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1. Introduction

Let & denote the class of all functions of the form
f(z) = z+Zakzk (1.1)
k=2

which are analytic in the open unit disk U := {z € C : |z| < 1}, and S = {f € 4 :
f is univalent in U}.
For f € o, Al-Oboudi [1] introduced the following operator:

D°f(2) = f(2), (1.2)
D'f(z) = (1-6)f(z) + 62f'(z) = Dsf(2), 620, (1.3)
D"f(z) = Ds(D"'f(z)), (neN:={1,2,3,...}). (1.4)
If f is given by (1.1), then from (1.3) and (1.4) we see that
D"f(z) =z + i [1+(k-1)6]"axz*, (neNy:=NuU{0}), (1.5)
k=2

with D" f(0) = 0.

When 6 =1, we get Sildgean’s differential operator [2].

By using the Al-Oboudi differential operator, we introduce the following integral
operator.
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Definition 1.1. Let n,m € Ng and a; € C, 1 < i < m. We define the integral operator
I(fi,...  fm) 1 A™ = A,

z /pDn t ay D" m t Am
I(fi,---s fm)(2) :=f (#) ( ft ()> dt (zel), (1.6)
0
where f; € & and D" is the Al-Oboudi differential operator.
Remark 1.2. (i) Forn =0,m=1,a1 =1, = a3 = --- = a,, = 0, and D°fy(z) := D°f(z) =
f(z) € #, we have Alexander integral operator
f®
I(f)(2) :=f det (1.7)
0
which was introduced in [3].
(i) Forn=0,m=1, a1 =a € [0,1],a0=a3 =--- = a,, = 0,and D°f1(z) := D°f(z) =
f(z) € 8, we have the integral operator
BN
L@ = [ (£2) a (18)
0

that was studied in [4].
(iii) Forn = 0, m € Ny, a; € C, Dofi(z) = fi(z) € 8,1 <i < m, we have the integral
operator

_ z fl (t) aq fm(t) o
which was studied in [5].
(iv)Forn=0,m=1,a; =y, ap =a3 =--- = ay, = 0 and D°f;(z) := D°f(z) = f(z), we

have the integral operator

L(f)(z) == I:(@)Ydt (1.10)

which was studied in [6, 7].

2. Main results

The following lemmas will be required in our investigation.

Lemma 2.1 (see [8]). If the function f is reqular in the unit disk U, f(z) = z + axz> + -+, and

Zf"(Z)

(1-1z) ) <1, (2.1)

forall z € U, then the function f is univalent in U.
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Lemma 2.2 (Schwarz Lemma) (see [9, page 166]). Let the analytic function f(z) be reqular in U

and let £(0) = 0.If, in U, | f (z)| < 1, then
|f(z)] <lzl, (z€U),

and |f'(0)| < 1.
The equality holds if and only if f(z) = Kz and |K| = 1.

Theorem 2.3. Let n,m e Ny, a; € C,and fie 4,1 <i<m. If

z(D"fi(2))

D" fi(z) -1

<1,

lar| + -+ |am| <1,
then I(f1,..., fm)(z) defined in Definition 1.1 is univalent in U.

Proof. Since f; € #,1 <i < m, by (1.5), we have

D" fz(z) =1+ Z [1 + (k ]_ ak,iZk_1 (7’1 € NO)/

=
fi(Z)#O

z

forall z € U.
On the other hand, we obtain

o o= (ZLE) . (Y

for z € U. This equality implies that

D" fl(Z) D" fin(2)

InI'(fi,..., fm)(z) =aiIn

+ +ayln

or equivalently

InI'(fi,..., fm)(z) = [InD" fi(z) —Inz] + -+ + & [ In D" f,,(z) — In 2].

By differentiating the above equality, we get

U(fioi ) (2) 2 [(D"ﬁ(z)) _1]
I'(fl,.-- fm)(z) i=1

M

D" fi(z) z|

After some calculus, we obtain

m

z2ZI"(f1,..., fm)(2) Z

I'(fi,..., fm)(2)

[EG2ZC)E.
D"fi(z) '

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)
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By hypothesis, since |z(D" fi(z))' /D" fi(z)-1| <1, 1 <i < m (z € U), and since |a; |+ - -+|a,,| <
1 we have

m

< | <1 (2.10)

i=1

z2I"(f1,..., fm)(2)
I’(fl,...,fm)(z)

So, we obtain

zI"(f1, ... fm)(z)
Il(fll . fm)( )

Thus I(f1,..., fm)(z) € S. O

(1-12)

“ 2P <1 (2.11)

Remark 2.4. Forn =0, D°fi(z) = fi(z) € S,1 <i < m, we have [5, Theorem 1].

