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Recently, the stability of the cubic functional equation f(2x + y) + f(2x − y) = 2f(x + y) + 2f(x −
y) + 12f(x) in fuzzy normed spaces was proved in earlier work; and the stability of the additive
functional equations f(x + y) = f(x) + f(y), 2f((x + y)/2) = f(x) + f(y) in random normed
spaces was proved as well. In this paper, we prove the stability of the cubic functional equation
f(2x + y) + f(2x − y) = 2f(x + y) + 2f(x − y) + 12f(x) in random normed spaces by an alternative
proof which provides a better estimation. Finally, we prove the stability of the quartic functional
equation f(2x + y) + f(2x − y) = 4f(x + y) + 4f(x − y) + 24f(x) − 6f(y) in random normed spaces.
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1. Introduction and preliminaries

The study of stability problems for functional equations is related to a question of Ulam
[1] concerning the stability of group homomorphisms and affirmatively answered for
Banach spaces by Hyers [2]. Subsequently, the result of Hyers was generalized by Aoki [3]
for additive mappings and by Th. M. Rassias [4] for linear mappings by considering an
unbounded Cauchy difference. The paper of Th. M. Rassias has provided a lot of influence in
the development of what we now call Hyers-Ulam-Rassias stability of functional equations.
We refer the interested readers for more information on such problems to the papers [5–9].
The functional equation

f(2x + y) + f(2x − y) = 2f(x + y) + 2f(x − y) + 12f(x) (1.1)
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is said to be the cubic functional equation since the function f(x) = cx3 is its solution. Every
solution of the cubic functional equation is said to be a cubic mapping. The stability problem
for the cubic functional equation was proved by Jun and Kim [10] for mappings f : X → Y ,
where X is a real normed space and Y is a Banach space. Later, a number of mathematicians
haveworked on the stability of some types of the cubic equation [11]. The functional equation

f(2x + y) + f(2x − y) = 4f(x + y) + 4f(x − y) + 24f(x) − 6f(y) (1.2)

is said to be the quadratic functional equation since the function f(x) = cx4 is its solution.
Every solution of the quadratic functional equation is said to be a quadratic mapping. The
stability problem for the quadratic functional equation first was proved by J. M. Rassias
[12] for mappings f : X → Y , where X is a real normed space and Y is a Banach space.
In addition, Mirmostafaee et al. [13–15], Alsina [16], Miheţ and Radu [17] investigated the
stability in the settings of fuzzy, probabilistic, and random normed spaces.

In the sequel, we will adopt the usual terminology, notations, and conventions of
the theory of random normed spaces as in [17–21]. Throughout this paper, the space of all
probability distribution functions is denoted by

Δ+ =
{
F : R ∪ {−∞,+∞} −→ [0, 1] : F is left-continuous

and nondecreasing on R and F(0) = 0, F(+∞) = 1
}
,

(1.3)

and the subset D+ ⊆ Δ+ is the set D+ = {F ∈ Δ+ : l−F(+∞) = 1}, where l−f(x) denotes the
left limit of the function f at the point x. The spaceΔ+ is partially ordered by the usual point-
wise ordering of functions, that is, F ≤ G if and only if F(t) ≤ G(t) for all t ∈ R. The maximal
element for Δ+ in this order is the distribution function given by

ε0(t) =

⎧
⎨

⎩

0, if t ≤ 0,

1, if t > 0.
(1.4)

Definition 1.1 (see [17]). A function T : [0, 1]× [0, 1] → [0, 1] is a continuous triangular norm
(briefly, a t-norm) if T satisfies the following conditions:

(a) T is commutative and associative;

(b) T is continuous;

(c) T(a, 1) = a for all a ∈ [0, 1];

(d) T(a, b) ≤ T(c, d)whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Three typical examples of continuous t-norms are T(a, b) = ab, T(a, b) = max(a + b −
1, 0), and T(a, b) = min(a, b).

