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1. Introduction

q-Bernstein polynomials

Bn,q(f)(x) :=
n∑

k=0

f

(
[k]
[n]

)[
n
k

]
xk

n−k−1∏

s=0

(1 − qsx) (1.1)

were introduced by Phillips in [1]. q-Bernstein polynomials form an area of an intensive
research in the approximation theory, see survey paper [2] and references therein. Nowadays,
there are new studies on the q-parametric operators. Two parametric generalizations of q-
Bernstein polynomials have been considered by Lewanowicz and Woźny (cf. [3]), an analog
of the Bernstein-Durrmeyer operator and Bernstein-Chlodowsky operator related to the q-
Bernstein basis has been studied by Derriennic [4], Gupta [5] and Karsli and Gupta [6],
respectively, a q-version of the Szasz-Mirakjan operator has been investigated by Aral and
Gupta in [7]. Also, some results on q-parametric Meyer-König and Zeller operators can be
found in [8–11].

In [12], Bleimann et al. introduced the following operators:

Hn(f)(x) =
1

(1 + x)n
n∑

k=0

f

(
k

n − k + 1

)(
n
k

)
xk, x > 0, n ∈ N. (1.2)
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There are several studies related to approximation properties of Bleimann, Butzer, and
Hahn operators (or, briefly, BBH), see, for example, [12–18]. Recently, Aral and Doğru [19]
introduced a q-analog of Bleimann, Butzer, and Hahn operators and they have established
some approximation properties of their q-Bleimann, Butzer, and Hahn operators in the
subspace of CB[0,∞). Also, they showed that these operators are more flexible than classical
BBH operators, that is, depending on the selection of q, rate of convergence of the q-BBH
operators is better than the classical one. Voronovskaja-type asymptotic estimate and the
monotonicity properties for q-BBH operators are studied in [20].

In this paper, we propose a different q-analog of the Bleimann, Butzer, and Hahn
operators in C∗

1+x[0,∞). We use the connection between classical BBH and Bernstein
operators suggested in [16] to define new q-BBH operators as follows:

Hn,q(f)(x) := (Φ−1Bn+1,qΦ)(f)(x), (1.3)

where Bn+1,q is a q-Bernstein operator, Φ and Φ−1 will be defined later. Thanks to (1.3),
different properties of Bn+1,q can be transferred to Hn,q with a little extra effort. Thus
the limiting behavior of Hn,q can be immediately derived from (1.3) and the well-known
properties of Bn+1,q. It is natural that even in the classical case, when q = 1, to defineHn in the
space C∗

1+x[0,∞), the limit lf of f(x)/(1 + x) as x→∞ has to appear in the definition of Hn.
Thus in C∗

1+x[0,∞) the classical BBH operator has to be modified as follows:

Hn(f)(x) =
1

(1 + x)n
n∑

k=0

f

(
k

n − k + 1

)(
n
k

)
xk + lf

xn+1

(1 + x)n
, x > 0, n ∈ N. (1.4)

The paper is organized as follows. In Section 2, we give construction of q-BBH operators
and study some elementary properties. In Section 3, we investigate convergence properties
of q-BBH, Voronovskaja-type theorem and saturation of convergence for q-BBH operators for
arbitrary fixed 0 < q < 1, and also we study convergence of the derivative of q-BBH operators.

2. Construction and some properties of q-BBH operators

Before introducing the operators, we mention some basic definitions of q calculus.
Let q > 0. For any n ∈N ∪ {0}, the q-integer [n] = [n]q is defined by

[n] := 1 + q + · · · + qn−1, [0] := 0; (2.1)

and the q-factorial [n]! = [n]q! by

[n]! := [1][2] · · · [n], [0]! := 1. (2.2)

For integers 0 ≤ k ≤ n, the q-binomial is defined by
[
n
k

]
:=

[n]!
[k]![n − k]! . (2.3)

Also, we use the following standard notations:

(z; q)0 := 1, (z; q)n :=
n−1∏

j=0

(1 − qjz), (z; q)∞ :=
∞∏

j=0

(1 − qjz),

pn,k(q;x) :=
[
n
k

]
xk

n−k−1∏

s=0

(1 − qsx), p∞k(q;x) :=
xk

(1 − q)k[k]!
∞∏

s=0

(1 − qsx).
(2.4)
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It is agreed that an empty product denotes 1. It is clear that pnk(q;x) ≥ 0, p∞k(q;x) ≥ 0 ∀x ∈
[0, 1] and

n∑

k=0

pnk(q;x) =
∞∑

k=0

p∞k(q;x) = 1. (2.5)

Introduce the following spaces.

