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Wemodel and analyze antagonistic stochastic games of three players, two of whom form a coalition
against the third one. The actions of the players are modeled by random walk processes recording
the cumulative damages to each player at any moment of time. The game continues until the
single player or the coalition is defeated. The defeat of any particular player takes place when
the associated process (representing the collateral damage) crosses a fixed threshold. Once the
threshold is exceeded at some time, the associated player exits the game. All involved processes
are being “observed by a third party process” so that the information regarding the status of all
players is restricted to those special epochs. Furthermore, all processed are modulated (with their
parameters being modified in due course of the game). We obtain a closed form joint functional of
the named processes at key reference points.
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1. Introduction

Antagonistic games are those with two players A and B having totally opposite interests. In
our game-theoretic setting, we have a group of three players, A, B, and C, of whom A and
B form a coalition against C. The game is modeled by three stochastic processes, namely,
generalized random walk processes with drifts that at random times strike each other causing
random casualties. Each of the three players “accumulates” damages totaling successful strikes
of random magnitudes and each player is assumed to have his own threshold of tolerance.
Once the total damage to player A, B, or C exceeds its respective threshold, the inflicted player
is defeated and exits the game. In the beginning of the game, players A and B strike player C,
each at different times. Correspondingly, player C strikes players A and B at different times.
Player C wins the game if each of his adversaries is defeated and then the game is over. The
game also ends if player C is defeated by A or B. In this special case, one of them, say A, can
be defeated by player C followed by the defeat of player C by player B.
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In this particular game setting, we are interested in the event that player C defeats the
coalition of players A and B. At the core of the game are four marked modulated Poisson
random measures

ΠA =
χ∑

i=0

xiεsi , ΠB =
ξ∑

j=0

yjεtj , ΠCA =
ζ∑

k=0

wA
k εuk

, ΠCB =
η∑

n=0

wB
kεvk

(1.1)

on a probability space (Ω,F(Ω), P) (εa is the point mass) that will describe the respective
casualties to players A and B by player C and to player C by players A and B. Before we
turn to specifics of (1.1), we assume that there is a third-party point process

T :=
∑

i≥0
ετi , τ0 ≥ 0, (1.2)

over which the game is observed, and thus the information on the status of the players will
not be continuously available but upon the epochs of time from T only. The Poisson processes
of (1.1) are conditionally independent in each interval [τj−1, τj) given the status of the players
at τj−1 and, furthermore, their respective parameters (i.e., intensities of marks) will depend
on the game status at τj−1. This makes perfect sense because if one of the players, say A, is
defeated at some point known at τk, his upcoming actions against player C can be reduced or
completely halted. Perhaps player C will care little about player A either and concentrate his
attention on player B. Consequently, we will say that the parameters of (1.1) are as follows. In
interval [τj−1, τj), the r.v.’s χ, ξ, ζ, η are independent Poisson with parameters λj

A, λ
j

B, λ
j

CA, λ
j

CB
and measures (1.1) are specified by their respective transforms

Ee−uΠA(·) = eλ
j

A|·|[g
j

A(u)−1], g
j

A(u) = Ee−ux1 , Re(u) ≥ 0,

Ee−uΠB(·) = eλ
j

B|·|[g
j

B(u)−1], g
j

B(u) = Ee−uy1 , Re(u) ≥ 0,

Ee−uΠCA(·) = eλ
j

CA|·|[g
j

CA(u)−1], g
j

CA(u) = Ee−uw
A
1 , Re(u) ≥ 0,

Ee−uΠCB(·) = eλ
j

CB|·|[g
j

CB(u)−1], g
j

CB(u) = Ee−uw
B
1 , Re(u) ≥ 0,

(1.3)

where | · | is the Borel-Lebesgue measure. We set s0 = t0 = u0 = v0 = 0. A more rigorous
formalism on modulated measures as per Dshalalow [1] is not mandatory, because, as we will
see it, the “automodulation” of (ΠA,ΠB,ΠCA,ΠCB) will be restricted to a few reference points
from T.

The assumption is that randommeasures (1.1) are positive and the game natural settings
require the respective marks in (1.1) to be nonnegative. The interpretation of (1.1) is as follows.
Player A receives strikes of magnitudes x0, x1, . . . upon times s0, s1, . . ., respectively, from player
C. Player B received strikes y0, y1, . . . upon t0, t1, . . . from player C. Similarly, ΠCA and ΠCB

formalize the damages exerted to C by players A and B.
Now, relative to T of (1.2), we form the four-dimensional “embedded” marked random

measure

(A,B,C,T) =
∑

j≥0
ετj
(
Xj, Yj ,W

A
j ,W

B
j

)
(1.4)
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with modulated position dependence, where

Xj = ΠA
((
τj−1, τj]

)
, Yj = ΠB

((
τj−1, τj]

)
,

WA
j = ΠCA

((
τj−1, τj]

)
, WB

j = ΠCB
((
τj−1, τj]

)
,

Zj = WA
j +WB

j , j = 0, 1, . . . , τ−1 = 0.

(1.5)

Now, given thresholdsM, N, R (positive reals), we define the exit indices

μ := inf
{
m ≥ 0 : Am = X0 + · · · +Xm > M

}
,

ν := inf
{
n ≥ 0 : Bn = Y0 + · · · + Yn > N

}
,

ρ := inf
{
k ≥ 0 : Ck = Z0 + · · · + Zk > R

}
.

