing sequence of
positive numbers. Then for any ε > 0,

εP

(
max
1≤k≤n

ckSk ≥ ε

)
≤

n∑

j=1

cjE
(
S+
j − S+

j−1
)
. (1.15)

Using Lemma 1.5, Wang [4] obtained the following inequalities for demimartingales.

Theorem 1.10 (see Wang [4, Corollary 2.1]). Let {Sn, n ≥ 1} be a demimartingale and {ck, k ≥ 1}
a nonincreasing sequence of positive numbers. Then

E

[
max
1≤k≤n

ck|Sk|
]p

≤
(

p

p − 1

)p

E

⎡

⎣
n∑

j=1

cj
(∣∣Sj

∣∣ − ∣∣Sj−1
∣∣)
⎤

⎦

p

, p > 1, (1.16)

E

[
max
1≤k≤n

ck|Sk|
]
≤ e

e − 1

⎧
⎨

⎩
1 + E

⎡

⎣

⎛

⎝
n∑

j=1

cj
(∣∣Sj

∣∣ − ∣∣Sj−1
∣∣)
⎞

⎠log+
⎛

⎝
n∑

j=1

cj
(∣∣Sj

∣∣ − ∣∣Sj−1
∣∣)
⎞

⎠

⎤

⎦

⎫
⎬

⎭
.

(1.17)

We point out that there is a mistake in the proof of (1.17), that is,

E

[
max
1≤j≤n

cj
∣∣Sj

∣∣
]
− 1 ≤ E

⎡

⎣

⎛

⎝
n∑

j=1

cj
(∣∣Sj

∣∣ − ∣∣Sj−1
∣∣)
⎞

⎠ log
(
max
1≤j≤n

cj
∣∣Sj

∣∣
)
⎤

⎦ (1.18)

should be replaced by

E

[
max
1≤j≤n

cj
∣∣Sj

∣∣
]
− 1 ≤ E

⎡

⎣

⎛

⎝
n∑

j=1

cj
(∣∣Sj

∣∣ − ∣∣Sj−1
∣∣)
⎞

⎠log+
(
max
1≤j≤n

cj
∣∣Sj

∣∣
)
⎤

⎦. (1.19)
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In fact, by Lemma 1.5 and Fubini Theorem, we can see that

E

[
max
1≤j≤n

cj
∣
∣Sj

∣
∣
]
− 1 ≤

∫∞

1
P

(
max
1≤j≤n

cj
∣
∣Sj

∣
∣ ≥ x

)
dx

≤
∫∞

1

1
x
E

⎡

⎣
n∑

j=1

cj
(∣∣Sj

∣
∣ − ∣∣Sj−1

∣
∣)I
(
max
1≤j≤n

cj
∣
∣Sj

∣
∣ ≥ x

)
⎤

⎦dx

≤ E

⎡

⎣

⎛

⎝
n∑

j=1

cj
(∣∣Sj

∣
∣ − ∣∣Sj−1

∣
∣)
⎞

⎠log+
(
max
1≤j≤n

cj
∣
∣Sj

∣
∣
)
⎤

⎦.

(1.20)

The rest of the proof is similar to Corollary 2.1 in Wang [4].
The same problem exists in Shiryaev [10, page 495, in the proof of Theorem 2] and

Krishna and Soumendra [11, page 414, in the proof of Theorem 13.2.13]. For example, the
following inequality

E

(
max
0≤j≤n

∣∣Xj

∣∣
)
− 1 ≤ E

(

Xn

∫max
0≤j≤n

|Xj |−1

0

dt

1 + t

)

= E

[
Xn log

(
max
0≤j≤n

∣∣Xj

∣∣
)]

(1.21)

in Shiryaev [10, page 495] should be revised as

E

(
max
0≤j≤n

∣∣Xj

∣∣
)
− 1 ≤ E

[

XnI

(
max
0≤j≤n

∣∣Xj

∣∣ ≥ 1
)∫max

0≤j≤n
|Xj |−1

0

dt

1 + t

]

= E

[
Xnlog

+
(
max
0≤j≤n

∣∣Xj

∣∣
)]

.

