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1. Introduction

LetH = H(U) denote the class of analytic functions in the open unit disk U = {z ∈ C : |z| < 1}.
For a ∈ C and n ∈ N = {1, 2, . . .}, let

H[a, n] :=
{
f ∈ H : f(z) = a + anzn + an+1zn+1 + · · · }. (1.1)

We denote by A the subclass of H[a, 1] with the usual normalization f(0) = f ′(0) − 1 = 0, and
denote by A the subclass ofA satisfying the condition h(z)h′(z) /= 0 for z ∈ U \ {0}.

Let f and F be members of H. The function f is said to be subordinate to F, or F is said
to be superordinate to f, if there exists a functionw analytic in U withw(0) = 0 and |w(z)| < 1
for z ∈ U and such that f(z) = g(w(z)) (z ∈ U). In such a case, we write

f ≺ F or f(z) ≺ F(z). (1.2)

If the function F is univalent in U, then

f ≺ F ⇐⇒ f(0) = g(0) , f(U) ⊂ g(U) (cf. [1, 2]). (1.3)
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Definition 1.1 (Miller and Mocanu [1]). Let φ : C
2 → C and let h be univalent in U. If p is

analytic in U and satisfies the (first-order) differential subordination

φ
(
p(z), zp′(z)

) ≺ h(z), (1.4)

then p is called a solution of the differential subordination. The univalent function q is called a
dominant of the solutions of the differential subordination, or more simply a dominant if p ≺ q
for all p satisfying (1.4). A dominant q̃ that satisfies q̃ ≺ q for all dominants q of (1.4) is said to
be the best dominant.

Recently, Miller and Mocanu [3] introduced the following differential superordinations,
as the dual concept of differential subordinations.

Definition 1.2 (Miller and Mocanu [3]). Let ϕ : C
2 → C and let h be analytic in U. If p and

ϕ(p(z), zp′(z)) are univalent in U and satisfy the (first-order) differential superordination

h(z) ≺ ϕ(p(z), zp′(z)), (1.5)

then p is called a solution of the differential superordination. An analytic function q is called
a subordinant of the solutions of the differential superordination, or more simply a subordi-
nant if q ≺ p for all p satisfying (1.5). A univalent subordinant q̃ that satisfies q ≺ q̃ for all
subordinants q of (1.5) is said to be the best subordinant.

Definition 1.3 (Miller and Mocanu [3]). Denote byQ the set of functions f that are analytic and
injective on U \ E(f),where

E(f) =
{
ζ ∈ ∂U : lim

z→ζ
f(z) = ∞

}
, (1.6)

and are such that f ′(ζ) /= 0 for z ∈ ζ ∈ ∂U \ E(f).

Now we introduce the following integral operators Ih;β defined by

Ih;β(f)(z) :=
[
β

∫z

0
fβ(t)h−1(t)h′(t)dt

]1/β

(
Re{β} > 0, f ∈ A, h ∈ A, z ∈ U

)
.

(1.7)

The integral operators defined by (1.7) have been extensively studied by Bulboacă [4]. Also
Miller et al. [5] investigated some subordination-preserving properties involving certain in-
tegral operators for analytic functions in U (see, also [6, 7]). Moreover, Bulboacă [8] studied
a class of superordination-preserving integral operators. In the present paper, we obtain the
subordination- and superordination-preserving properties of the integral operator Ih;β defined
by (1.7)with the sandwich-type theorems. We also consider applications of our main results to
the Gauss hypergeometric function.