Corollary 2.5. Let n,m € Ng, a; >0, and fie 4,1 <i<m.If

z(D"fi(z))'

Difis)

<1, (zeD), (2.12)

and oy + -+ a,, <1, then I(f1,..., fm)(2) € S.
Theorem 2.6. Letn,m e Ny, a; €C, and fie A4, 1<i<m. If

i) ID"fi(2)| <1,
(ii) |22(D" fi(2))'/ (D" fi(2))* = 1| < 1 (z € U), and

(iii) |ar| + - + |am| <1/3,
then I(f1,..., fm)(z) defined in Definition 1.1 is univalent in U.

Proof. By (2.9), we get

2L (fr,- f)@)| IECIIO)S
(1 T )@ ~ 2| )Z| D (3 1‘. (2.13)
This inequality implies that
[ G @) S EGIZE
(1 |Z|) I'(flz fm)() - |z| );[ an() +|“1|]
2(D"fi(=))' | D" fi(2)] o
i(z z
= (1- 12| )Z[ D@y |1 Iall].
By Schwarz lemma (Lemma 2.2), we have
1= ey | L ) @) g [ |ZL =) | ] 215
(== p(fl,...,fm)()“( g )Z oy | 219
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or
zI"(fi,..., fm)(2) m 22(D"fi(z))'
(1- 12| (oo fm) < (1—|z|2)z[|ai| Z(D"fi=) 2) — 1| +2]a]
I'(fi,. ) fm)(2) i-1 (D"fi(2))
< (1=12) X [la] + 2[ai]]
i=1
. (2.16)
=3(1-121) > |ail
i=1
<1-|zf
<1,
forall z € U.
So, by Lemma 2.1, I(f1,..., fm)(z) € S. O
Remark 2.7. Forn =0, m =1,y =a € C, |a| <1/3, a0 = a3 = --- = a,, = 0, we have [7,
Theorem 1].

Corollary 2.8. Let n,m € No, a; >0, and fie 4,1 <i<m.If

(i) ID"fi(z)| <1,
(ii) |22(D" fi(2))'/ (D" fi(2))* = 1| £ 1 (z € U), and

(iii) ey +--- + a4, < 1/3,
then I(f1,..., fm)(z) € S.

In [10], similar results are given by using the Ruscheweyh differential operator.

References

[1] F. M. Al-Oboudi, “On univalent functions defined by a generalized Sildgean operator,” International
Journal of Mathematics and Mathematical Sciences, vol. 2004, no. 27, pp. 1429-1436, 2004.

[2] G. S. Sédldgean, “Subclasses of univalent functions,” in Complex Analysis—Fifth Romanian-Finnish
Seminar, Part 1 (Bucharest, 1981), vol. 1013 of Lecture Notes in Mathematics, pp. 362-372, Springer, Berlin,
Germany, 1983.

[3] J. W. Alexander, “Functions which map the interior of the unit circle upon simple regions,” Annals of
Mathematics, vol. 17, no. 1, pp. 12-22, 1915.

[4] S.S. Miller, P. T. Mocanu, and M. O. Reade, “Starlike integral operators,” Pacific Journal of Mathematics,
vol. 79, no. 1, pp. 157-168, 1978.

[5] D. Breaz and N. Breaz, “Two integral operators,” Studia Universitatis Babes-Bolyai, Mathematica, vol.
47, no. 3, pp. 13-19, 2002.

[6] V.Pescar, “On some integral operations which preserve the univalence,” The Punjab University. Journal
of Mathematics, vol. 30, pp. 1-10, 1997.

[7] V. Pescar and S. Owa, “Sufficient conditions for univalence of certain integral operators,” Indian
Journal of Mathematics, vol. 42, no. 3, pp. 347-351, 2000.

[8] J. Becker, “Lownersche Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen,”
Journal fiir die Reine und Angewandte Mathematik, vol. 255, pp. 23-43, 1972.

[9] Z. Nehari, Conformal Mapping, Dover, New York, NY, USA, 1975.

[10] G.I. Oros, G. Oros, and D. Breaz, “Sufficient conditions for univalence of an integral operator,” Journal
of Inequalities and Applications, vol. 2008, Article ID 127645, 7 pages, 2008.



	Introduction
	Main results
	References