Definition 1.2. A random normed space (briefly, RN-space) is a triple (X, μ, T), where X is
a vector space, T is a continuous t-norm, and μ is a mapping from X into D+ such that
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the following conditions hold:

(PN1) μx(t) = ε0(t) for all t > 0 if and only if x = 0;

(PN2) μαx(t) = μx(t/|α|) for all x in X, α/= 0 and all t ≥ 0;

(PN3) μx+y(t + s) ≥ T(μx(t), μy(s)) for all x, y ∈ X and all t, s ≥ 0.

Definition 1.3. Let (X, μ, T) be an RN-space.

(1) A sequence {xn} in X is said to be convergent to x in X if, for every t > 0 and ε > 0,
there exists a positive integer N such that μxn−x(t) > 1 − ε whenever n ≥ N.

(2) A sequence {xn} in X is called a Cauchy sequence if, for every t > 0 and ε > 0, there
exists a positive integer N such that μxn−xm(t) > 1 − ε whenever n ≥ m ≥ N.

(3) An RN-space (X, μ, T) is said to be complete if and only if every Cauchy sequence in
X is convergent to a point in X.

Theorem 1.4 (see [20]). If (X, μ, T) is an RN-space and {xn} is a sequence such that xn → x, then
limn→∞μxn(t) = μx(t).

Lemma 1.5. Let (X, μ,min) be an RN-space and define Eλ,μ : X → R
+ ∪ {0} by

Eλ,μ(x) = inf{t > 0 : μx(t) > 1 − λ}, ∀λ ∈]0, 1[, x ∈ X. (1.5)

Then, one has

Eλ,μ(x1 − xn) ≤ Eλ,μ(x1 − x2) + · · · + Eλ,μ(xn−1 − xn), (1.6)

for all x1, . . . , xn ∈ X and the sequence {xn} is convergent to x with respect to random norm μ if and
only if Eλ,μ(xn − x) → 0 as n → ∞. Also, the sequence {xn} is a Cauchy sequence with respect to
random norm μ if and only if it is a Cauchy sequence with Eλ,μ.

Proof. By the triangular inequality, we have

μx1−xn

(
Eλ, μ(x1 − x2) + · · · + Eλ, μ(xn−1 − xn) + (n − 1)δ

)

≥ min
(
μx1−x2

(
Eλ, μ(x1 − x2) + δ

)
, . . . , μxn−1−xn

(
Eλ, μ(xn−1 − xn) + δ

))

> min(1 − λ, . . . , 1 − λ)

= 1 − λ, ∀δ > 0,

(1.7)

which implies that

Eλ,μ(x1 − xn) ≤ Eλ,μ(x1 − x2) + Eλ,μ(x2 − x3) + · · · + Eλ,μ(xn−1 − xn) + (n − 1)δ. (1.8)

Since δ > 0 is arbitrary, we have

Eλ,μ(x1 − xn) ≤ Eλ,μ(x1 − x2) + Eλ,μ(x2 − x3) + · · · + Eλ,μ(xn−1 − xn). (1.9)
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Next, we have μxn−x(η) > 1 − λ ⇔ Eλ,μ(xn − x) < η for every η > 0. This completes the
proof.

In this paper, we establish the stability of the cubic and quadratic functional equations
in the setting of random normed spaces.

2. On the stability of cubic mappings in RN-spaces

Theorem 2.1. Let X be a linear space, (Z, μ′,min) an RN-space, and ϕ : X × X → Z a function
such that for some 0 < α < 8,

μ′
ϕ(2x,0)(t) ≥ μ′

αϕ(x,0)(t), ∀x ∈ X, t > 0, (2.1)

f(0) = 0 and limn→∞μ′
ϕ(2nx,2ny)(8

nt) = 1 for all x, y ∈ X and all t > 0. Let (Y, μ,min) be a complete
RN-space. If f : X → Y is a mapping such that

μf(2x+y)+f(2x−y)−2f(x+y)−2f(x−y)−12f(x)(t) ≥ μ′
ϕ(x,y)(t), ∀x, y ∈ X, t > 0, (2.2)

then there exists a unique cubic mapping C : X → Y such that

μf(x)−C(x)(t) ≥ μ′
ϕ(x,0)(2(8 − α)t)). (2.3)