2. A set of lemmas

The following lemmas will be required in our present investigation.
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Lemma 2.1 (Miller and Mocanu [9]). Suppose that the functionH : C
2 → C satisfies the following

condition:

Re
{
H(is, t)

} ≤ 0
(
s ∈ R; t ≤ −n(1 + s2)

2
; n ∈ N

)
. (2.1)

If the function p(z) = 1 + pnzn + · · · is analytic in U and

Re
{
H
(
p(z), zp′(z)

)}
> 0 (z ∈ U), (2.2)

then

Re
{
p(z)

}
> 0 (z ∈ U). (2.3)

Lemma 2.2 (Miller and Mocanu [10]). Let β, γ ∈ C with β /= 0 and let h ∈ H(U) with h(0) = c. If

Re
{
βh(z) + γ

}
> 0 (z ∈ U), (2.4)

then the solution of the differential equation

q(z) +
zq′(z)

βq(z) + γ
= h(z)

(
z ∈ U; q(0) = c

)
(2.5)

is analytic in U and satisfies the inequality given by

Re
{
βq(z) + γ

}
> 0 (z ∈ U). (2.6)

Lemma 2.3 (Miller and Mocanu [1]). Let p ∈ Q with p(0) = a and let q(z) = a + anzn + · · · be
analytic in U with q(z) /≡ a and n ∈ N. If q is not subordinate to p, then there exist points z0 = r0eiθ ∈
U and ζ0 ∈ ∂U \ E(f) for which

q(Ur0) ⊂ p(U), q(z0) = p(ζ0), z0q
′(z0) = mζ0p′(ζ0) (m ≥ n). (2.7)

Let c ∈ C with Re{c} > 0 and let

N :=N(c) =
|c|
√
1 + 2Re{c} + Im {c}

Re{c} . (2.8)

If R is the univalent function in U defined byR(z) := 2Nz/(1−z2), then the open-door function
Rc is defined by

Rc(z) := R
(
z + b

1 + bz

)
(z ∈ U), (2.9)

where b = R−1(c) (cf. [1]).

Remark 2.4. The function Rc defined by (2.9) is univalent in U, Rc(0) = c, and Rc(U) = R(U) is
the complex plane with slits along the half-lines Re{w} = 0 and |Im{w}| ≥N, that is,

Rc(U) = R(U) = C \ {w ∈ C : Re{w} = 0,
∣
∣Im{w}∣∣ ≥N}

. (2.10)
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Lemma 2.5 (Bulboacă [4], Miller, and Mocanu [1]). Let β ∈ C with Re{β} > 0 and let h ∈ A. If
f ∈ Ah;β, where

Ah;β :=
{
f ∈ A : β

zf ′(z)
f(z)

− zh′(z)
h(z)

+ 1 +
zh′′(z)
h′(z)

≺ Rβ(z), βf ′′(0) + h′′(0) /= 0
}

(2.11)

and Rβ is the open door function defined by (2.9) with c = β, then

Ih;β(f) ∈ A,
Ih;β(f)(z)

z
/= 0 (z ∈ U), Re

{
β
z
(
Ih;β(f)(z)

)′

Ih;β(f)(z)

}
> 0, (z ∈ U), (2.12)

where Ih;β is the integral operator defined by (1.7).

Remark 2.6. The integral operator Ih;1 defined by (1.7)with β = 1 is well defined onH[0, 1] (see
[4]).

A function L(z, t) defined on U × [0,∞) is the subordination chain (or Löwner chain) if
L(·, t) is analytic and univalent in U for all t ∈ [0,∞), L(z, ·) is continuously differentiable on
[0,∞) for all z ∈ U, and L(z, s) ≺ L(z, t) when 0 ≤ s < t.

Lemma 2.7 (Miller and Mocanu [3]). Let q ∈ H[a, 1] and ϕ : C
2 → C. Also set ϕ(q(z), zq′(z)) ≡

h(z) (z ∈ U). If

L(z, t) := ϕ
(
q(z), tzq′(z)

)
(z ∈ U; 0 ≤ t <∞) (2.13)

is a subordination chain and p ∈ H[a, 1] ∩ Q, then

h(z) ≺ ϕ(p(z), zp′(z)) (2.14)

implies that

q(z) ≺ p(z). (2.15)

Furthermore, if

ϕ
(
q(z), zp′(z)

)
= h(z) (2.16)

has a univalent solution q ∈ Q, then q is the best subordinant.