Bρ[0,∞) = {f : [0,∞)→R | ∃Mf > 0 such that |f(x)| ≤Mfρ(x) ∀x ∈ [0,∞)},
Cρ[0,∞) = {f ∈ Bρ[0,∞) | f is continuous},

C∗
ρ[0,∞) =

{
f ∈ Cρ[0,∞) | lim

x→∞
f(x)
ρ(x)

= lf exists and is finite
}
,

C0
ρ[0,∞) =

{
f ∈ Cρ[0,∞) | lim

x→∞
f(x)
ρ(x)

= 0
}
.

(2.6)

It is clear that C∗
ρ[0,∞) ⊂ Cρ[0,∞) ⊂ Bρ[0,∞). In each space, the norm is defined by

‖f‖ρ = sup
x≥0

|f(x)|
ρ(x)

. (2.7)

We introduce the following auxiliary operators. Firstly, let us denote

ψ(y) =
y

1 − y , y ∈ [0, 1), ψ−1(x) =
x

1 + x
, x ∈ [0,∞). (2.8)

Secondly, let Φ : C∗
ρ[0,∞)→C[0, 1] be defined by

Φ(f)(y) :=

⎧
⎪⎪⎨

⎪⎪⎩

f(ψ(y))
ρ(ψ(y))

, if y ∈ [0, 1),

lf = lim
x→∞

f(x)
ρ(x)

, if y = 1.
(2.9)

ThenΦ is a positive linear isomorphism, with positive inverseΦ−1 : C[0, 1]→C∗
ρ[0,∞) defined

by

Φ−1(g)(x) = ρ(x)g(ψ−1(x)), g ∈ C[0, 1], x ∈ [0,∞). (2.10)

For f ∈ C[0, 1], t > 0, we define the modulus of continuity ω(f ; t) as follows:

ω(f ; t) := sup{|f(x) − f(y)| : |x − y| ≤ t, x, y ∈ [0, 1]}. (2.11)

We introduce new Bleimann-, Butzer-, and Hahn- (BBH) type operators based on q-integers
as follows.

Definition 2.1. For f ∈ C∗
ρ[0,∞), the q-Bleimann, Butzer, and Hahn operators are given by

Hn,q(f)(x) := (Φ−1Bn+1,qΦ)(f)(x)

= ρ(x)
n∑

k=0

f(ψ([k]/[n + 1]))
ρ(ψ([k]/[n + 1]))

pn+1,k(q;ψ−1(x)) + lfρ(x)(ψ−1(x))
n+1
, n ∈N,

(2.12)

where

pn+1,k(q;ψ−1(x)) :=
[
n + 1
k

]
(ψ−1(x))

k
n−k∏

s=0

(1 − qsψ−1(x)), k = 0, 1, . . . , n. (2.13)
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Note that for q = 1, ρ = 1+x and lf = 0, we recover the classical Bleimann, Butzer, and
Hahn operators. If q = 1, ρ = 1 + x but lf/= 0, it is new Bleimann, Butzer, and Hahn operators
with additional term lf(xn+1/(1 + x)

n). Thus if f ∈ C0
1+x[0,∞) then

Hn,q(f)(x) :=
n∑

k=0

f

(
[k]

qk[n − k + 1]

)[
n
k

](
qx

1 + x

)k n−k∏

s=1

(
1 − qs x

1 + x

)
. (2.14)

To present an explicit form of the limit q-BBH operators, we consider

p∞k(q;ψ−1(x)) :=
(ψ−1(x))k

(1 − q)k[k]!
∞∏

s=0

(1 − qsψ−1(x)). (2.15)

Definition 2.2. Let 0 < q < 1. The linear operator defined on C∗
ρ[0,∞) given by

H∞,q(f)(x) := ρ(x)
∞∑

k=0

f(ψ(1 − qk))
ρ(ψ(1 − qk))p∞k(q;ψ−1(x)) (2.16)

is called the limit q-BBH operator.

Lemma 2.3. Hn,q,H∞,q : C∗
ρ[0,∞)→C∗

ρ[0,∞) are linear positive operators and

‖Hn,q(f)‖ρ ≤ ‖f‖ρ, ‖H∞,q(f)‖ρ ≤ ‖f‖ρ. (2.17)

Proof. We prove the first inequality, since the second one can be done in a like manner. Thanks
to the definition, we have

|Hn,q(f)(x)| ≤ ρ(x)‖f‖ρ
n∑

k=0

pn+1,k(q;ψ−1(x)) + ρ(x)|lf |(ψ−1(x))
n+1

≤ ρ(x)‖f‖ρ
n∑

k=0

pn+1,k(q;ψ−1(x)) + ρ(x)‖f‖ρ(ψ−1(x))
n+1

= ρ(x)‖f‖ρ
n+1∑

k=0

pn+1,k(q;ψ−1(x)) = ρ(x)‖f‖ρ.