Proof. From (2.2), it follows that

Eλ, μ

(
f(2x + y) + f(2x − y) − 2f(x + y) − 2f(x − y) − 12f(x)

)

= inf
{
t > 0 : μf(2x+y)+f(2x−y)−2f(x+y)−2f(x−y)−12f(x)(t) > 1 − λ

}

≤ inf
{
t > 0 : μ′

ϕ(x, y)(t) > 1 − λ
}

= Eλ, μ′(ϕ(x, y)), ∀x, y ∈ X, λ ∈ (0, 1).

(2.4)

Putting y = 0 in (2.4), we get

Eλ, μ

(
f(2x)

8
− f(x)

)

≤ 1
16

Eλ, μ′(ϕ(x, 0)), ∀x ∈ X. (2.5)

Replacing x by 2nx in (2.5) and using (2.1), we obtain

Eλ, μ

(
f(2n+1x)

8n+1
− f(2nx)

8n

)

≤ 1
16 × 8n

Eλ, μ′
(
ϕ(2nx, 0)

)

≤ αn

16 × 8n
Eλ, μ′(ϕ(x, 0)).

(2.6)
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It follows from (f(2nx)/8n) − f(x) =
∑n−1

k=0((f(2
k+1x)/8k+1) − (f(2kx)/8k)) and (2.6) that

Eλ, μ

(
f(2nx)

8n
− f(x)

)

= Eλ, μ

(
n−1∑

k=0

(
f(2k+1x)

8k+1
− f(2kx)

8k

))

≤
n−1∑

k=0

Eλ, μ

(
f(2k+1x)

8k+1
− f(2kx)

8k

)

≤
n−1∑

k=0

1
16 × 8k

Eλ, μ′
(
ϕ(2kx, 0)

)

≤
n−1∑

k=0

αk

16 × 8k
Eλ, μ′

(
ϕ(x, 0)

)
.

(2.7)

Replacing x with 2mx in (2.7), we observe that

Eλ, μ

(
f(2n+mx)

8n+m
− f(2mx)

8m

)

≤
n−1∑

k=0

αk

16 × 8k+m
Eλ, μ′

(
ϕ(2mx, 0)

)

≤
n−1∑

k=0

αk+m

16 × 8k+m
Eλ, μ′(ϕ(x, 0))

≤
m+n−1∑

k=m

αk

16 × 8k
Eλ, μ′(ϕ(x, 0))

=
Eλ, μ′(ϕ(x, 0))

16

m+n−1∑

k=m

(
α

8

)k

.

(2.8)

Then {f(2nx)/8n} is a Cauchy sequence in (Y, μ,min). Since (Y, μ,min) is a complete RN-
space, this sequence converges to some point C(x) ∈ Y . Fix x ∈ X and put m = 0 in (2.8).
Then we obtain

Eλ,μ

(
f(2nx)

8n
− f(x)

)

≤ Eλ,μ′(ϕ(x, 0))
16

n−1∑

k=0

(
α

8

)k

, (2.9)

and so

Eλ,μ(C(x) − f(x)) ≤ Eλ,μ

(

C(x) − f(2nx)
8n

)

+ Eλ,μ

(
f(2nx)

8n
− f(x)

)

≤ Eλ,μ

(

C(x) − f(2nx)
8n

)

+
Eλ,μ′(ϕ(x, 0))

16

n−1∑

k=0

(
α

8

)k

.