Lemma 2.8 (see [2]). The function L(z, t) = a1(t)z + · · · with a1(t) /= 0 and limt→∞ |a1(t)| = ∞ is
a subordination chain if and only if

Re
{
z∂L(z, t)/∂z
∂L(z, t)/∂t

}
> 0 (z ∈ U; 0 ≤ t <∞). (2.17)
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3. Main results

Our first subordination theorem involving the integral operator Ih;β defined by (1.7) is con-
tained in Theorem 3.1 below.

Theorem 3.1. Let f, g ∈ Ah;β with

f(z)
z

/= 0 (z ∈ U; β /= 1),
g(z)
z

/= 0 (z ∈ U; β /= 1), (3.1)

and let h ∈ A. Suppose also that

Re
{
1 +

zφ′′(z)
φ′(z)

}
> −δ

(
z ∈ U; φ(z) :=

(
φ1(z)
z

)β

; φ1(z) := g(z)
[
zh′(z)
h(z)

]1/β)
,

(3.2)

where

δ =
1 + |β|2 − ∣∣1 − β2∣∣

4Re{β}
(
Re{β} > 0

)
. (3.3)

Then the subordination condition

(
f(z)
z

)β
zh′(z)
h(z)

≺
(
g(z)
z

)β
zh′(z)
h(z)

(3.4)

implies that

(
Ih;β(f)(z)

z

)β

≺
(
Ih;β(g)(z)

z

)β

, (3.5)

where Ih;β is the integral operator defined by (1.7). Moreover, the function (Ih;β(g)(z)/z)
β is the best

dominant.

Proof. Let us define the functions F and G by

F(z) :=
(
Ih;β(f)(z)

z

)β

, G(z) :=
(
Ih;β(g)(z)

z

)β

, (3.6)

respectively. We note that F and G are well defined by Lemma 2.5.
We first show that if the function q is defined by

q(z) := 1 +
zG′′(z)
G′(z)

(z ∈ U), (3.7)

then

Re
{
q(z)

}
> 0 (z ∈ U). (3.8)
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From the definition of (1.7), we obtain

g(z) = Ih;β(g)(z)
[
h(z)
zh′(z)

z
(
Ih;β(g)(z)

)′

Ih;β(g)(z)

]1/β

. (3.9)

We also have

β
z
(
Ih;β(g)(z)

)′

Ih;β(g)(z)
= β +

zG′(z)
G(z)

. (3.10)

By a simple calculation in conjuction with (3.9) and (3.10), we obtain the following relation-
ship:

1 +
zφ′′(z)
φ′(z)

= q(z) +
zq′(z)
q(z) + β

≡ Q(z). (3.11)

We also note from (3.2) that

Re
{
Q(z) + β

}
> 0 (z ∈ U) (3.12)

and, by using Lemma 2.2, we conclude that the differential equation (3.11) has a solution q ∈
H(U) with q(0) = Q(0) = 1. Let us put

H(u, v) = u +
v

u + β
+ δ, (3.13)

where δ is given by (3.3). From (3.2), (3.11), and (3.13), we obtain

Re
{
H
(
q(z), zq′(z)

)}
> 0 (z ∈ U). (3.14)

Now we proceed to show that

Re
{
H(is, t)

} ≤ 0
(
s ∈ R; t ≤ −n(1 + s2)

2

)
. (3.15)

Indeed, from (3.13), we have

Re
{
H(is, t)

}
= Re

{
is +

t

is + β
+ δ

}
=
tRe{β}
|β + is|2 + δ ≤ − Eδ(s)

2|β + is|2 , (3.16)

where

Eδ(s) :=
(
Re{β} − 2δ

)
s2 − 4δ

(
Im{β})s − 2δ|β|2 + Re{β}. (3.17)

For δ given by (3.3), the coefficient of s2 in the quadratic expression Eδ(s) given by (3.17) is
positive or equal to zero. Moreover, the quadratic expression Eδ(s) by s in (3.17) is a perfect
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square for the assumed value of δ given by (2.11). Hence, from (3.16), we obtain the inequality
given by (3.15). Thus, by using Lemma 2.1, we conclude that