(1.6)

Hence, players A, B, C are doomed to exit the game at τμ, τν, τρ (exit times or first passage
times), respectively; of course, it is not yet specified in which order. Informally, the game in our
case, is the stochastic process (A,B,C,T) of (1.1)-(1.6) on the trace σ-algebra F(Ω) ∩ ({μ ≤ ν <
ρ} ∪ {ν < μ < ρ}), implying that only those paths of (A,B,C,T) will be included which lead
player C to defeat the coalition of players A and B. Consequently, we are interested in the joint
functional

Φμνρ := E
[
e−a0Aμ−1−a1Aμ−a2Aν−1−a3Aνe−b0Bμ−1−b1Bμ−b2Bν−1−b3Bν

× e−c0Cμ−1−c1Cμ−c2Cν−1−c3Cν−c4Cρ−1−c5Cρe−θ0τμ−1−θ1τμ−θ2τν−1−θ3τν−θ4τρ−1−θ5τρ1{μ≤ν<ρ}∪{ν<μ<ρ}
]
,
(1.7)

providing the key information upon major reference points of the game lasting until player
C wins. The way how the “modulated” point process T functions will be described in
the upcoming sections. Section 3 contains the main result of the paper, Theorem 3.3, which
provides a closed form expression for functional (1.7).

It is observed that in this paper we focus entirely on probabilistic analysis of the conflict
rather than on an optimal strategy for winning the game. The tools for the investigation
we use are also different from those in most literature, concentrating on fluctuation analysis
specifically designed and embellished for these types of games. We also notice that the game
we formalize and study is strictly antagonistic as far as the parties of players A and B and
player C. Consequently, the primary application of our game will be economics and warfare,
with the main emphasis on economics. We believe that most actions among competitors in any
specific branch of industry, banking, recreation, and so forth are hostile in nature, which agrees
with the free market principles. Among them, we mention acquiring or selling large quantities
of shares of stocks of a competitor, merging with another competitor, hostile commercials,
political lobbying, and outsourcing the labor.

All pertinent work related to antagonistic games are concerned with two players with
opposite interests. Of course, each player can represent a group of other players, but they are
not noticeably distinguishable within the game [2, 3]. In this paper, we make a first attempt
to bring a coalition into the game, where the actions of the players differ for each player, and
defeating the coalition means to defeat each player, possibly at different times. We also plan
another work for coalition games where a coalition ruins a single player and a coalition defeats
another coalition.

Game-theoretical work most commonly applies to economics, although it stemmed from
warfare during the second world war. The literature on games is vast and a good portion of



4 Journal of Inequalities and Applications

it is on cooperative games [4–6]. Others are on noncooperative (antagonistic) games [2, 3, 7–
12] of which many relate to economics [5, 7, 10, 11] and some to warfare [8, 12]. The primary
tools explored in this paper are on the theory of fluctuations related to the random walk and
occurring in economics [13, 14], physics [15], and other areas of engineering and technology.
Article [2] by the first author contains a more detailed bibliography regarding fluctuations and
games. Article [3] is somewhat related to our present paper, as it also models a noncooperative
game by random walk processes, but with two active players only. The literature on coalition
games is quite populous. We mention a few related papers [8, 16–21] which all use different
techniques and settings.

2. Preliminaries

Wewill begin with the description of the observation processT. We assume thatT is a delayed
renewal process with

Ee−θτ0 = δ0(θ), Re(θ) ≥ 0,

Ee−θΔj = δ1(θ), Re(θ) ≥ 0, j = 1, 2, . . . ,
(2.1)

where

Δj = τj − τj−1. (2.2)

Next, from (1.5) followed by (1.3), wefind

γj(x, y, z, θ)

:= Ee−xXj−yYj−zZj−θΔj

= E
[
e−θΔj E

[
e−xΠA((τj−1,τj]) | Δj

]
E
[
e−yΠB((τj−1,τj]) | Δj

]
E
[
e−z{ΠCA+ΠCB}((τj−1,τj]) | Δj

]]

= E
[
e−θΔj eΔj{λ

j

A[g
j

A(x)−1]+λ
j

B[g
j

B(y)−1]+λ
j

CA[g
j

CA(z)−1]+λ
j

CB[g
j

CB(z)−1]}
]

= δ1
{
θ + λ

j

A

[
1 − g

j

A(x)
]
+ λ

j

B

[
1 − g

j

B(y)
]
+ λ

j

CA

[
1 − g

j

CA(z)
]
+ λ

j

CB

[
1 − g

j

CB(z)
]}
, j = 1, 2, . . . ,

(2.3)

and analogously,

γ0(x, y, z, θ) := Ee−xX0−yY0−zZ0−θτ0

= δ0
{
θ + λ0A

[
1 − g0

A(x)
]
+ λ0B

[
1 − g0

B(y)
]
+ λ0CA

[
1 − g0

CA(z)
]
+ λ0CB

[
1 − g0

CB(z)
]}
.