(1.22)

2. Main Results and Their Proofs

Theorem 2.1. Let {Sn, n ≥ 1} be a demimartingale and g a nonnegative convex function on R with
g(0) = 0. Let {ck, k ≥ 1} be a nonincreasing sequence of positive numbers. p > 1. Suppose that
E(g(Sk))

p < ∞ for each k ≥ 1, then for every n ≥ 1,

E

[
max
1≤k≤n

ckg(Sk)
]p

≤
(

p

p − 1

)p

E

⎡

⎣
n∑

j=1

cj
(
g
(
Sj

) − g
(
Sj−1
))
⎤

⎦

p

, (2.1)

E

[
max
1≤k≤n

ckg(Sk)
]
≤ e

e−1

⎧
⎨

⎩
1+E

⎡

⎣

⎛

⎝
n∑

j=1

cj
(
g
(
Sj

)−g(Sj−1
))
⎞

⎠log+
⎛

⎝
n∑

j=1

cj
(
g
(
Sj

)−g(Sj−1
))
⎞

⎠

⎤

⎦

⎫
⎬

⎭
.

(2.2)
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Proof. By Lemma 1.5 and Hölder’s inequality, we have

E

[
max
1≤k≤n

ckg(Sk)
]p

= p

∫∞

0
xp−1P

[
max
1≤k≤n

ckg(Sk) ≥ x

]
dx

≤ p

∫∞

0
xp−2E

⎡

⎣
n∑

j=1

cj
(
g
(
Sj

) − g
(
Sj−1
))
I

(
max
1≤k≤n

ckg(Sk) ≥ x

)
⎤

⎦dx

=
p

p − 1
E

⎧
⎨

⎩

⎡

⎣
n∑

j=1

cj
(
g
(
Sj

) − g
(
Sj−1
))
⎤

⎦
(
max
1≤k≤n

ckg(Sk)
)p−1
⎫
⎬

⎭

≤ p

p − 1

⎧
⎨

⎩
E

⎡

⎣
n∑

j=1

cj
(
g
(
Sj

) − g
(
Sj−1
))
⎤

⎦

p⎫
⎬

⎭

1/p{
E

[
max
1≤k≤n

ckg(Sk)
]p}1/q

,

(2.3)

where q is a real number and satisfies 1/p + 1/q = 1. Since E(g(Sk))
p < ∞ for each k ≥ 1, we

can obtain

{
E

[
max
1≤k≤n

ckg(Sk)
]p}1/p

≤ p

p − 1

⎧
⎨

⎩
E

⎡

⎣
n∑

j=1

cj
(
g
(
Sj

) − g
(
Sj−1
))
⎤

⎦

p⎫
⎬

⎭

1/p

, (2.4)

therefore,

E

[
max
1≤k≤n

ckg(Sk)
]p

≤
(

p

p − 1

)p

E

⎡

⎣
n∑

j=1

cj
(
g
(
Sj

) − g
(
Sj−1
))
⎤

⎦

p

. (2.5)

Similar to the proof of (2.3) and using Lemma 1.5 again, we can see that

E

[
max
1≤k≤n

ckg(Sk)
]
≤ 1 + E

⎡

⎣

⎛

⎝
n∑

j=1

cj
(
g
(
Sj

) − g
(
Sj−1
))
⎞

⎠log+
(
max
1≤k≤n

ckg(Sk)
)
⎤

⎦. (2.6)

For constants a ≥ 0 and b > 0, it follows that

alog+b ≤ alog+a + be−1. (2.7)
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Combining (2.6) and (2.7), we have

E

[
max
1≤k≤n

ckg(Sk)
]
≤ 1 + E

⎡

⎣

⎛

⎝
n∑

j=1

cj
(
g
(
Sj

) − g
(
Sj−1
))
⎞

⎠log+
⎛

⎝
n∑

j=1

cj
(
g
(
Sj

) − g
(
Sj−1
))
⎞

⎠

⎤

⎦

+ e−1E
[
max
1≤k≤n

ckg(Sk)
]
.

(2.8)

Thus, (2.2) follows from (2.8) immediately. The proof is complete.

Remark 2.2. If we take g(x) = |x| in Theorem 2.1, then Theorem 2.1 implies Corollary 2.1 in
Wang [4].

Corollary 2.3. Let the conditions of Theorem 2.1 be satisfied with ck ≡ 1 for each k ≥ 1. Then for
every n ≥ 1,

E

[
max
1≤k≤n

g(Sk)
]p

≤
(

p

p − 1

)p

E
(
g(Sn)

)p
, (2.9)

E

[
max
1≤k≤n

g(Sk)
]
≤ e

e − 1
{
1 + E

[
g(Sn)log

+g(Sn)
]}
. (2.10)

Corollary 2.4 (Doob’s type maximal inequality for demimartingales). Let p > 1 and {Sn, n ≥
1} be a demimartingale. Suppose that E|Sk|p < ∞ for each k ≥ 1, then for every n ≥ 1,

E

[
max
1≤k≤n

|Sk|
]p

≤
(

p

p − 1

)p

E|Sn|p,

E

[
max
1≤k≤n

|Sk|
]
≤ e

e − 1
[
1 + E

(|Sn|log+|Sn|
)]
.