(2.10)
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Taking the limit as n → ∞ and using (2.10), we get

Eλ,μ(C(x) − f(x)) ≤ Eλ,μ′(ϕ(x, 0))
16 − 2α

, (2.11)

that is,

inf{t > 0 : μC(x)−f(x)(t) > 1 − λ} ≤ inf{t > 0 : μ′
ϕ(x,0)(2t(8 − α)) > 1 − λ}. (2.12)

Then, we have

μC(x)−f(x)(t) ≥ μ′
ϕ(x,0)(2t(8 − α)). (2.13)

Replacing x and y by 2nx and 2ny in (2.2), respectively, we get

μf(2n(2x+y))/8n+f(2n(2x−y))/8n−2f(2n(x+y))/8n−2f(2n(x−y))/8n−12f(2n(x))/8n(t)

≥ μ′
ϕ(2nx,2ny)(8

nt), ∀x, y ∈ X, t > 0.
(2.14)

Since limn→∞μ′
ϕ(2nx,2ny)(8

nt) = 1, we conclude that C fulfills (1.1).
To prove the uniqueness of the cubic mapping C, assume that there exists a cubic

mapping D : X → Y which satisfies (2.3). Fix x ∈ X. Clearly, C(2nx) = 8nC(x) and
D(2nx) = 8nD(x) for all n ∈ N. It follows from (2.3) that

μC(x)−D(x)(t) = lim
n→∞

μ(C(2nx)/8n)−(D(2nx)/8n)(t),

μ(C(2nx)/8n)−(D(2nx)/8n)(t) ≥ min
{
μ(C(2nx)/8n)−(f(2nx)/8n)

(
t

2

)
, μ(D(2nx)/8n)−(f(2nx)/8n)

(
t

2

)}

≥ μ′
ϕ(2nx,0)(8

n(8 − α)t)

≥ μ′
ϕ(x,0)

(
8n(8 − α)t

αn

)
.

(2.15)

Since limn→∞(8n(8 − α)t/αn) = ∞, we get limn→∞μ′
ϕ(x,0)((8

n(8 − α)t)/αn) = 1. Therefore, it
follows that μC(x)−D(x)(t) = 1 for all t > 0 and so C(x) = D(x). This completes the proof.

Corollary 2.2. Let X be a linear space, (Z, μ′,min) an RN-space, and (Y, μ,min) a complete RN-
space. Let p, q be nonnegative real numbers and let z0 ∈ Z. If f : X → Y is a mapping such that

μf(2x+y)+f(2x−y)−2f(x+y)−2f(x−y)−12f(x)(t) ≥ μ′
(‖x‖p+‖y‖q)z0(t), ∀x, y ∈ X, t > 0, (2.16)

f(0) = 0 and p, q < 3, then there exists a unique cubic mapping C : X → Y such that

μf(x)−C(x)(t) ≥ μ′
‖x‖pz0

(
2(8 − 2p)t)

)
, ∀x ∈ X, t > 0. (2.17)
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Proof. Let ϕ : X × X → Z be defined by ϕ(x, y) = (‖x‖p + ‖y‖q)z0. Then the proof follows
from Theorem 2.1 by α= 2p.

Corollary 2.3. Let X be a linear space, (Z, μ′,min) an RN-space, and (Y, μ,min) a complete RN-
space. Let z0 ∈ Z. If f : X → Y is a mapping such that

μf(2x+y)+f(2x−y)−2f(x+y)−2f(x−y)−12f(x)(t) ≥ μ′
εz0

(t), ∀x, y ∈ X, t > 0, (2.18)

and f(0) = 0, then there exists a unique cubic mapping C : X → Y such that

μf(x)−C(x)(t) ≥ μ′
εz0

(14t), ∀x ∈ X, t > 0. (2.19)

Proof. Let ϕ : X × X → Z be defined by ϕ(x, y) = εz0. Then, the proof follows from
Theorem 2.1 by α = 1.

