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1. Introduction

The Euler numbers En and polynomials En(x) are defined by the generating function in the
complex number field as
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cf. [1–4]. The Bernoulli numbers Bn and polynomials Bn(x) are defined by the generating
function as
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cf. [5–8]. The Genocchi numbers Gn and polynomials Gn(x) are defined by the generating
function as
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cf. [9, 10]. It satisfies G0 = 0, G1 = 1, . . . , and for n ≥ 1,

Gn= 2n
(
Bn

(
1
2

)
− Bn

)
. (1.4)

Let p be a fixed odd prime number. Throughout this paper, Zp,Qp, and Cp will be,
respectively, the ring of p-adic rational integers, the field of p-adic rational numbers and
the p-adic completion of the algebraic closure of Qp. The p-adic absolute value in Cp is
normalized so that |p|p = 1/p. When one talks of q-extension, q is variously considered as
an indeterminate, a complex number q ∈ C or a p-adic number q ∈ Cp. If q ∈ C, one normally
assumes |q| < 1. If q ∈ Cp, one normally assumes |1 − q|p < 1. We use the notation

[x]q =
1 − qx
1 − q , [x]−q =

1 − (−q)x
1 + q

, (1.5)

cf. [1–5, 9–23] for all x ∈ Zp. For a fixed odd positive integer d with (p, d) = 1, set

X = Xd = lim
←
n

Z

dpnZ
, X1 = Zp,

X∗ =
⋃

0<a<dp
(a,p)=1

(
a + dpZp

)
,

a + dpnZp =
{
x ∈ X | x ≡ a

(
moddpn

)}
,

(1.6)

where a ∈ Z lies in 0 ≤ a < dpn. For any n ∈ N,

μq

(
a + dpnZp

)
=

qa

[dpn]q
(1.7)

is known to be a distribution on X, cf. [1–5, 9–23].
We say that f is uniformly differentiable function at a point a ∈ Zp and denote this

property by f ∈ UD(Zp), if the difference quotients

Ff(x, y) =
f(x) − f(y)

x − y (1.8)

have a limit l = f ′(a) as (x, y) → (a, a), cf. [4].
The p-adic q-integral of a function f ∈ UD(Zp) was defined as

Iq(f) =
∫

Zp

f(x)dμq(x) = lim
n→∞

1
[pn]q

pn−1∑
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f(x)qx, (1.9)
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1
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cf. [14]. In (1.10), when q → 1, we derive

I−1
(
f1
)
+ I−1(f) = 2f(0), (1.11)

where f1(x) = f(x+1). If we take f(x) = etx, then we have f1(x) = et(x+1) = etxet. From (1.11),
we obtain
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(
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)
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∫
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En
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n!
. (1.12)

In view of (1.10), we can consider the q-Euler numbers as follows:
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)
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tn
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. (1.13)

By (1.12) and (1.13), we obtain the followings.

Lemma 1.1. For n ∈ N,
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. (1.14)

Proof. We note that
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.

(1.15)

From (1.15), we have

Gn+1

n + 1
=
∫

Zp

xndμ−1(x) = En. (1.16)

The purpose of this paper is to give the distribution of extended higher order q-Euler and
q-Genocchi polynomials. In [24], Choi-Anderson-Srivastava have studied the q-extension
of the Apostol-Euler polynomials of order n, and the multiple Hurwitz zeta functions (see
[24]). Actually, their results and definitions are not new (see [18, 20]) and the definition of
the Apostol-Bernoulli numbers in their paper are exactly the same as the definition of the
q-extension of Genocchi numbers. Finally, they conjecture that the following q-distribution
relation holds:

(
[m]q

)k−1m−1∑

j=0

(−w)jE(n)
k,qm,wm

(
x + j

m

)
= E

(n)
k,q,w

(x) (1.17)

(see [24, Remark 6, page 735]). This seems to be nonsense as a conjecture. In this paper we
give the corrected distribution relation related to the conjecture of Choi-Anderson-Srivastava
in [24] (see Theorem 2.6).
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2. Weighted q-Genocchi number of higher order

In this section, we assume that q ∈ Cp with |1 − q|p < 1 or q ∈ C with |q| < 1. For k ∈ N and
w ∈ Cp with |1 −w|p < 1, we define the weighted q-Euler numbers of order k as follows:

E
(k)
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∫
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· · ·
∫
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)
. (2.1)

We note that q-binomial coefficient is defined by

(
n

k

)

q

=
[n]q[n − 1]q · · · [n − k + 1]q

[k]q
, (2.2)

cf. [20]. From (2.1), we obtain the following theorem.

Lemma 2.1. For k ∈ N, n ∈ N ∪ {0} and w ∈ Cp with |1 −w|p < 1, one has
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Now we consider the following generating functions:
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By (2.5), we can define the weighted q-Genocchi numbers of order k:
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From (2.1), (2.2), and (2.6), we note that
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From (2.8), we obtain the following recurrsion relation between q-Euler and q-Genocchi
numbers of order k.