(2.11)

Theorem 2.5. Let {Sn, n ≥ 1} be a demimartingale and g a nonnegative convex function on R with
g(0) = 0. Let {bn, n ≥ 1} be a nondecreasing unbounded sequence of positive numbers. p > 1. Suppose
that E(g(Sk−1))

p ≤ E(g(Sk))
p < ∞ for each k ≥ 1 and

∞∑

n=1

E
(
g(Sn)

)p − E
(
g(Sn−1)

)p

b
p
n

< ∞, (2.12)

then limn→∞(g(Sn)/bn) = 0 a.s., and (1.9)-(1.10) hold (Sn is replaced by g(Sn)), where

αn =
(

p

p − 1

)p[
E
(
g(Sn)

)p − E
(
g(Sn−1)

)p]
, n ≥ 1. (2.13)
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In addition,

E

(
max
1≤k≤n

∣
∣
∣
∣
g(Sk)
bk

∣
∣
∣
∣

p)
≤ 4

n∑

k=1

αk

b
p

k

< ∞, E

(

sup
n≥1

∣
∣
∣
∣
g(Sn)
bn

∣
∣
∣
∣

p
)

≤ 4
∞∑

n=1

αn

b
p
n

< ∞. (2.14)

If further one assumes that αk > 0 for infinitely many k, then

E

(

sup
n≥1

∣
∣
∣
∣
g(Sn)
βn

∣
∣
∣
∣

p
)

≤ 4
∞∑

n=1

αn

β
p
n

< ∞. (2.15)

Proof. By the condition of the theorem, we can see that αn ≥ 0 for all n ≥ 1. Thus,

E

[
max
1≤k≤n

g(Sk)
]p

≤
(

p

p − 1

)p

E
(
g(Sn)

)p =
n∑

k=1

αk (2.16)

follows from (2.9) for each n ≥ 1. By (2.12), we have

∞∑

n=1

αn

b
p
n

=
(

p

p − 1

)p ∞∑

n=1

E
(
g(Sn)

)p − E
(
g(Sn−1)

)p

b
p
n

< ∞. (2.17)

Therefore, limn→∞(g(Sn)/bn) = 0 a.s. follows from Lemma 1.6, (2.16), and (2.17); (1.9),
(1.10), (2.14), (2.15) hold. This completes the proof of the theorem.

In Theorem 2.5, if we assume that g(x) is a nonnegative and nondecreasing convex
function on R with g(0) = 0, then the condition “E(g(Sk−1))

p ≤ E(g(Sk))
p for each k ≥ 1” is

satisfied.

Remark 2.6. Theorem 2.5 generalizes and improves the results of Theorem 2.2 in Christofides
[3] and Theorem 2.7 in Prakasa Rao [6].

Theorem 2.7. Let p > 1 and {Sn, n ≥ 1} a demimartingale with E|Sk|p < ∞ for each k ≥ 1. Let
{bn, n ≥ 1} be a nondecreasing sequence of positive numbers. If

∞∑

k=1

E|Sk|p − E|Sk−1|p
b
p

k

< ∞, (2.18)

then for any 0 < r < p,

E

(

sup
k≥1

∣∣∣∣
Sk

bk

∣∣∣∣

r
)

≤ 1 +
2r

p − r

∞∑

k=1

E|Sk|p − E|Sk−1|p
b
p

k

< ∞. (2.19)
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Proof. Taking n = 1, ν = p and ck = 1/bk in Lemma 1.8, we have

P

{
max
1≤k≤N

∣
∣
∣
∣
Sk

bk

∣
∣
∣
∣ ≥ ε

}
≤ 2

εp

N∑

k=1

E|Sk|p − E|Sk−1|p
b
p

k

. (2.20)

Thus, by (2.20) and (2.18), we can get

E

(

sup
k≥1

∣
∣
∣
∣
Sk

bk

∣
∣
∣
∣

r
)

≤ 1 +
∫∞

1
P

(

sup
k≥1

∣
∣
∣
∣
Sk

bk

∣
∣
∣
∣

r

> t

)

dt = 1 +
∫∞

1
lim

N→∞
P

(
max
1≤k≤N

∣
∣
∣
∣
Sk

bk

∣
∣
∣
∣ > t1/r

)
dt

≤ 1 +
2r

p − r

∞∑

k=1

E|Sk|p − E|Sk−1|p
b
p

k

< ∞.