3. On the stability of quadratic mappings in RN-spaces

Theorem 3.1. Let X be a linear space, (Z, μ′,min) an RN-space, and ϕ : X × X → Z a function
such that for some 0 < α < 16,

μ′
ϕ(2x,0)(t) ≥ μ′

αϕ(x,0)(t), ∀x ∈ X, t > 0, (3.1)

f(0) = 0 and limn→∞μ′
ϕ(2nx,2ny)(16

nt) = 1 for all x, y ∈ X and all t > 0. Let (Y, μ,min) be a
complete RN-space. If f : X → Y is a mapping such that

μf(2x+y)+f(2x−y)−4f(x+y)−4f(x−y)−24f(x)+6f(y)(t) ≥ μ′
ϕ(x,y)(t), ∀x, y ∈ X, t > 0, (3.2)

then there exists a unique quadratic mapping Q : X → Y such that

μf(x)−Q(x)(t) ≥ μ′
ϕ(x,0)(2(16 − α)t)). (3.3)

Proof. From (3.2), it follows that

Eλ, μ

(
f(2x + y) + f(2x − y) − 4f(x + y) − 4f(x − y) − 24f(x) + 6f(y)

)

= inf
{
t > 0 : μf(2x+y)+f(2x−y)−4f(x+y)−4f(x−y)−24f(x)+6f(y)(t) > 1 − λ

}

≤ inf
{
t > 0 : μ′

ϕ(x, y)(t) > 1 − λ
}

= Eλ, μ′(ϕ(x, y)), ∀x, y ∈ X, λ ∈ (0, 1).

(3.4)

Putting y = 0 in (3.4), we get

Eλ,μ

(
f(2x)
16

− f(x)
)

≤ 1
32

Eλ,μ′(ϕ(x, 0)), ∀x ∈ X. (3.5)
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Replacing x by 2nx in (3.5) and using (3.1), we obtain

Eλ, μ

(
f(2n+1x)

16n+1
− f(2nx)

16n

)
≤ 1

32 × 16n
Eλ, μ′

(
ϕ(2nx, 0)

)

≤ αn

32 × 16n
Eλ, μ′(ϕ(x, 0)).

(3.6)

It follows from (f(2nx)/16n) − f(x) =
∑n−1

k=0((f(2
k+1x)/16k+1) − (f(2kx)/8k)) and (3.6) that

Eλ,μ

(
f(2nx)
16n

− f(x)
)

= Eλ,μ

(n−1∑

k=0

(
f(2k+1x)

16k+1
− f(2kx)

16k

))

≤
n−1∑

k=0

Eλ,μ

(
f(2k+1x)

16k+1
− f(2kx)

16k

)

≤
n−1∑

k=0

1

32 × 16k
Eλ,μ′(ϕ(2kx, 0))

≤
n−1∑

k=0

αk

32 × 16k
Eλ,μ′(ϕ(x, 0)).

(3.7)

Replacing x with 2mx in (3.7), we observe that

Eλ, μ

(
f(2n+mx)
16n+m

− f(2mx)
16m

)
≤

n−1∑

k=0

αk

32 × 16k+m
Eλ, μ′

(
ϕ(2mx, 0)

)

≤
n−1∑

k=0

αk+m

32 × 16k+m
Eλ, μ′(ϕ(x, 0))

≤
m+n−1∑

k=m

αk

32 × 16k
Eλ, μ′(ϕ(x, 0))

=
Eλ, μ′(ϕ(x, 0))

32

m+n−1∑

k=m

(
α

16

)k

.

(3.8)

Then {f(2nx)/16n} is a Cauchy sequence in (Y, μ,min). Since (Y, μ,min) is a complete RN-
space, this sequence converges to some point Q(x) ∈ Y . Fix x ∈ X and put m = 0 in (3.8).
Then we obtain

Eλ,μ

(
f(2nx)
16n

− f(x)
)

≤ Eλ,μ′(ϕ(x, 0))
32

n−1∑

k=0

(
α

16

)k

, (3.9)
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and so

Eλ,μ(Q(x) − f(x)) ≤ Eλ,μ

(
Q(x) − f(2nx)

16n

)
+ Eλ,μ

(
f(2nx)
16n

− f(x)
)

≤ Eλ,μ

(
Q(x) − f(2nx)

16n

)
+
Eλ,μ′(ϕ(x, 0))

32

n−1∑

k=0

(
α

16

)k

.