(2.18)

Lemma 2.4. The following recurrence formula holds:

Hn,q

(
ρ(t)
(

t

1 + t

)m)
(x) =

1

[n + 1]m−1
x

1 + x

m−1∑

j=0

(
m − 1
j

)
qj[n]jHn−1,q

(
ρ(t)
(

t

1 + t

)j)
(x).

(2.19)

In particular, we have

Hn,q(ρ)(x) = ρ(x), Hn,q

(
ρ(t)

t

1 + t

)
(x) = ρ(x)

x

1 + x
, Hn,q(1)(x) = 1,

Hn,q

(
ρ(t)
(

t

1 + t

)2)
(x) = ρ(x)

(
x

1 + x

)2

+ ρ(x)
x

(1 + x)2
1

[n + 1]
.

(2.20)
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Proof. We prove only the recurrence formula, since the formulae (2.20) can easily be obtained
by standard computations. Since lf = 1 for f = ρ(t)(t/(1 + t))m, we have

Hn,q

(
ρ(t)
(

t

1 + t

)m)
(x)

= ρ(x)
n∑

k=0

(
[k]

[n + 1]

)m
pn+1,k

(
q;ψ−1(x)

)
+ ρ(x)

(
x

1 + x

)n+1

= ρ(x)
n∑

k=0

(
[k]

[n + 1]

)m [
n + 1
k

](
x

1 + x

)k n−k∏

s=0

(
1 − qs x

1 + x

)
+ ρ(x)

(
x

1 + x

)n+1

= ρ(x)
n∑

k=0

[k]m−1

[n + 1]m−1

[
n

k − 1

](
x

1 + x

)k n−k∏

s=0

(
1 − qs x

1 + x

)
+ ρ(x)

(
x

1 + x

)n+1

= ρ(x)
n∑

k=1

m−1∑

j=0

(
m − 1
j

)
qj[k − 1]j

[n + 1]m−1

×
[

n
k − 1

](
x

1 + x

)k n−k∏

s=0

(
1 − qs x

1 + x

)
+ ρ(x)

(
x

1 + x

)n+1

=
1

[n + 1]m−1
x

1 + x

m−1∑

j=0

(
m − 1
j

)
qj[n]j

×
[
Hn−1,q

(
ρ(t)
(

t

1 + t

)j)
(x) − ρ(x)

(
x

1 + x

)n]
+ ρ(x)

(
x

1 + x

)n+1

=
1

[n + 1]m−1
x

1 + x

m−1∑

j=0

(
m − 1
j

)
qj[n]jHn−1,q

(
ρ(t)
(

t

1 + t

)j)
(x)

+ ρ(x)
(

x

1 + x

)n+1[
1 − 1

[n + 1]m−1

m−1∑

j=0

(
m − 1
j

)
qj[n]j

]

=
1

[n + 1]m−1
x

1 + x

m−1∑

j=0

(
m − 1
j

)
qj[n]jHn−1,q

(
ρ(t)
(

t

1 + t

)j)
(x).

(2.21)

Next theorem shows the monotonicity properties of q-BBH operators.

Theorem 2.5. If f ∈ C∗
1+x[0,∞) is convex and

lf +
[
f

(
[n]
qn

)
− f
(
[n + 1]
qn+1

)]
qn+1 ≥ 0, (2.22)

then its q-BBH operators are nonincreasing, in the sense that

Hn,q(f)(x) ≥ Hn+1,q(f)(x), n = 1, 2, . . . , q ∈ (0, 1], x ∈ [0,∞). (2.23)
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Proof. We begin by writing

Hn,q(f)(x) −Hn+1,q(f)(x)

=
n∑

k=0

f

(
[k]

qk[n − k + 1]

)[
n
k

](
qx

1 + x

)k n−k∏

s=1

(
1 − qs x

1 + x

)

−
n+1∑

k=0

f

(
[k]

qk[n − k + 2]

)[
n + 1
k

](
qx

1 + x

)kn−k+1∏

s=1

(
1 − qs x

1 + x

)
+ lf

xn+1

(1 + x)n+1
.