(2.21)

Theorem 2.8. Let {Sn, n ≥ 1} be a demisubmartingale and g a nondecreasing and nonnegative
convex function on R with g(0) = 0 and g(Si) ∈ L1, i ≥ 1. Let {ck, k ≥ 1} be a nonincreasing
sequence of positive numbers. Then for all 0 < p < 1 and each n ≥ 1,

E

[
max
1≤k≤n

ckg(Sk)
]p

≤ (cnEg(Sn)
)p−1
⎡

⎣cnEg(Sn) +
p

1 − p

n∑

j=1

cjE
(
g
(
Sj

) − g
(
Sj−1
))
⎤

⎦. (2.22)

Proof. By Fubini theorem, it is easy to check that

E

[
max
1≤k≤n

ckg(Sk)
]p

= p

∫∞

0
xp−1P

(
max
1≤k≤n

ckg(Sk) ≥ x

)
dx

≤ p

∫ cnEg(Sn)

0
xp−1dx + p

∫∞

cnEg(Sn)
xp−1P

(
max
1≤k≤n

ckg(Sk) ≥ x

)
dx

=
(
cnEg(Sn)

)p + p

∫∞

cnEg(Sn)
xp−1P

(
max
1≤k≤n

ckg(Sk) ≥ x

)
dx.

(2.23)

It follows from Lemma 1.7(i) and Lemma 1.9(ii) that

p

∫∞

cnEg(Sn)
xp−1P

(
max
1≤k≤n

ckg(Sk) ≥ x

)
dx ≤ p

∫∞

cnEg(Sn)
xp−2

n∑

j=1

cjE
(
g
(
Sj

) − g
(
Sj−1
))
dx

=
p

1 − p

(
cnEg(Sn)

)p−1 n∑

j=1

cjE
(
g
(
Sj

) − g
(
Sj−1
))
.

(2.24)

Therefore, (2.22) follows from the above statements immediately.
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Corollary 2.9. Let the conditions of Theorem 2.8 be satisfied with ck ≡ 1 for each k ≥ 1. Then for all
0 < p < 1 and each n ≥ 1,

E

[
max
1≤k≤n

g(Sk)
]p

≤ 1
1 − p

(
Eg(Sn)

)p
. (2.25)

By Corollary 2.9, we can get the following theorem.

Theorem 2.10. Let {Sn, n ≥ 1} be a demisubmartingale and g a nondecreasing and nonnegative
convex function on R with g(0) = 0 and g(Si) ∈ L1, i ≥ 1. Let {bn, n ≥ 1} be a nondecreasing
unbounded sequence of positive numbers. If there exists some 0 < p < 1 such that

∞∑

n=1

(
Eg(Sn)

)p − (Eg(Sn−1)
)p

b
p
n

< ∞, (2.26)

then limn→∞(g(Sn)/bn) = 0 a.s., and (1.9)-(1.10) hold (Sn is replaced by g(Sn)), where

αn =
1

1 − p

[(
Eg(Sn)

)p − (Eg(Sn−1)
)p]

, n ≥ 1. (2.27)

In addition,

E

(
max
1≤k≤n

∣∣∣∣
g(Sk)
bk

∣∣∣∣

p)
≤ 4

n∑

k=1

αk

b
p

k

< ∞, E

(

sup
n≥1

∣∣∣∣
g(Sn)
bn

∣∣∣∣

p
)

≤ 4
∞∑

n=1

αn

b
p
n

< ∞. (2.28)

If further one assumes that αk > 0 for infinitely many k, then

E

(

sup
n≥1

∣∣∣∣
g(Sn)
βn

∣∣∣∣

p
)

≤ 4
∞∑

n=1

αn

β
p
n

< ∞. (2.29)

Similar to the proof of Theorem 2.8 and using Lemma 1.9(i), we can get the following.

Theorem 2.11. Let {Sn, n ≥ 1} be a nonnegative demisubmartingale. Then for all 0 < p < 1,
E[max1≤k≤nSk]

p ≤ (1/(1 − p))(ESn)
p.
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