Re
{
q(z)

}
> 0 (z ∈ U), (3.18)

that is, G defined by (3.6) is convex(univalent) in U.
Next, we prove that the subordination condition (3.4) implies that

F(z) ≺ G(z) (3.19)

for the functions F and G defined by (3.6). Without loss of generality, we can assume that G is
analytic and univalent on U and that G′(ζ) /= 0 for ζ ∈ ∂U.Nowwe consider the function L(z, t)
given by

L(z, t) := G(z) +
1 + t
β

zG′(z) (z ∈ U; 0 ≤ t <∞). (3.20)

Since G is convex and Re{β} > 0,we obtain

∂L(z, t)
∂z

∣∣∣∣
z=0

= G′(0)
(
β + 1 + t

β

)

/= 0
(
0 ≤ t <∞; Re{β} > 0

)
,

Re
{
z∂L(z, t)/∂z
∂L(z, t)/∂t

}
= Re

{
β + (1 + t)

(
1 +

zG′′(z)
G′(z)

)}
> 0 (z ∈ U; 0 ≤ t <∞).

(3.21)

Therefore, by virtue of Lemma 2.8, L(z, t) is a subordination chain. We observe from the defi-
nition of a subordination chain that

L(ζ, t) /∈ L(U, 0) = φ(U) (ζ ∈ ∂U; 0 ≤ t <∞). (3.22)

Now suppose that F is not subordinate to G, then by Lemma 2.3, there exist points z0 ∈ U and
ζ0 ∈ ∂U such that

F
(
z0
)
= G

(
ζ0
)

z0F
′(z0

)
= (1 + t)ζ0G′(ζ0

)
(0 ≤ t <∞). (3.23)

Hence, we have

L
(
ζ0, t

)
= G

(
ζ0
)
+
1 + t
β

ζ0G
′(ζ0

)

= F
(
z0
)
+
1
β
z0F

′(z0
)

=
(
f
(
z0
)

z0

)β
z0h

′(z0
)

h
(
z0
) ∈ φ(U),

(3.24)

by virtue of the subordination condition (3.4). This contradicts the above observation that

L
(
ζ0, t

)
/∈ φ(U)

(
ζ0 ∈ ∂U; 0 ≤ t <∞)

. (3.25)

Therefore, the subordination condition (3.4) must imply the subordination given by (3.19).
Considering F(z) = G(z), we see that the function G is the best dominant. This evidently
completes the proof of Theorem 3.1.
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Remark 3.2. We note that δ given by (3.3) in Theorem 3.1 satisfies the inequality 0 < δ ≤ 1/2.

We next provide a solution to a dual problem of Theorem 3.1, in the sense that the sub-
ordinations are replaced by superordinations.

Theorem 3.3. Let f, g ∈ Ah;β with

f(z)
z

/= 0 (z ∈ U; β /= 1),
g(z)
z

/= 0 (z ∈ U; β /= 1), (3.26)

and h ∈ A. Suppose also that

Re
{
1 +

zφ′′(z)
φ′(z)

}
> −δ

(
z ∈ U; φ(z) :=

(
ϕ(z)
z

)β

, ϕ(z) := g(z)
[
zh′(z)
h(z)

]1/β)
,

(3.27)

where δ is given by (3.3), the function (f(z)/z)β(zh′(z)/h(z)) is univalent in U and (Ih;β(f)(z)/
z)β ∈ Q, where Ih;β is the integral operator defined by (1.7). Then the superordination condition

(
g(z)
z

)β
zh′(z)
h(z)

≺
(
f(z)
z

)β
zh′(z)
h(z)

(3.28)

implies that
(
Ih;β(g)(z)

z

)β

≺
(
Ih;β(f)(z)

z

)β

. (3.29)

Moreover, the function (Ih;β(g)(z)/z)
β is the best subordinant.

Proof. The first part of the proof is similar to that of Theorem 3.1 and so we will use the same
notation as in the proof of Theorem 3.1.