(2.4)

Throughout the rest of the paper, we will be using the following abbreviations:

γi = γi
(
a0 + · · · + a3 + x, b0 + · · · + b3 + y, c0 + · · · + c5 + z, θ0 + · · · + θ5

)
, i = 0, 1, (2.5)

Γi = γi
(
a1 + a2 + a3 + x, b1 + b2 + b3 + y, c1 + · · · + c5 + z, θ1 + · · · + θ5

)
, i = 0, 1, (2.6)

Γ1i = γi
(
a1 + a2 + a3, b1 + b2 + b3 + y, c1 + · · · + c5 + z, θ1 + · · · + θ5

)
, i = 0, 1, (2.7)

Γ2i = γi
(
a1 + a2 + a3 + x, b1 + b2 + b3, c1 + · · · + c5 + z, θ1 + · · · + θ5

)
, i = 0, 1, (2.8)

gi = γi
(
a0 + a1 + x, b0 + b1 + y, c0 + · · · + c5 + z, θ0 + · · · + θ5

)
, i = 0, 1, (2.9)

Gi = γi
(
a1 + x, b1 + y, c1 + c3 + c4 + c5 + z, θ1 + θ3 + θ4 + θ5

)
, i = 0, 1, (2.10)

G12
i = γi

(
a1, b1, c1 + c3 + c4 + c5 + z, θ1 + θ3 + θ4 + θ5

)
, i = 0, 1, (2.11)

G1
i = γi

(
a1, b1 + y, c1 + c3 + c4 + c5 + z, θ1 + θ3 + θ4 + θ5

)
, i = 0, 1, (2.12)

G2
i = γi

(
a1 + x, b1, c1 + c3 + c4 + c5 + z, θ1 + θ3 + θ4 + θ5

)
, i = 0, 1. (2.13)
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3. Main results

We recall that the game is over when player C beats the coalition of players A and B
by defeating both of them. The σ-algebra of the paths of the process (A,B,C,T) can be
analogously rewritten as F(Ω) ∩ {μ < ν < ρ} ∪ {μ = ν < ρ} ∪ {ν < μ < ρ}. We break the
functional Φμνρ of (1.7) accordingly in three parts below.

Part 1. Player C knocks down player A and then player B. Before we further proceed, wewould
now like to focus on the specifics of the automodulation mentioned in Section 1. Consider the
σ-subalgebra F (Ω) ∩{μ < ν < ρ} of the paths of the game, with player A losing first, followed
by player B. Subdividing the time axis into five intervals

[
0, τ0
]
∪
(
τ0, τμ

]
∪
(
τμ, τν

]
∪
(
τν, τρ

]
∪
(
τρ,∞

)
, (3.1)

we specify the parameters of the Poisson processes in (1.1) as follows. We assume they will
not alter within these five intervals, only upon transition from one to another. Counting these
intervals as I0, I1, I2, I3, I4, we will assign the corresponding parameters and functionals in
(1.3), now indexed from 0 through 4.

The corresponding subfunctional will look as

Φ1
μνρ = E

[
e−a0Aμ−1−a1Aμ−a2Aν−1−a3Aν−b0Bμ−1−b1Bμ−b2Bν−1−b3Bν

× e−c0Cμ−1−c1Cμ−c2Cν−1−c3Cν−c4Cρ−1−c5Cρ

× e−θ0τμ−1−θ1τμ−θ2τν−1−θ3τν−θ4τρ−1−θ5τρ1{μ<ν<ρ}
]
.

(3.2)

Now, we extend the indices of (1.6) to the random families:

μ(p) := inf
{
m ≥ 0 : Am = X0 + · · · +Xm > p

}
, p ≥ 0,

ν(q) := inf
{
n ≥ 0 : Bn = Y0 + · · · + Yn > q

}
, q ≥ 0,

ρ(r) := inf
{
k ≥ 0 : Ck = Z0 + · · · + Zk > r

}
, r ≥ 0.

(3.3)

Correspondingly, the functional (3.2)will turn to a parametric family of functionals:

(p, q, r) �−→ Φ1
μ(p)ν(q)ρ(r) = E

[
e−a0Aμ(p)−1−a1Aμ(p)−a2Aν(q)−1−a3Aν(q)

× e−b0Bμ(p)−1−b1Bμ(p)−b2Bν(q)−1−b3Bν(q)

× e−c0Cμ(p)−1−c1Cμ(p)−c2Cν(q)−1−c3Cν(q)−c4Cρ(r)−1−c5Cρ(r)

× e−θ0τμ(p)−1−θ1τμ(p)−θ2τν(q)−1−θ3τν(q)−θ4τρ(r)−1−θ5τρ(r)1{μ(p)<ν(q)<ρ(r)}
]
.

(3.4)

Now, we define a Laplace-type operator

Lpqr(·)(x, y, z) := xyz

∫∞

p=0

∫∞

q=0

∫∞

r=0
e−xp−yq−zr(·)d(p, q, r),

Re(x) > 0, Re(y) > 0, Re(z) > 0,
(3.5)
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which we apply to {1{μ(p)=j, ν(q)=k, ρ(r)=n}; p ≥ 0, q ≥ 0, r ≥ 0} arriving at

Lpqr

(
1{μ(p)=j, ν(q)=k, ρ(r)=n}

)
(x, y, z) =

(
e−xAj−1 − e−xAj

)(
e−yBk−1 − e−yBk

)(
e−zCn−1 − e−zCn

)
.