(2.24)

We now split the first of the above summations into two, writing

(
x

1 + x

)k n−k∏

s=1

(
1 − qs x

1 + x

)
= ψk + qn−k+1ψk+1, (2.25)

where

ψk =
(

x

1 + x

)kn−k+1∏

s=1

(
1 − qs x

1 + x

)
. (2.26)

The resulting three summations may be combined to give

Hn,q(f)(x) −Hn+1,q(f)(x)

=
n∑

k=0

f

(
[k]

qk[n − k + 1]

)[
n
k

]
qk(ψk + qn−k+1ψk+1)

−
n+1∑

k=0

f

(
[k]

qk[n − k + 2]

)[
n + 1
k

]
qkψk + lf

(
x

1 + x

)n+1

=
n∑

k=0

f

(
[k]

qk[n − k + 1]

)[
n
k

]
qkψk +

n+1∑

k=1

f

(
[k − 1]

qk−1[n − k + 2]

)[
n

k − 1

]
qn+1ψk

−
n+1∑

k=0

f

(
[k]

qk[n − k + 2]

)[
n + 1
k

]
qkψk + lf

(
x

1 + x

)n+1

=
n∑

k=1

[
n + 1
k

]
akq

kψk +
[
f

(
[n]
qn

)
− f
(
[n + 1]
qn+1

)]
qn+1
(

x

1 + x

)n+1
+ lf
(

x

1 + x

)n+1
,

(2.27)

where

ak =
[n − k + 1]
[n + 1]

f

(
[k]

qk[n − k + 1]

)
+
qn−k+1[k]
[n + 1]

f

(
[k − 1]

qk−1[n − k + 2]

)
− f
(

[k]
qk[n − k + 2]

)
.

(2.28)

By assumption, the sum of the last three terms of (2.27) is positive. Thus to show
monotonicity ofHn,q it suffices to show nonnegativity of ak, 0 ≤ k ≤ n. Let us write

α =
[n − k + 1]
[n + 1]

, x1 =
[k]

qk[n − k + 1]
, x2 =

[k − 1]
qk[n − k + 2]

. (2.29)
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Then it follows that

1 − α =
qn−k+1[k]
[n + 1]

,

αx1 + (1 − α)x2 = [k]
qk[n + 1]

(
1 +

qn−k+2[k − 1]
[n − k + 2]

)

=
[k]

qk[n + 1]

(
1 − qn−k+2 + qn−k+2(1 − qk−1)

1 − qn−k+2
)

=
[k]

qk[n − k + 2]
,

(2.30)

and we see immediately that

ak = αf(x1) + (1 − α)f(x2) − f(αx1 + (1 − α)x2) ≥ 0, (2.31)

and soHn,q(f)(x) −Hn+1,q(f)(x) ≥ 0.

Remark 2.6. It is easily seen that

lf +
[
f

(
[n]
qn

)
− f
(
[n + 1]
qn+1

)]
qn+1

= [n + 2]
(

1
[n + 2]

(Φf)(1) +
q[n + 1]
[n + 2]

(Φf)
(

[n]
[n + 1]

)
− (Φf)

(
[n + 1]
[n + 2]

))
.

(2.32)

The condition (2.22) follows from convexity of Φf. On the other hand, Φf is convex if f is
convex and nonincreasing, see [16].

3. Convergence properties

Theorem 3.1. Let q ∈ (0, 1), and let f ∈ C∗
ρ[0,∞). Then

‖Hn,q(f) −H∞,q(f)‖ρ ≤ C(q)ω(Φf, qn+1), (3.1)

where C(q) = (4/q(1 − q)) ln(1/(1 − q)) + 2.

Proof. For all x ∈ [0,∞), by the definitions ofHn,q(f)(x) andH∞,q(f)(x),we have that

Hn,q(f) −H∞,q(f) = ρ(x)
n∑

k=0

f(ψ([k]/[n + 1]))
ρ(ψ([k]/[n + 1]))

pn+1,k(q;ψ−1(x))

+ lfρ(x)
(

x

1 + x

)n+1
− ρ(x)

∞∑

k=0

f(ψ(1 − qk))
ρ(ψ(1 − qk))p∞k(q;ψ−1(x))

= ρ(x)
n+1∑

k=0

[
(Φf)

(
[k]

[n + 1]

)
− (Φf)(1 − qk)

]
pn+1,k(q;ψ−1(x))

+ ρ(x)
n+1∑

k=0

[(Φf)(1 − qk) − (Φf)(1)](pn+1,k(q;ψ−1(x)) − p∞k(q;ψ−1(x)))