Let us define the functions F and G, respectively, by (3.6). We first note that from (3.9)
and (3.10), we obtain

φ(z) = G(z) +
1
β
zG′(z)

=: ϕ
(
G(z), zG′(z)

)
.

(3.30)

Then by using the same method as in the proof of Theorem 3.1, we can prove that

Re
{
q(z)

}
> 0 (z ∈ U), (3.31)

where the function q is defined by (3.7), that is, G defined by (3.6) is convex(univalent) in U.
Now we consider the function L(z, t) defined by

L(z, t) := G(z) +
t

β
zG′(z) (z ∈ U; 0 ≤ t <∞). (3.32)

Then we see that L(z, t) is a subordination chain as in the proof of Theorem 3.1. Therefore,
according to Lemma 2.7, we conclude that the superordination condition (3.28) must imply
the superordination given by (3.29). Furthermore, since the differential equation (3.30) has
the univalent solution G, it is the best subordinant of the given differential superordination.
Therefore, we complete the proof of Theorem 3.3.
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If we combine Theorems 3.1 and 3.3, then we obtain the following sandwich-type theo-
rem.

Theorem 3.4. Let f, gk ∈ Ah;β (k = 1, 2) with

f(z)
z

/= 0 (z ∈ U; β /= 1),
gk(z)
z

/= 0 (z ∈ U; β /= 1), (3.33)

and h ∈ A. Suppose also that

Re
{
1 +

zφ′′
k
(z)

φ′
k
(z)

}
> −δ

(
z ∈ U; φk(z) :=

(
ϕk(z)
z

)β

, ϕk(z) := gk(z)
[
zh′(z)
h(z)

]1/β
, k = 1, 2

)
,

(3.34)

where δ is given by (3.3), the function (f(z)/z)β(zh′(z)/h(z)) is univalent in U and (Ih;β(f)(z)/
z)β ∈ Q, where Ih;β is the integral operator defined by (1.7). Then the subordination relation

(
g1(z)
z

)β
zh′(z)
h(z)

≺
(
f(z)
z

)β
zh′(z)
h(z)

≺
(
g2(z)
z

)β
zh′(z)
h(z)

(3.35)

implies that

(
Ih;β

(
g1
)
(z)

z

)β

≺
(
Ih;β(f)(z)

z

)β

≺
(
Ih;β

(
g2
)
(z)

z

)β

. (3.36)

Moreover, the functions (Ih;β(g1)(z)/z)
β and (Ih;β(g2)(z)/z)

β are the best subordinant and the best
dominant, respectively.

The assumption of Theorem 3.4, that the functions (f(z)/z)βzh′(z)/h(z) and (Ih;β(f)(z)/
z)β need to be univalent in U,may be replaced by another condition in the following result.

Corollary 3.5. Let f, gk ∈ Ah;β (k = 1, 2) with

f(z)
z

/= 0 (z ∈ U; β /= 1),
gk(z)
z

/= 0 (z ∈ U; β /= 1), (3.37)

and h ∈ A. Suppose also that the condition (3.34) is satisfied and that

Re
{
1 +

zψ ′′(z)
ψ ′(z)

}
> −δ

(
z ∈ U; ψ(z) :=

(
ϕ(z)
z

)β

; ϕ(z) := f(z)
[
zh′(z)
h(z)

]1/β
; ϕ ∈ Q

)
,

(3.38)

where δ is given by (3.3). Then the subordination relation

(
g1(z)
z

)β
zh′(z)
h(z)

≺
(
f(z)
z

)β
zh′(z)
h(z)

≺
(
g2(z)
z

)β
zh′(z)
h(z)

(3.39)
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implies that

(
Ih;β

(
g1
)
(z)

z

)β

≺
(
Ih;β(f)(z)

z

)β

≺
(
Ih;β

(
g2
)
(z)

z

)β

, (3.40)

where Ih;β is the integral operator defined by (1.7). Moreover, the functions (Ih;β(g1)(z)/z)
β and

(Ih;β(g2)(z)/z)
β are the best subordinant and the best dominant, respectively.

