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1. Introduction

The concept of vector variational inequality was first introduced by Giannessi [1] in 1980. Since
then, existence theorems for solution of general versions of the vector variational inequality
have been studied by many authors (see, e.g., [2–9] and the references therein). Recently, vec-
tor variational inequalities and their generalizations have been used as a tool to solve vector
optimization problems (see [7, 10–14]). Chen and Craven [11] obtained a sufficient condition
for the existence of weakly efficient solutions for differentiable vector optimization problems
involving differentiable convex functions by using vector variational inequalities for vector
valued functions. Kazmi [12] proved a sufficient condition for the existence of weakly efficient
solutions for vector optimization problems involving differentiable preinvex functions by us-
ing vector variational-like inequalities. For the nonsmooth case, Lee et al. [7] established the
existence of the weakly efficient solution for nondifferentiable vector optimization problems
by using vector variational-like inequalities for set-valued mappings. Similar results can be
found in [10]. It is worth mentioning that Lee et al. [7] and Ansari and Yao [10] obtained their
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existence results under the assumption that Rm
+ ⊂ C(x) for all x ∈ Rn, where C(x) is a convex

cone in Rm. However, this condition is restrict and it does not hold in general.
In this paper, we consider the weakly efficient solution for a class of nonconvex and

nonsmooth vector optimization problems in Banach spaces. We show the equivalence between
the nonconvex and nonsmooth vector optimization problem and the vector variational-like
inequality involving set-valued mappings. We prove some existence results concerned with
the weakly efficient solution for the nonconvex and nonsmooth vector optimization problems
by using the equivalence and Fan-KKM theorem without the restrict condition Rm

+ ⊂ C(x) for
all x ∈ Rn. Our results generalize and improve the results obtained by Lee et al. [7] and Ansari
and Yao [10].

2. Preliminaries

LetX be a real Banach space endowedwith a norm ‖·‖ andX∗ its dual space, we denote by 〈·, ·〉
the dual pair between X and X∗. Let Rm be the m-dimensional Euclidean space, let S ⊂ X be a
nonempty subset, and letK ⊂ Rm be a nonempty closed convex cone with intK/=∅, where int
denotes interior.

Definition 2.1. A real valued function h : X→R is said to be locally Lipschitz at a point x ∈ X if
there exists a number L > 0 such that

|h(y) − h(z)| ≤ L‖y − z‖ (2.1)

for all y, z in a neighborhood of x. h is said to be locally Lipschitz on X if it is locally Lipschitz
at each point of X.

Definition 2.2. Let h : X→R be a locally Lipschitz function. Clarke [15] generalized directional
derivative of h at x ∈ X in the direction v, denoted by h◦(x;v), is defined by

h◦(x;v) = lim sup
y→x, t↓0

h(y + tv) − h(y)
t

. (2.2)

Clarke [15] generalized gradient of h at x ∈ X, denoted by ∂h(x), is defined by

∂h(x) =
{
ξ ∈ X∗ : h◦(x;v) ≥ 〈ξ, d〉 ∀v ∈ X

}
. (2.3)

Let f : X→Rm be a vector valued function given by f = (f1, f2, . . . , fm), where each fi, i =
1, 2, . . . , m, is a real valued function defined on X. Then f is said to be locally Lipschitz on X if
each fi is locally Lipschitz on X.

The generalized directional derivative of a locally Lipschitz function f : X→Rm at x ∈ X
in the direction v is given by

f◦(x;v) =
(
f◦
1 (x;v), f

◦
2 (x;v), . . . , f

◦
m(x;v)

)
. (2.4)

The generalized gradient of h at x is the set

∂f(x) = ∂f1(x) × ∂f2(x) × · · · × ∂fm(x), (2.5)

where ∂fi(x) is the generalized gradient of fi at x for i = 1, 2, . . . , m.
Every element A = (ξ1, ξ2, . . . , ξm) ∈ ∂f(x) is a continuous linear operator from X to Rm

and

Ay =
(〈
ξ1, y

〉
,
〈
ξ2, y

〉
, . . . ,

〈
ξm, y

〉) ∈ Rm, ∀y ∈ X. (2.6)
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Definition 2.3. Let f : X→Rm be a locally Lipschitz function.

(i) f is said to beK-invex with respect to η at u ∈ X, if there exists η : X ×X→X such that
for all x ∈ X and A ∈ ∂f(u),

f(x) − f(u) − 〈
A, η(x, u)

〉 ∈ K. (2.7)

(ii) f is said to be K-pseudoinvex with respect to η at u ∈ X if there exists η : X × X→X
such that for all x ∈ X and A ∈ ∂f(u),

f(x) − f(u) ∈ −intK =⇒ 〈
A, η(x, u)

〉 ∈ −intK. (2.8)

In this paper, we consider the following nonsmooth vector optimization problem:

K-minimize f(x),
subject to x ∈ S,

(VOP)

where f = (f1, f2, . . . , fm), fi : X→R, i = 1, 2, . . . , m, are locally Lipschitz functions.

Definition 2.4. A point x0 ∈ S is said to be a weakly efficient solution of f if there exists no y ∈ S
such that

f(y) − f(x) ∈ −intK. (2.9)

In order to prove our main results, we need the following definition and lemmas.

Definition 2.5 (see [16]). A multivalued mapping G : X→2X is called KKM-mapping if for
any finite subset {x1, x2, . . . , xn} of X, co{x1, x2, . . . , xn} is contained in

⋃n
i=1G(xi), where coA

denotes the convex hull of the set A.