− ρ(x)
∞∑

k=n+2

[(Φf)(1 − qk) − (Φf)(1)]p∞k(q;ψ−1(x))

:= I1 + I2 + I3.
(3.2)
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First, we estimate I1, I3. By using the following inequalities:

0 ≤ [k]
[n + 1]

− (1 − qk) = 1 − qk
1 − qn+1 − (1 − qk) = qn+1(1 − qk)

1 − qn+1 ≤ qn+1,

0 ≤ 1 − (1 − qk) = qk ≤ qn+1, k ≥ n + 2,

(3.3)

we get

|I1| ≤ ρ(x)ω(Φf, qn+1)
n+1∑

k=0

pn+1,k(q;ψ−1(x)) = ρ(x)ω(Φf, qn+1),

|I3| ≤ ρ(x)
∞∑

k=n+2

ω(Φf, qk)p∞k(q;ψ−1(x)) ≤ ρ(x)ω(Φf, qn+1).
(3.4)

Next, we estimate I2. Using the well-known property of modulus of continuity

ω(g, λt) ≤ (1 + λ)ω(g, t), λ > 0, (3.5)

we get

|I2| ≤ ρ(x)
n+1∑

k=0

ω(Φf, qk)|pn+1,k(q;ψ−1(x)) − p∞k(q;ψ−1(x))|

≤ ρ(x)ω(Φf, qn+1)
n+1∑

k=0

(1 + qk−n−1)|pn+1,k(q;ψ−1(x)) − p∞k(q;ψ−1(x))|

≤ 2ρ(x)ω(Φf, qn+1)
1

qn+1

n+1∑

k=0

qk|pn+1,k(q;ψ−1(x)) − p∞k(q;ψ−1(x))|

=: ρ(x)
2

qn+1
ω(Φf, qn+1)Jn+1(ψ−1(x)),

(3.6)

where

Jn+1(ψ−1(x)) =
n+1∑

k=0

qk|pn+1,k(q;ψ−1(x)) − p∞k(q;ψ−1(x))|. (3.7)

Now, using the estimation (2.9) from [21], we have

Jn+1(ψ−1(x)) ≤ qn+1

q(1 − q) ln
1

1 − q
n+1∑

k=0

(pn+1,k(q;ψ−1(x)) + p∞k(q;ψ−1(x)))

≤ 2qn+1

q(1 − q) ln
1

1 − q .
(3.8)

From (3.6) and (3.8), it follows that

|I2| ≤ ρ(x) 4
q(1 − q) ln

1
1 − qω(Φf, q

n+1). (3.9)

From (3.4), and (3.9), we obtain the desired estimation.
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Theorem 3.2. Let 0 < q < 1 be fixed and let f ∈ C∗
1+x[0,∞). ThenH∞,q(f)(x) = f(x) ∀x ∈ [0,∞)

if and only if f is linear.

Proof. By definition ofH∞,q we have

H∞,q(f)(x) = (Φ−1B∞,qΦ)(f)(x). (3.10)

Assume that H∞,q(f)(x) = f(x). Then (B∞,qΦ)(f)(x) = (Φf)(x). From [22], we know that
B∞,q(g) = g if and only if g is linear. So (B∞,qΦ)(f)(x) = (Φf)(x) if and only if (Φf)(x) =
(1 − x)f(x/(1 − x)) = Ax + B. It follows that f(x) = (1 + x)(A(x/(1 + x)) + B) = (A + B)x + B.
The converse can be shown in a similar way.

Remark 3.3. Let 0 < q < 1 be fixed and let f ∈ C∗
1+x[0,∞). Then the sequence {Hn,q(f)(x)}

does not approximate f(x) unless f is linear. It is completely in contrast to the classical case.

Theorem 3.4. Let q = qn satisfies 0 < qn < 1 and let qn→1 as n→∞. For any x ∈ [0,∞) and for any
f ∈ C∗

ρ[0,∞), the following inequality holds:

1
ρ(x)

|Hn,qn(f)(x) − f(x)| ≤ 2ω
(
Φf,
√
λn(x)

)
, (3.11)

where λn(x) = (x/(1 + x)2)(1/[n + 1]qn).

Proof. Positivity of Bn+1,qn implies that for any g ∈ C[0, 1]

|Bn+1,qn(g)(x) − g(x)| ≤ Bn+1,qn(|g(t) − g(x)|)(x). (3.12)

On the other hand,

|(Φf)(t) − (Φf)(x)| ≤ ω(Φf, |t − x|)

≤ ω(Φf, δ)
(
1 +

1
δ
|t − x|

)
, δ > 0.