(3.6)

Equation (3.6) is not difficult to prove (cf. [3] for a related formula). With the notation

Ψi(x, y, z) = Lpqr

(
Φi

μ(p),ν(q),ρ(r)

)
(x, y, z), i = 1, 2, 3, (3.7)

we have, after the use of Fubini’s theorem,

Ψ1(x, y, z) =
∑

j≥0

∑

k>j

∑

n>k

E
[
e−a0Aj−1−a1Aj−a2Ak−1−a3Ak−b0Bj−1−b1Bj−b2Bk−1−b3Bk

× e−c0Cj−1−c1Cj−c2Ck−1−c3Ck−c4Cn−1−c5Cne−θ0τj−1−θ1τj−θ2τk−1−θ3τk−θ4τn−1−θ5τn

×
(
e−xAj−1 − e−xAj

)(
e−yBk−1 − e−yBk

)(
e−zCn−1 − e−zCn

)]
.

(3.8)

A further regrouping of the random factors yields

Ψ1(x, y, z) =
∑

j≥0

∑

k>j

∑

n>k

E
[
e−(a0+···+a3)Aj−1−(a1+a2+a3)Xj−(a2+a3)(Xj+1+···+Xk−1)−a3Xk

× e−(b0+···+b3)Bj−1−(b1+b2+b3)Yj−(b2+b3)(Yj+1+···+Yk−1)−b3Yk

× e−(c0+···+c5)Cj−1−(c1+···+c5)Zj−(c2+···+c5)(Zj+1+···+Zk−1)−(c3+c4+c5)Zk

× e−(c4+c5)(Zk+1+···+Zn−1)−c5Zn

× e−(θ0+···+θ5)τj−1−(θ1+···+θ5)Δj−(θ2+···+θ5)(Δj+1+···+Δk−1)−(θ3+θ4+θ5)Δk

× e−(θ4+θ5)(Δk+1+···+Δn−1)−θ5Δn

× e−xAj−1
(
1 − e−xXj

)
e−yBj−1e−yYje−y(Yj+1+···+Yk−1)

(
1 − e−yYk

)

× e−zCj−1e−zZj e−z(Zj+1+···+Zk−1)e−zZke−z(Zk+1+···+Zn−1)
(
1 − e−zZn

)]
.

(3.9)

Under our assumptions on independence of the increments of the process (A,B,C,T) in
intervals I0, . . . , I4, we have after straightforward arguments,

Ψ1(x, y, z) =
∑

j≥0

∑

k>j

∑

n>k

E
[
e−(a0+···+a3+x)Aj−1−(b0+···+b3+y)Bj−1−(c0+···+c5+z)Cj−1−(θ0+···+θ5)τj−1]

× E
[
e−(a1+a2+a3)Xj

(
1 − e−xXj

)
e−(b1+b2+b3+y)Yj−(c1+···+c5+z)Zj−(θ1+···+θ5)Δj

]

× E
[
e−(a2+a3)(Xj+1+···+Xk−1)−(b2+b3+y)(Yj+1+···+Yk−1)

× e−(c2+···+c5+z)(Zj+1+···+Zk−1)−(θ2+···+θ5)(Δj+1+···+Δk−1)
]

× E
[
e−a3Xk−b3Yk

(
1 − e−yYk

)
e−(c3+c4+c5+z)Zk−(θ3+θ4+θ5)Δk

]

× E
[
e−(c4+c5+z)(Zk+1+···+Zn−1)−(θ4+θ5)(Δk+1+···+Δn−1)

]

× E
[
e−c5Zn

(
1 − e−zZn

)
e−θ5Δn

]

=
∑

j≥0

∑

k>j

∑

n>k

R1jR2jR3jkR4kR5knR6n,

(3.10)



J. H. Dshalalow and A. Treerattrakoon 7

where

R1j = E
[
e−(a0+···+a3+x)Aj−1−(b0+···+b3+y)Bj−1−(c0+···+c5+z)Cj−1−(θ0+···+θ5)τj−1]

=

⎧
⎨

⎩
1, j = 0

γ0γ
j−1
1 , j > 0,

R2j = E
[
e−(a1+a2+a3)Xj (1 − e−xXj )e−(b1+b2+b3+y)Yj−(c1+···+c5+z)Zj−(θ1+···+θ5)Δj

]

=

⎧
⎨

⎩
Γ10 − Γ0, j = 0

Γ11 − Γ1, j > 0,

(3.11)

γ ’s and Γ’s are defined in (2.5)–(2.7), and

R3jk = E
[
e−(a2+a3)(Xj+1+···+Xk−1)−(b2+b3+y)(Yj+1+···+Yk−1)e−(c2+···+c5+z)(Zj+1+···+Zk−1)−(θ2+···+θ5)(Δj+1+···+Δk−1)

]

= γ
k−1−j
2

(
a2 + a3, b2 + b3 + y, c2 + · · · + c5 + z, θ2 + · · · + θ5

)
, k > j ≥ 0,

R4k = E
[
e−a3Xk−b3Yk

(
1 − e−yYk

)
e−(c3+c4+c5+z)Zk−(θ3+θ4+θ5)Δk

]

= γ3
(
a3, b3, c3 + c4 + c5 + z, θ3 + θ4 + θ5

)
− γ3
(
a3, b3 + y, c3 + c4 + c5 + z, θ3 + θ4 + θ5

)
,

R5kn = E
[
e−(c4+c5+z)(Zk+1+···+Zn−1)−(θ4+θ5)(Δk+1+···+Δn−1)

]

= γn−1−k4

(
0, 0, c4 + c5 + z, θ4 + θ5

)
, n > k,

R6n = E
[
e−c5Zn

(
1 − e−zZn

)
e−θ5Δn

]
= γ4
(
0, 0, c5, θ5

)
− γ4
(
0, 0, c5 + z, θ5

)
.