Proof. In order to prove Corollary 3.5, we have to show that the condition (3.38) implies the
univalence of ψ(z) and

F(z) :=
(
Ih;β(f)(z)

z

)β

(z ∈ U). (3.41)

Since 0 < δ ≤ 1/2 from Remark 3.2, the condition (3.38)means that ψ is a close-to-convex func-
tion in U (see [11]) and hence ψ is univalent in U. Furthermore, by using the same techniques
as in the proof of Theorem 3.4, we can prove the convexity(univalence) of F and so the details
may be omitted. Therefore, by applying Theorem 3.4, we obtain Corollary 3.5.

By setting β = 1 in Theorem 3.4, we have the following consequence of Theorem 3.4.

Corollary 3.6. Let f, gk ∈ Ah;1 (k = 1, 2) and h ∈ A. Suppose that

Re
{
1 +

zφ′′
k
(z)

φ′
k
(z)

}
> −1

2
(
z ∈ U; φk(z) :=

ϕk(z)
z

; ϕk(z) := gk(z)
zh′(z)
h(z)

; k = 1, 2
)
,

(3.42)

the function (f(z)/z)(zh′(z)/h(z)) is univalent in U, and Ih;1f(z)/z ∈ Q, where Ih;1 is the integral
operator defined by (1.7) with β = 1. Then the subordination relation

g1(z)
h′(z)
h(z)

≺ f(z)h
′(z)
h(z)

≺ g2(z)h
′(z)
h(z)

(3.43)

implies that

Ih;1
(
g1
)
(z)

z
≺ Ih;1(f)(z)

z
≺ Ih;1

(
g2
)
(z)

z
. (3.44)

Moreover, the functions Ih;1(g1)(z)/zand Ih;1(g2)(z)/z are the best subordinant and the best domi-
nant, respectively.

If we take β = 1 + i in Theorem 3.4, then we are easily led to the following result.

Corollary 3.7. Let f, gk ∈ Ah;1+i (k = 1, 2) with

f(z)
z

/= 0 (z ∈ U),
gk(z)
z

/= 0 (z ∈ U), (3.45)
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and h ∈ A. Suppose that

Re
{
1 +

zφ′′
k
(z)

φ′
k
(z)

}
> −3 −

√
5

4

(
z ∈ U; φk(z) :=

(
ϕk(z)
z

)β

; ϕk(z) := gk(z)
[
zh′(z)
h(z)

]1/(1+i)
; k = 1, 2

)
,

(3.46)

the function (f(z)/z)1+i(zh′(z)/h(z)) is univalent in U, and (Ih;1+if(z)/z)
1+i ∈ Q, where Ih;1+i is

the integral operator defined by (1.7) with β = 1 + i. Then the subordination relation

(
g1(z)
z

)1+i
zh′(z)
h(z)

≺
(
f(z)
z

)1+i
zh′(z)
h(z)

≺
(
g2(z)
z

)1+i
zh′(z)
h(z)

(3.47)

implies that

(
Ih;1+i(g1)(z)

z

)1+i

≺
(
Ih;1+i(f)(z)

z

)1+i

≺
(
Ih;1+i(g1)(z)

z

)1+i

. (3.48)

Moreover, the functions (Ih;1+i(g1)(z)/z)
1+i and (Ih;1+i(g2)(z)/z)

1+i are the best subordinant and the
best dominant, respectively.

4. Applications to the gauss hypergeometric function

We begin by recalling that the Gauss hypergeometric function 2F1(a, b; c; z) is defined by (see,
for details, [12, Chapter 14])

2F1(a, b; c; z) :=
∞∑

n=0

(a)n(b)n
(c)n

zn

n!
(
z ∈ U; b ∈ C; c ∈ C \ Z

−
0 ; Z

−
0 :=

{
0,−1,−2, . . . }),

(4.1)

where (λ)ν denotes the Pochhammer symbol (or the shifted factorial) defined (for λ, ν ∈ C and
in terms of the Gamma function) by

(λ)ν :=
Γ(λ + ν)
Γ(λ)