(3.13)

This inequality and (3.12) imply that

|Bn+1,qn(Φf)(x) − (Φf)(x)| ≤ ω(Φf, δ)
(
1 +

1
δ
Bn+1,qn(|t − x|)(x)

)
,

|(Φ−1Bn+1,qnΦ)(f)(x) − (Φ−1Φf)(x)|

≤ ω(Φf, δ)
(
Φ−1(1) +

1
δ
Φ−1Bn+1,qn(|t − x|)(x)

)

≤ ρ(x)ω(Φf, δ)
(
1 +

1
δ
(Bn+1,qn

(|t − ψ−1(x)|2)(ψ−1(x)))
1/2
)

= ρ(x)ω(Φf, δ)

(
1 +

1
δ

((
x

1 + x

)2

+
x

(1 + x)2
1

[n + 1]qn
−
(

x

1 + x

)2)1/2)

= ρ(x)ω(Φf, δ)

(
1 +

1
δ

(
x

(1 + x)2
1

[n + 1]qn

)1/2
)
,

(3.14)

by choosing δ =
√
λn(x), we obtain desired result.
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Corollary 3.5. Let q = qn satisfies 0 < qn < 1 and let qn→1 as n→∞. For any f ∈ C∗
ρ[0,∞) it holds

that

lim
n→∞

‖Hn,qn(f)(x) − f(x)‖ρ = 0. (3.15)

Next, we study Voronovskaja-type formulas for the q-BBH operators. For the q-
Bernstein operators, it is proved in [23] that for any f ∈ C1[0, 1],

lim
n→∞

[n]
qn

[Bn,q(f)(x) − B∞,q(f)(x)] = Lq(f, x) (3.16)

uniformly in x ∈ [0, 1], where

Lq(f, x) :=

⎧
⎪⎨

⎪⎩

∞∑

k=0

[k]
(
f ′(1 − qk) − f(1 − qk) − f(1 − qk−1)

(1 − qk) − (1 − qk−1)
)

xk

(q; q)k
(x; q)∞, 0 ≤ x < 1,

0, x = 1.
(3.17)

Similarly, we have the following Voronovskaja-type theorem for the q-BBH operators for fixed
q ∈ (0, 1). Before stating the theorem we introduce an analog of Lq(f, x) for q-BBH operators

Vq(f, x) := (Φ−1LqΦ)(f)(x) =
(

x

1 + x
, q

)

∞

∞∑

k=0

[k]

×
(
f ′
(
1 − qk
qk

)
1
qk

− f
(
1 − qk
qk

)
− qkf((1 − qk)/qk) − qk−1f((1 − qk−1)/qk−1)

(1 − qk) − (1 − qk−1)
)

× 1
(q, q)k

xk

(1 + x)k−1

=
(

x

1 + x
; q
)

∞

∞∑

k=0

[k]
(
f ′
(
1 − qk
qk

)
1
qk

− qk−1 f((1 − q
k)/qk) − f((1 − qk−1)/qk−1)

qk−1 − qk
)

× 1
(q; q)k

xk

(1 + x)k−1
.

(3.18)

Theorem 3.6. Let 0 < q < 1, f ∈ C∗
1+x[0,∞) ∩ C1[0,∞), and Φf is differentiable at x = 1. Then

lim
n→∞

[n + 1]
qn+1

[Hn,q(f)(x) −H∞,q(f)(x)] = Vq(f, x), (3.19)

in C∗
1+x[0,∞).

Proof. We estimate the difference

Δ(x) :=
∣∣∣∣
[n + 1]
qn+1

(Hn,q(f)(x) −H∞,q(f)(x)) − Vq(f, x)
∣∣∣∣

=
∣∣∣∣
[n + 1]
qn+1

((Φ−1Bn+1,qΦ)(f)(x) − (Φ−1B∞,qΦ)(f)(x)) − (Φ−1LqΦ)(f)(x)
∣∣∣∣

=
∣∣∣∣
(
Φ−1
[
[n + 1]
qn+1

(Bn+1,q − B∞,q) − Lq
]
Φ
)
(f)(x)

∣∣∣∣

= (1 + x)
∣∣∣∣
[
[n + 1]
qn+1

(Bn+1,q − B∞,q) − Lq
]
(Φf)(ψ−1(x))

∣∣∣∣.