(3.12)

The summation
∑

k>jR3jkR4k yields the expression

γ3
(
a3, b3, c3 + c4 + c5 + z, θ3 + θ4 + θ5

)
− γ3
(
a3, b3 + y, c3 + c4 + c5 + z, θ3 + θ4 + θ5

)

1 − γ2
(
a2 + a3, b2 + b3 + y, c2 + · · · + c5 + z, θ2 + · · · + θ5

) . (3.13)

The summation
∑

n>kR5knR6n yields the expression (γ4(0, 0, c5, θ5)−γ4(0, 0, c5+z, θ5))/(1−
γ4(0, 0, c4+c5+z, θ4+θ5)). Therefore, completing the rest of the summations, we have altogether

Ψ1(x, y, z) =
[
Γ10 − Γ0 +

γ0
1 − γ1

(
Γ11 − Γ1

)]

×
γ3
(
a3, b3, c3+c4+c5+z, θ3+θ4+θ5

)
−γ3
(
a3, b3 + y, c3 + c4 + c5 + z, θ3 + θ4 + θ5

)

1 − γ2
(
a2 + a3, b2 + b3 + y, c2 + · · · + c5 + z, θ2 + · · · + θ5

)

×
γ4
(
0, 0, c5, θ5

)
− γ4
(
0, 0, c5 + z, θ5

)

1 − γ4
(
0, 0, c4 + c5 + z, θ4 + θ5

) .

(3.14)

Finally, for the convergence of the above series, we need the following.
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Lemma 3.1. Let h(x, y, z, θ) = Ee−xXj−yYj−zZj−θΔj with Re(x) ≥ 0, and Re(y) ≥ 0,Re(z) ≥ 0, and
Re(θ) ≥ 0. Then, the norm ‖h‖ is strictly less than 1 for all (x, y, z, θ) ∈ C

4 such that

Re(x) ≥ 0, Re(y) ≥ 0, Re(z) ≥ 0, Re(θ) ≥ 0, (L.1)
[
Re(x)

]2 +
[
Re(y)

]2 +
[
Re(z)

]2 +
[
Re(θ)

]2
> 0. (L.2)

For the proof of Lemma 3.1, see the appendix.

Remark 3.2. The convergence of
∑

j>0γ
j−1
i (and other similar series) is valid in light of Lemma

3.1 applied to the norm of the functional

γi
(
a0 + a1 + x, b0 + · · · + b3 + y, c0 + · · · + c5 + z, θ0 + · · · + θ5

)
, (3.15)

which is strictly less than 1 if Re(a0+· · ·+a3+x) > 0, Re(b0+· · ·+b3+y) > 0, Re(c0+· · ·+c5+z) > 0,
and Re(θ0 + · · · + θ5) > 0, or even replacing one of the four inequalities with ≥. The rest of the
series can be adjusted correspondingly.

Part 2. The automodulation of Part 1 is modified as follows. Consider the σ-subalgebra F(Ω)∩
{μ = ν < ρ} of the paths of the game, where players A and B perish simultaneously before
player C does. Subdividing the time axis into four intervals

I0 ∪ I1 ∪ I2 ∪ I3 =
[
0, τ0
]
∪
(
τ0, τμ

]
∪
(
τμ, τρ

]
∪
(
τρ,∞

)
, (3.16)

we specify the parameters of the Poisson processes in (1.1) as follows. We assume they will not
alter within these five intervals, only upon transition from one to another. The corresponding
subfunctional will read as

Φ2
μνρ = E

[
e−a0Aμ−1−a1Aμ−b0Bμ−1−b1Bμ−c0Cμ−1−c1Cμ−c2Cν−1−c3Cν−c4Cρ−1−c5Cρ

× e−θ0τμ−1−θ1τμ−θ2τν−1−θ3τν−θ4τρ−1−θ5τρ1{μ=ν<ρ}
]
.

(3.17)

Proceeding further analogously, we again have the extended family of functionals

Φ2
μ(p)ν(q)ρ(r) = E

[
e−a0Aμ(p)−1−a1Aμ(p)−b0Bμ(p)−1−b1Bμ(p)

× e−c0Cμ(p)−1−c1Cμ(p)−c2Cν(q)−1−c3Cν(q)−c4Cρ(r)−1−c5Cρ(r)

× e−θ0τμ(p)−1−θ1τμ(p)−θ2τν(q)−1−θ3τν(q)−θ4τρ(r)−1−θ5τρ(r)1{μ(p)=ν(q)<ρ(r)}
]
.