=

⎧
⎨

⎩

1
(
ν = 0; λ ∈ C \ {0})

λ(λ + 1) · · · (λ + ν − 1) (ν = n ∈ N; λ ∈ C).
(4.2)

For this useful special function, the following Eulerian integral representation is fairly well
known [12, page 293]:

2F1(a, b; c; z) =
Γ(c)

Γ(a)Γ(c − a)
∫1

0
ta−1(1 − t)c−a−1(1 − zt)−bdt

(
Re{c} > Re{a} > 0;

∣
∣arg(1 − z)∣∣ ≤ π − ε; 0 < ε < π).

(4.3)
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In view of (4.3), we set

h(z) =
z

1 − z, g(z) =
z

(1 − z)κ (κ > 0), (4.4)

so that the definition (1.7) yields

Ih;β(g)(z) =
(
β

∫z

0
tβ−1(1 − t)−(βκ+1)dt

)1/β

=
(
βzβ

∫1

0
uβ−1(1 − zu)−(βκ+1)du

)1/β

= z
[
2F1

(
β, βκ + 1; β + 1; z

)]1/β (β > 1/2).

(4.5)

Moreover, we note from the definition (4.4) that

g(z)
z

=
1

(1 − z)κ /= 0 (κ > 0; z ∈ U). (4.6)

Thus, by applying Theorem 3.1, we obtain the following results involving the Gauss hyperge-
ometric function.

Theorem 4.1. Let f ∈ Az/(1−z);β with f(z)/z /= 0 (z ∈ U; β /= 1) and

0 < κ < min
{
2β − 1
β

,
2δ
β

} (
β >

1
2

)
, (4.7)

where δ is given by (3.3). Then the subordination condition

1
1 − z

(
f(z)
z

)β

≺ 1

(1 − z)κβ+1
(4.8)

implies that
(
Iz/(1−z);β(f)(z)

z

)β

≺ 2F1(β, κβ + 1; β + 1; z), (4.9)

where Iz/(1−z);1 is the integral operator defined by (1.7) with h(z) = z/(1 − z).Moreover, the function
2F1(β, κβ + 1; β + 1; z) is the best dominant.

By setting β = 1 in Theorem 4.1, we are led to the following Corollary 4.2.

Corollary 4.2. Let f ∈ Az/(1−z);1 and 0 < κ ≤ 1. Then the subordination condition

1
1 − z

f(z)
z

≺ 1

(1 − z)κ+1
(4.10)

implies that

Iz/(1−z);1(f)(z)
z

≺ 2F1(1, κ + 1; 2; z), (4.11)

where Iz/(1−z);1 is the integral operator defined by (1.7) with h(z) = z/(1 − z).Moreover, the function
2F1(1, κ + 1; 2; z) is the best dominant.

If we take κ = β = 1 in Theorem 4.1, we are led to the following corollary.
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Corollary 4.3. Let f ∈ Az/(1−z);1. Then the subordination condition

1
1 − z

f(z)
z

≺ 1

(1 − z)2
(4.12)

implies that

1
z

∫z

0

f(t)
t(1 − t)dt ≺

1
1 − z. (4.13)

Moreover, the function 1/(1 − z) is the best dominant.

We also state the following Theorem 4.4 below as a dual result of Theorem 4.1, which
can be obtained by applying Theorem 3.3.

Theorem 4.4. Under the assumption of Theorem 4.1, suppose also that the function 1/(1−z)(f(z)/z)β
is univalent in U and (Iz/(1−z);β(f)(z)/z)

β ∈ Q, where Iz/(1−z);β is the integral operator defined by
(1.7). Then the superordination condition

1

(1 − z)κβ+1
≺ 1
1 − z

(
f(z)
z

)β

(4.14)

implies that

2F1(β, κβ + 1; β + 1; z) ≺
(
Iz/(1−z);β(f)(z)

z

)β

. (4.15)

Moreover, the function 2F1(β, κβ + 1; β + 1; z) is the best subordinant.
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