(3.20)
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Since Φf is well defined on whole [0, 1], from [23, Theorem 1], we get that

lim
n→∞

‖Δ‖1+x ≤ lim
n→∞

sup
0≤u≤1

∣∣∣∣
[
[n + 1]
qn+1

(Bn+1,q − B∞,q) − Lq
]
(Φf)(u)

∣∣∣∣ = 0. (3.21)

Theorem is proved.

Remark 3.7. It is clear that Φf is differentiable in [0, 1) if f ∈ C1[0,∞). If Φf is not
differentiable at x = 1, then

lim
n→∞

[n + 1]
qn+1

[Hn,q(f)(x) −H∞,q(f)(x)] = Vq(f, x), (3.22)

uniformly on any [0, A] ⊂ [0,∞).

Theorem 3.8. If f ∈ C2[0,∞) and qn→1 as n→∞, then

lim
n→∞

[n + 1]qn{Hn,qn(f)(x) − f(x)} =
1
2
f ′′(x)(1 + x)2x (3.23)

uniformly on any [0, A] ⊂ [0,∞).

Proof. By definition ofHn,qn ,

Hn,qn(f)(x) − f(x) = (Φ−1Bn+1,qnΦ)(f)(x) − (Φ−1Φf)(x)

= (Φ−1[Bn+1,qn − I]Φ)(f)(x)

= (1 + x)([Bn+1,qn − I]Φ)(f)(ψ−1(x)),

(3.24)

and if L := (1/2)f ′′(x)(1 − x)x, then

1
2
f ′′(x)(1 + x)2x = (Φ−1LΦ)(f)(x) = (1 + x)(LΦ)(f)(ψ−1(x))

=
1
2
(1 + x)(Φf)′′(ψ−1(x))ψ−1(x)(1 − ψ−1(x)).

(3.25)

On the other hand, by [24, Corollary 5.2] we have that

lim
n→∞

sup
0≤u≤1

∣∣∣∣[n + 1]qn([Bn+1,qn − I]Φ)(f)(u) − 1
2
(Φf)′′(u)u(1 − u)

∣∣∣∣ = 0. (3.26)

Now, the result follows from the following inequality:
∣∣∣∣[n + 1]qn{Hn,qn(f)(x) − f(x)} −

1
2
f ′′(x)(1 + x)2x

∣∣∣∣

=
∣∣∣∣(1 + x)[n + 1]qn([Bn+1,qn − I]Φ)(f)(ψ−1(x)) − (1 + x)

1
2
(Φf)′′(ψ−1(x))ψ−1(x)(1 − ψ−1(x))

∣∣∣∣

≤ (1 +A) sup
0≤u≤A/(1+A)

∣∣∣∣[n + 1]qn([Bn+1,qn − I]Φ)(f)(u) − 1
2
(Φf)′′(u)u(1 − u)

∣∣∣∣.

(3.27)

The theorem is proved.
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From Theorem 3.6, we have the following saturation of convergence for the q-BBH
operators for fixed q ∈ (0, 1).

Corollary 3.9. Let 0 < q < 1 and f ∈ C∗
1+x[0,∞) ∩ C1[0,∞). Then

‖Hn,q(f)(x) −H∞,q(f)(x)‖1+x = o(qn+1) (3.28)

if and only if Vq(f, x) ≡ 0, and this is equivalent to

f ′
(
1 − qk
qk

)(
1
qk

− 1
qk−1

)
= f
(
(1 − qk)
qk

)
− f
(
(1 − qk−1)
qk−1

)
, k = 1, 2, . . . . (3.29)

Theorem 3.10. Let 0 < q < 1 and f ∈ C∗
1+x[0,∞) ∩ C1[0,∞). If f is a convex function, then

‖Hn,q(f)(x) −H∞,q(f)(x)‖1+x = o(qn+1) if and only if f is a linear function.

Proof. If ‖Hn,q(f) −H∞,q(f)‖1+x = o(qn+1), then by Corollary 3.9

f ′
(
1 − qk
qk

)
qk−1 − qk
q2k−1

= f
(
(1 − qk)
qk

)
− f
(
(1 − qk−1)
qk−1

)
, k = 1, 2, . . . . (3.30)

Hence for k = 1, 2, . . .

∫ (1−qk)/qk

(1−qk−1)/qk−1

(
f ′
(
1 − qk
qk

)
− f ′(t)

)
dt = 0. (3.31)

Since f is convex and f ′ is continuous on [0,∞), we get f ′(t) = f ′((1 − qk)/qk) ∀t ∈ [(1 −
qk−1)/qk−1, (1 − qk)/qk]. Hence f ′(t) ≡ f ′(0), and therefore f(t) = At + B. Conversely, if f is
linear, then ‖Hn,q(f)(x) −H∞,q(f)(x)‖1+x = 0.