(3.18)

Applying operator Lpqr to the family {1{μ(p)=j=ν(q)=k,ρ(r)=n}; p ≥ 0, q ≥ 0, r ≥ 0}, we
arrive at

Lpqr

(
1{μ(p)=j=ν(q)=k,ρ(r)=n}

)
(x, y, z) =

(
e−xAj−1 − e−xAj

)(
e−yBj−1 − e−yBj

)(
e−zCn−1 − e−zCn

)
.

(3.19)

Then, by Fubini’s theorem and (3.19), it holds that

Ψ2(x, y, z) = Lpqr

(
∑

j≥0

∑

n>j

E
[
e−a0Aj−1−a1Aj−b0Bj−1−b1Bj−c0Cj−1−c1Cj−c2Cj−1−c3Cj−c4Cn−1−c5Cn

× e−θ0τj−1−θ1τj−θ2τj−1−θ3τj−θ4τn−1−θ5τn1{μ(p)=j=ν(q)=k,ρ(r)=n}
]
)
(x, y, z)
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=
∑

j≥0

∑

n>j

E
[
e−a0Aj−1−a1Aj−b0Bj−1−b1Bj−c0Cj−1−c1Cj−c2Cj−1−c3Cj−c4Cn−1−c5Cn

× e−θ0τj−1−θ1τj−θ2τj−1−θ3τj−θ4τn−1−θ5τn

×
(
e−xAj−1 − e−xAj

)(
e−yBj−1 − e−yBj

)(
e−zCn−1 − e−zCn

)]
.

(3.20)

After a straightforward algebra and using similar independence arguments regarding
the automodulation through intervals I0, I1, I2, I3, we have

Ψ2(x, y, z) =
∑

j≥0

∑

n>j

E
[
e−(a0+a1+x)Aj−1−(b0+b1+y)Bj−1−(c0+···+c5+z)Cj−1−(θ0+···+θ5)τj−1]

× E
[
e−a1Xj (1 − e−xXj )e−b1Yj (1 − e−yYj )e−(c1+c3+c4+c5+z)Zj−(θ1+θ3+θ4+θ5)Δj

]

× E
[
e−(c4+c5+z)(Zj+1+···+Zn−1)−(θ4+θ5)(Δj+1+···+Δn−1)

]

× E
[
e−c5Zn

(
1 − e−zZn

)
e−θ5Δn

]

=
∑

j≥0

∑

n>j

R1jR2jR3jnR4n,

(3.21)

where

R1j = E
[
e−(a0+a1+x)Aj−1−(b0+b1+y)Bj−1−(c0+···+c5+z)Cj−1−(θ0+···+θ5)τj−1]

=

⎧
⎨

⎩
1, j = 0

g0g
j−1
1 , j > 0,

R2j = E
[
e−a1Xj (1 − e−xXj )e−b1Yj (1 − e−yYj )e−(c1+c3+c4+c5+z)Zj−(θ1+θ3+θ4+θ5)Δj

]

=

⎧
⎨

⎩
G12

0 −G1
0 −G2

0 +G0, j = 0

G12
1 −G1

1 −G2
1 +G1, j > 0,

(3.22)

g’s and G’s are defined in (2.9)–(2.13), and

R3jn = E
[
e−(c4+c5+z)(Zj+1+···+Zn−1)−(θ4+θ5)(Δj+1+···+Δn−1)

]

= γ
n−1−j
2

(
0, 0, c4 + c5 + z, θ4 + θ5

)
, n > j,

R4n = E
[
e−c5Zn

(
1 − e−zZn

)
e−θ5Δn

]

= γ3
(
0, 0, c5, θ5

)
− γ3
(
0, 0, c5 + z, θ5

)
.

(3.23)

The summation
∑

n>jR3jnR4n yields the expression (γ3(0, 0, c5, θ5)−γ3(0, 0, c5+z, θ5))/(1−
γ2(0, 0, c4 + c5 + z, θ4 + θ5)). Therefore, completing the rest of the summations, we finally have

Ψ2(x, y, z) =
[
G12

0 −G1
0 −G2

0 +G0 +
g0

1 − g1

(
G12

1 −G1
1 −G2

1 +G1
)]

×
γ3
(
0, 0, c5, θ5

)
− γ3
(
0, 0, c5 + z, θ5

)

1 − γ2
(
0, 0, c4 + c5 + z, θ4 + θ5

) .

(3.24)

The needed convergence everywhere we go is due to Lemma 3.1.
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Part 3. Player C defeats player B and then player A, being expressed through the functional

Φ3
μνρ = E

[
e−a0Aν−1−a1Aν−a2Aμ−1−a3Aμ−b0Bν−1−b1Bν−b2Bμ−1−b3Bμ

× e−c0Cν−1−c1Cν−c2Cμ−1−c3Cμ−c4Cρ−1−c5Cρ

× e−θ0τν−1−θ1τν−θ2τμ−1−θ3τμ−θ4τρ−1−θ5τρ1{ν<μ<ρ}
]
.