Theorem 2.2. For k ∈ N, n ∈ N ∪ {0} and w ∈ Cp with |1 −w|p < 1, one has

(
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k
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For k ∈ N, we also define the weighted q-Euler polynomials of order k as follows:
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From (2.9), we obtain the following theorem.

Theorem 2.3. For k ∈ N, n ∈ N ∪ {0} and w ∈ Cp with |1 −w|p < 1, one has
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From (2.11), we consider the following generating functions:
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By (2.13), we can define the weighted q-Genocchi polynomials of order k as follows:
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From (2.14), we note that
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By comparing the coefficients on both sides, we see that

∞∑

n=0

E
(k)
n,q,w(x)
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n!
=
∞∑

n=k

G
(k)
n,q,w(x)
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=
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n=k

G
(k)
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∞∑
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G
(k)
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1
(
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m

)
tn

n!
.

(2.16)

From (2.16), we obtain the following recursion relation between weighted q-Euler and
weighted q-Genocchi polynomials of order k.

Theorem 2.4. For k ∈ N, n ∈ N ∪ {0} and w ∈ Cp with |1 −w|p < 1, one has

(
m + k

k

)
k!E(k)

n,q,w(x) = G
(k)
n+k,q,w(x). (2.17)

Corollary 2.5. For k ∈ N, n ∈ N ∪ {0} and w ∈ Cp with |1 −w|p < 1, one has

G
(k)
n+k,q,w(x) = k!

(
n + k

k

)
[2]kq

(1 − q)n
n∑

l=0

(
n

l

)
(−1)lqxl 1

Πk
j=1

(
1 + ql+jw

)

= k!

(
n + k

k

)
[2]kq

∞∑

m=0

(
m + k − 1

m

)

q

(−1)mwmqm[x +m]nq .

(2.18)

Let d ∈ N with d ≡ 1(mod2). Then we note that

E
(k)
n,q,w(x) =

∫

Zp

· · ·
∫

Zp

q
∑k

j=1(k−j)xjwx1+···+xk[x + x1 + · · · + xk]
n
qdμ−q

(
x1
) · · ·dμ−q

(
xk

)

=
[d]mq

[d]k−q

d−1∑

i1,...,ik=0

qk
∑k

j=1ij−
∑k

j=2(j−1)ij (−1)
∑k

j=1ijwi1+···+ik

×
∫

Zp

· · ·
∫

Zp

⎡

⎣
x +
∑k

j=1ij

d
+

k∑

j=1

xj

⎤

⎦
m

qd

(
qd
)∑k

j=1(k−j)xj(
wd)x1+···+xk

× dμ−qd
(
x1
) · · ·dμ−qd

(
xk

)

=
[d]mq

[d]k−q

d−1∑

i1,...,ik=0

qk
∑k

j=1ij−
∑k

j=2(j−1)ij (−1)
∑k

j=1ij E
(k)
m,qd,wd

(
x + x1 + · · · + xk

d

)
.

(2.19)

Therefore, we obtain the following main results.
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Theorem 2.6 (Distribution for higher order q-Euler polynomials). For d ∈ N with d ≡
1(mod2), n ∈ N ∪ {0} and w ∈ Cp with |1 −w|p < 1, one has

E
(k)
n,q,w(x) =

[d]mq

[d]k−q

d−1∑

i1,...,ik=0

qk
∑k

j=1ij−
∑k

j=2(j−1)ij (−1)
∑k

j=1ij E
(k)
m,qd,wd

(
x + x1 + · · · + xk

d

)
. (2.20)

For k ∈ N, w ∈ C with |w| < 1, we easily see that

F
(k)
q,w(t, x) = [2]kq

∞∑

m=0

(
m + k − 1

m

)

q

(−1)mwmqme[x+m]qt =
∞∑

m=0

E
(k)
m,q,w(x)

tm

m!
. (2.21)

Thus we have

E
(k)
n,q,w(x) =

dn

dtn
F
(k)
q,w(t, x) = [2]kq

∞∑

m=0

(−1)mqmwm[x +m]nq

(
m + k − 1

m

)

q

(2.22)

Definition 2.7. For s ∈ C, k ∈ N and w ∈ C with |w| < 1, one has

ζ
(k)
q,w,E(s, x) = [2]kq

∞∑

m=0

(−1)mwmqm
(
m + k − 1

m

)

q

[m + x]sq
. (2.23)

Note that ζ(k)q,w,E(s, x) is analytic function in the whole complex s-plane. From (2.23),
we derive the following.

Theorem 2.8. For n ∈ N ∪ {0}, k ∈ N and w ∈ Cp with |1 −w|p < 1, one has

ζ
(k)
q,w,E(−n, x) = E

(k)
n,q,w(x). (2.24)
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