(3.10)

Taking the limit as n → ∞ and using (3.10), we get

Eλ,μ(Q(x) − f(x)) ≤ Eλ,μ′(ϕ(x, 0))
32 − 2α

, (3.11)

that is,

inf{t > 0 : μQ(x)−f(x)(t) > 1 − λ} ≤ inf{t > 0 : μ′
ϕ(x,0)(2t(16 − α)) > 1 − λ}. (3.12)

Then, we have

μQ(x)−f(x)(t) ≥ μ′
ϕ(x,0)(2t(16 − α)). (3.13)

Replacing x and y by 2nx and 2ny in (3.2), respectively, we get

μf(2n(2x+y))/16n+f(2n(2x−y))/16n−4f(2n(x+y))/16n−4f(2n(x−y))/16n−24f(2n(x))/16n+6f(2n(y))/16n(t)

≥ μ′
ϕ(2nx,2ny)(16

nt), ∀x, y ∈ X, t > 0.
(3.14)

Since limn→∞μ′
ϕ(2nx,2ny)(16

nt) = 1, we conclude that Q fulfills (1.2).
To prove the uniqueness of the quadratic mapping Q, assume that there exists a

quadratic mapping D : X → Y which satisfies (3.3). Fix x ∈ X. Clearly, Q(2nx) = 16nQ(x)
and D(2nx) = 16nD(x) for all n ∈ N. It follows from (3.3) that

μQ(x)−D(x)(t) = lim
n→∞

μ(Q(2nx)/16n)−(D(2nx)/16n)(t),

μ(Q(2nx)/16n)−(D(2nx)/16n)(t) ≥ min
{
μ(Q(2nx)/16n)−(f(2nx)/16n)

(
t

2

)
, μ(D(2nx)/8n)−(f(2nx)/8n)

(
t

2

)}

≥ μ′
ϕ(2nx, 0)

(
16n(16 − α)t

)

≥ μ′
ϕ(x, 0)

(
16n(16 − α)t

αn

)
.

(3.15)

Since limn→∞(16n(16 − α)t/αn) = ∞, we get limn→∞μ′
ϕ(x,0)(16

n(16 − α)t/αn) = 1. Therefore, it
follows that μQ(x)−D(x)(t) = 1 for all t > 0 and so Q(x) = D(x). This completes the proof.



10 Journal of Inequalities and Applications

Corollary 3.2. Let X be a linear space, (Z, μ′,min) an RN-space, and (Y, μ,min) a complete RN-
space. Let p, q be nonnegative real numbers and let z0 ∈ Z. If f : X → Y is a mapping such that

μf(2x+y)+f(2x−y)−4f(x+y)−4f(x−y)−24f(x)+6f(y)(t) ≥ μ′
(‖x‖p+‖y‖q)z0(t), ∀x, y ∈ X, t > 0, (3.16)

f(0) = 0 and p, q < 4, then there exists a unique quadratic mapping Q : X → Y such that

μf(x)−Q(x)(t) ≥ μ′
‖x‖pz0

(
2(16 − 2p)t)

)
, ∀x ∈ X, t > 0. (3.17)

Proof. Let ϕ : X × X → Z be defined by ϕ(x, y) = (‖x‖p + ‖y‖q)z0. Then, the proof follows
from Theorem 3.1 by α= 2p.

Corollary 3.3. Let X be a linear space, (Z, μ′,min) an RN-space, and (Y, μ,min) a complete RN-
space. Let z0 ∈ Z. If f : X → Y is a mapping such that

μf(2x+y)+f(2x−y)−4f(x+y)−4f(x−y)−24f(x)+6f(y)(t) ≥ μ′
εz0

(t), ∀x, y ∈ X, t > 0, (3.18)

and f(0) = 0, then there exists a unique quadratic mapping Q : X → Y such that

μf(x)−Q(x)(t) ≥ μ′
εz0

(30t), ∀x ∈ X, t > 0. (3.19)

Proof. Let ϕ : X × X → Z be defined by ϕ(x, y) = εz0. Then, the proof follows from
Theorem 3.1 by α = 1.
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