(3.25)

This case is literally identical to Part 1 by interchanging the roles of A and B yielding the
transform of Φ3

μνρ:

Ψ3(x, y, z) =
[
Γ20 − Γ0 +

γ0
1 − γ1

(
Γ21 − Γ1

)]

×
γ3
(
a3, b3, c3+c4+c5+z, θ3+θ4+θ5

)
−γ3
(
a3 + x, b3, c3 + c4 + c5 + z, θ3 + θ4 + θ5

)

1 − γ2
(
a2 + a3 + x, b2 + b3, c2 + · · · + c5 + z, θ2 + · · · + θ5

)

×
γ4
(
0, 0, c5, θ5

)
− γ4
(
0, 0, c5 + z, θ5

)

1 − γ4
(
0, 0, c4 + c5 + z, θ4 + θ5

) ,

(3.26)

where Γ2i ’s are due to (2.8).
Finally,

Ψ(x, y, z) := Ψ1(x, y, z) + Ψ2(x, y, z) + Ψ3(x, y, z)

=
γ3
(
a3, b3, c3 + c4 + c5 + z, θ3 + θ4 + θ5

)
− γ3
(
a3, b3 + y, c3 + c4 + c5 + z, θ3 + θ4 + θ5

)

1 − γ2
(
a2 + a3, b2 + b3 + y, c2 + · · · + c5 + z, θ2 + · · · + θ5

)

×
γ4
(
0, 0, c5, θ5

)
− γ4
(
0, 0, c5 + z, θ5

)

1 − γ4
(
0, 0, c4 + c5 + z, θ4 + θ5

)

×
[
Γ10 − Γ0 +

γ0
1 − γ1

(
Γ11 − Γ1

)
+ Γ20 − Γ0 +

γ0
1 − γ1

(
Γ21 − Γ1

)]

+
[
G12

0 −G1
0 −G2

0 +G0 +
g0

1 − g1

(
G12

1 −G1
1 −G2

1 +G1
)]

×
γ3
(
0, 0, c5, θ5

)
− γ3
(
0, 0, c5 + z, θ5

)

1 − γ2
(
0, 0, c4 + c5 + z, θ4 + θ5

) .

(3.27)

Setting

c4 = c5 = θ4 = θ5 = 0, (3.28)

(i.e., dropping the information past the exit of the second defeated player) and relaxing some
of modulation with

γ2 = γ3 (3.29)
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simplifies (3.27) to

Ψ(x, y, z) =
[
Γ10 − Γ0 +

γ0
1 − γ1

(
Γ11 − Γ1

)
+ Γ20 − Γ0 +

γ0
1 − γ1

(
Γ21 − Γ1

)]

×
γ2
(
a3, b3, c3 + z, θ3

)
− γ2
(
a3, b3 + y, c3 + z, θ3

)

1 − γ2
(
a2 + a3, b2 + b3 + y, c2 + c3 + z, θ2 + θ3

)

+G12
0 −G1

0 −G2
0 +G0 +

g0
1 − g1

(
G12

1 −G1
1 −G2

1 +G1
)
.

(3.30)

Using the tensor-like index operators

Ji(R, r) := Ri
0 − R0 +

r0
1 − r1

(
Ri

1 − R1
)
,

Ji(Rs, r
)
:= Rsi

0 − Rs
0 +

r0
1 − r1

(
Rsi

1 − Rs
1

)
,

(3.31)

and specifying them as linear, we can rewrite (3.28) in a more compact form:

Ψ(x, y, z)

=
(
J1 + J2)(Γ, γ)

γ2
(
a3, b3, c3 + z, θ3

)
− γ2
(
a3, b3 + y, c3 + z, θ3

)

1 − γ2
(
a2 + a3, b2 + b3 + y, c2 + c3 + z, θ2 + θ3

)J1[(G2, g
)
− (G, g)

]
.

(3.32)

The targeted functional Φμνρ can be restored from Ψ by applying the inverse of L to Ψ,
which is the inverse Laplace operator, after the division by xyz. The main result of this section
can be summarized in the following theorem.

Theorem 3.3. In the stochastic game with coalition of players A and B against player C on the σ-
subalgebra F(Ω) ∩ ({μ ≤ ν < ρ} ∪ {ν < μ < ρ}) (i.e., with player C defeating the coalition), the
functional

Φμνρ := E
[
e−a0Aμ−1−a1Aμ−a2Aν−1−a3Aνe−b0Bμ−1−b1Bμ−b2Bν−1−b3Bν

× e−c0Cμ−1−c1Cμ−c2Cν−1−c3Cν−c4Cρ−1−c5Cρe−θ0τμ−1−θ1τμ−θ2τν−1−θ3τν−θ4τρ−1−θ5τρ

× 1{μ≤ν<ρ}∪{ν<μ<ρ}
]
,

(3.33)

relative to the key reference points of the process (A,B,C,T), satisfies the formulas

Φμνρ = L−1
xyz(Ψ(x, y, z))(M,N,R) (3.34)

and (3.27). For special case (3.28)-(3.29), the functionalΨ(x, y, z) in (3.27) and (3.34) takes a compact
form (3.32) with index operators (3.31) and, for this special Φμνρ in (3.33), is

Φμνρ := E
[
e−a0Aμ−1−a1Aμ−a2Aν−1−a3Aνe−b0Bμ−1−b1Bμ−b2Bν−1−b3Bν

× e−c0Cμ−1−c1Cμ−c2Cν−1−c3Cνe−θ0τμ−1−θ1τμ−θ2τν−1−θ3τν1{μ≤ν<ρ}∪{ν<μ<ρ}
]
.