One of the remarkable properties of the q-Bernstein approximation is that derivatives
of Bn(f) of any order converge to corresponding derivatives of f, see [25]. Next theorem
shows the same property forHnq for the first derivative.

Theorem 3.11. Let f ∈ C∗
1+x[0,∞)∩C1[0,∞) and let {qn} be a sequence chosen so that the sequence

εn =
n

1 + qn + q2n + · · · + qn−1n

− 1 (3.32)

converges to zero from above faster than {1/3n}. Then

lim
n→∞

[Hn,qn(f)(x)]
′ = f ′(x) (3.33)

uniformly on any [0, A] ⊂ [0,∞).

Proof. By definition

Hn,qn(f)(x) = (1 + x)(Bn+1,qnΦ)f
(

x

1 + x

)
. (3.34)
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Since Hn,qn(f)(x) is a composition of differentiable functions, it is differentiable at any x ∈
[0, A] and

d

dx
Hn,qn(f)(x) =

d

dx

[
(1 + x)(Bn+1,qnΦ)f

(
x

1 + x

)]

= (Bn+1,qnΦ)f
(

x

1 + x

)
+

1
1 + x

d

dx
(Bn+1,qnΦ)f

(
x

1 + x

)
.

(3.35)

By [24, Theorem 4.1]

∣∣∣∣(Bn+1,qnΦ)f
(

x

1 + x

)
− (Φf)

(
x

1 + x

)∣∣∣∣ ≤ 2ω
(
Φf,

√

Bn+1,qn

(
t − x

1 + x

)2( x

1 + x

))
, (3.36)

and by [25, Theorem 3]

lim
n→∞

sup
0≤x≤A

∣∣∣∣
d

dx

(
Bn+1,qnΦ)f

(
x

1 + x

)
− (Φf)′

(
x

1 + x

)∣∣∣∣ = 0. (3.37)

Thus the desired limit follows from the following inequality:
∣∣∣∣
d

dx
Hn,qn(f)(x) −

d

dx
f(x)

∣∣∣∣

=
∣∣∣∣
d

dx
Hn,qn(f)(x) −

d

dx
(1 + x)(Φf)

(
x

1 + x

)∣∣∣∣

≤
∣∣∣∣(Bn+1,qnΦ)f

(
x

1 + x

)
− (Φf)

(
x

1 + x

)∣∣∣∣ +
1

1 + x

∣∣∣∣
d

dx
(Bn+1,qnΦ)f

(
x

1 + x

)
− (Φf)′

(
x

1 + x

)∣∣∣∣

≤ 2ω
(
Φf,

√

Bn+1,qn

(
t − x

1 + x

)2( x

1 + x

))
+
∣∣∣∣
d

dx
(Bn+1,qnΦ)f

(
x

1 + x

)
− (Φf)′

(
x

1 + x

)∣∣∣∣

= 2ω
(
Φf,

√
x

(1 + x)2
1

[n + 1]qn

)
+
∣∣∣∣
d

dx
(Bn+1,qnΦ)f

(
x

1 + x

)
− (Φf)′

(
x

1 + x

)∣∣∣∣

≤ 2ω
(
Φf,

√
A

[n + 1]qn

)
+
∣∣∣∣
d

dx
(Bn+1,qnΦ)f

(
x

1 + x

)
− (Φf)′

(
x

1 + x

)∣∣∣∣.

(3.38)

Remark 3.12. In [1], it is shown that

Bn+1,q(f)(x) =
n+1∑

k=0

[
n + 1
k

]
Δkf0x

k, (3.39)

where

fi = f
(

[i]
[n + 1]

)
, Δ0fi = fi, Δk+1fi = Δkfi+1 − qkΔkfi,

Δkfi =
k∑

j=0

(−1)jqj(j−1)/2
[
k
j

]
f

(
[i + k − j]
[n + 1]

)
.

(3.40)
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Immediately from the definition ofHn,q, we get an analog of (3.39) forHn,q:

Hn,q(f)(x) = (Φ−1Bn+1,qΦ)(f)(x)

= Φ−1
n+1∑

k=0

[
n + 1
k

]
Δk(Φf)0x

k

=
n+1∑

k=0

[
n + 1
k

]
Δk(Φf)0

xk

(1 + x)k−1
.

(3.41)
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