(3.35)

Remark 3.4. Expressions (2.3) and (2.4) are more explicit when specifying γ ’s, g’s, Γ’s, and G’s.
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Appendix

Proof of Lemma 3.1 . Since

h(x, y, z, θ) =
∫

u≥0

∫

v≥0

∫

w≥0

∫

t≥0
e−ux−vy−wz−θtPXj⊗Yj⊗Zj⊗Δj

(du, dv, dw, dt), (A.1)

we have
∥∥h(x, y, z, θ)

∥∥ ≤
∫

u≥0

∫

v≥0

∫

w≥0

∫

t≥0

∥∥e−ux−vy−wz−θt∥∥PXj⊗Yj⊗Zj⊗Δj
(du, dv, dw, dt)

≤
∫

u≥0

∫

v≥0

∫

w≥0

∫

t≥0
e−Re(x)u−Re(y)v−Re(z)w−Re(θ)tPXj⊗Yj⊗Zj⊗Δj

(du, dv, dw, dt)

≤ α0 + e−Re(θ)α1 + e−Re(z)α2 + e−Re(y)α3 + e−Re(x)α4 + e−Re(z)−Re(θ)α5

+ e−Re(y)−Re(θ)α6 + e−Re(x)−Re(θ)α7 + e−Re(y)−Re(z)α8 + e−Re(x)−Re(z)α9

+ e−Re(x)−Re(y)α10 + e−Re(y)−Re(z)−Re(θ)α11 + e−Re(x)−Re(z)−Re(θ)α12

+ e−Re(x)−Re(y)−Re(θ)α13 + e−Re(x)−Re(y)−Re(z)α14 + e−Re(x)−Re(y)−Re(z)−Re(θ)α15,

(A.2)

where

α0 =
∫1

u=0

∫1

v=0

∫1

w=0

∫1

t=0
PXj⊗Yj⊗Zj⊗Δj

(du, dv, dw, dt),

α1 =
∫1

u=0

∫1

v=0

∫1

w=0

∫

t≥1
PXj⊗Yj⊗Zj⊗Δj

(du, dv, dw, dt),

α2 =
∫1

u=0

∫1

v=0

∫

w≥1

∫1

t=0
PXj⊗Yj⊗Zj⊗Δj

(du, dv, dw, dt),

α3 =
∫1

u=0

∫

v≥1

∫1

w=0

∫1

t=0
PXj⊗Yj⊗Zj⊗Δj

(du, dv, dw, dt),

α4 =
∫

u≥1

∫1

v=0

∫1

w=0

∫1

t=0
PXj⊗Yj⊗Zj⊗Δj

(du, dv, dw, dt),

α5 =
∫1

u=0

∫1

v=0

∫

w≥1

∫

t≥1
PXj⊗Yj⊗Zj⊗Δj

(du, dv, dw, dt),

α6 =
∫1

u=0

∫

v≥1

∫1

w=0

∫

t≥1
PXj⊗Yj⊗Zj⊗Δj

(du, dv, dw, dt),

α7 =
∫

u≥1

∫1

v=0

∫1

w=0

∫

t≥1
PXj⊗Yj⊗Zj⊗Δj

(du, dv, dw, dt),

α8 =
∫1

u=0

∫

v≥1

∫

w≥1

∫1

t=0
PXj⊗Yj⊗Zj⊗Δj

(du, dv, dw, dt),
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α9 =
∫

u≥1

∫1

v=0

∫

w≥1

∫1

t=0
PXj⊗Yj⊗Zj⊗Δj

(du, dv, dw, dt),

α10 =
∫

u≥1

∫

v≥1

∫1

w=0

∫1

t=0
PXj⊗Yj⊗Zj⊗Δj

(du, dv, dw, dt),

α11 =
∫1

u=0

∫

v≥1

∫

w≥1

∫

t≥1
PXj⊗Yj⊗Zj⊗Δj

(du, dv, dw, dt),

α12 =
∫

u≥1

∫1

v=0

∫

w≥1

∫

t≥1
PXj⊗Yj⊗Zj⊗Δj

(du, dv, dw, dt),

α13 =
∫

u≥1

∫

v≥1

∫1

w=0

∫

t≥1
PXj⊗Yj⊗Zj⊗Δj

(du, dv, dw, dt),

α14 =
∫

u≥1

∫

v≥1

∫

w≥1

∫1

t=0
PXj⊗Yj⊗Zj⊗Δj

(du, dv, dw, dt),

α15 =
∫

u≥1

∫

v≥1

∫

w≥1

∫

t≥1
PXj⊗Yj⊗Zj⊗Δj

(du, dv, dw, dt).

(A.3)

Thus, if e−Re(x) < 1, e−Re(y) < 1, e−Re(z) < 1, e−Re(θ) < 1,
∫

u≥0

∫

v≥0

∫

w≥0

∫

t≥0
e−Re(x)u−Re(y)v−Re(z)w−Re(θ)tPXj⊗Yj⊗Zj⊗Δj

(du, dv, dw, dt) < α0 + · · · + α15 = 1.

(A.4)

The conditions e−Re(x) < 1, e−Re(y) < 1, e−Re(z) < 1, e−Re(θ) < 1 are equivalent to

Re(x) > 0, Re(y) > 0, Re(z) > 0, Re(θ) > 0. (A.5)

The latter also permits a weaker form allowing us to replace one of the strict inequalities
with ≥ and still have (A.3) being held.
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