Lemma 2.6 (see [16]). Let M be a nonempty subset of a Hausdorff topological vector space X. Let
G : M→2X be a KKM-mapping such that G(x) is closed for any x ∈ M and is compact for at least one
x ∈ M. Then

⋂
y∈MG(y)/=∅.

Lemma 2.7 (see [2]). LetK be a convex cone of topological vector spaceX. If y−x ∈ K and x /∈ −intK,
then y /∈ − intK for any x, y ∈ X.

3. Main results

In order to obtain our main results, we introduce the following vector variational-like inequal-
ity problem, which consists in finding x0 ∈ S such that for all A ∈ ∂f(x0),

〈
A, η

(
y, x0

)〉
/∈ − intK, ∀y ∈ S. (VVIP)

First, we establish the following relations between (VOP) and (VVIP).
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Lemma 3.1. Let f : X→Rm be a locally Lipschitz function and η : S × S→X. Then the following
arguments hold.

(i) Suppose that f isK-invex with respect to η. If x0 is a solution of (VVIP), then x0 is a weakly
efficient solution of (VOP).

(ii) Suppose that f is K-pseudoinvex with respect to η. If x0 is a solution of (VVIP), then x0 is a
weakly efficient solution of (VOP).

(iii) Suppose that f is −K-invex with respect to η. If x0 is a weakly efficient solution of (VOP),
then x0 is a solution of (VVIP).

Proof. (i) Let x0 be a solution of (VVIP). Then

〈
A, η

(
y, x0

)〉
/∈ − intK, ∀A ∈ ∂f

(
x0
)
, y ∈ S. (3.1)

By the K-invexity of f with respect to η, we get

f(y) − f
(
x0
) − 〈

A, η
(
y, x0

)〉 ∈ K, ∀A ∈ ∂f
(
x0
)
, y ∈ S. (3.2)

From (3.1), (3.2) and Lemma 2.7, we obtain

f(y) − f
(
x0
)
/∈ − intK, ∀y ∈ S. (3.3)

Therefore, x0 is a weakly efficient solution of (VOP).
(ii) Let x0 be a solution of (VVIP). Suppose that x0 is not a weakly efficient solution of

(VOP). Then, there exists y ∈ S such that

f(y) − f
(
x0
) ∈ −intK. (3.4)

Since f is K-pseudoinvex with respect to η, then

〈
A, η

(
y, x0

)〉 ∈ −intK, ∀A ∈ ∂f
(
x0
)
, (3.5)

which contradicts the fact that x0 is a solution of (VVIP).
(iii) Assume that x0 is a weakly efficient solution of (VOP). Then,

f(y) − f
(
x0
)
/∈ − intK, ∀y ∈ S. (3.6)

Since f is −K-invex with respect to η, then

f(y) − f(x0) − 〈A, η(y, x0)〉 ∈ −K, ∀A ∈ ∂f(x0), y ∈ S. (3.7)

It follows from Lemma 2.7 that

〈
A, η

(
y, x0

)〉
/∈ − intK, ∀A ∈ ∂f

(
x0
)
, y ∈ S. (3.8)

Therefore, x0 is a solution of (VVIP).
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Now we establish the following existence theorem.

Theorem 3.2. Let S ⊂ X be a nonempty convex set and η : S × S→X. Let f : X→Rm be a locally
LipschitzK-pseudoinvex function. Assume that the following conditions hold

(i) η(x, x) = 0 for any x ∈ S, η(y, x) is affine with respect to y and continuous with respect to x;

(ii) there exist a compact subset D of S and y0 ∈ D such that
〈
A, η

(
y0, x

)〉 ∈ −intK, ∀x ∈ S \D, A ∈ ∂f(x). (3.9)

Then (VOP) has a weakly efficient solution.

Proof. By Lemma 3.1(ii), it suffices to prove that (VVIP) has a solution. Define G : S→2S by

G(y) =
{
x ∈ S :

〈
A, η(y, x)

〉
/∈ − intK, ∀A ∈ ∂f(x)

}
, ∀y ∈ S. (3.10)

First we show that G is a KKM-mapping. By condition (i), we get y ∈ G(y). Hence,
G(y)/=∅ for all y ∈ S. Suppose that there exists a finite subset {x1, x2, . . . , xm} ⊆ S and that
αi ≥ 0, i = 1, 2, . . . , m, with

∑m
i=1αi = 1 such that x =

∑m
i=1αixi /∈

⋃m
i=1G(xi). Then, x /∈G(xi) for all

i = 1, 2, . . . , m. It follows that there exists A ∈ ∂f(x) such that
〈
A, η

(
xi, x

)〉 ∈ −intK, i = 1, 2, . . . , m. (3.11)

Since K is a convex cone and η is affine with respect to the first argument,
〈
A, η(x, x)

〉 ∈ −intK. (3.12)

which gives 0 ∈ −intK. This is a contradiction since 0/∈ − intK. Therefore, G is a KKM-
mapping.

Next, we show that G(y) is a closed set for any y ∈ S. In fact, let {xn} be a sequence of
G(y)which converges to some x0 ∈ S. Then for all An ∈ ∂f(xn), we have

〈
An, η

(
y, xn

)〉
/∈ − intK. (3.13)

Since f is locally Lipschitz, then there exists a neighborhood N(x0) of x0 and L > 0 such that
for any x, y ∈ N(x0),

∣∣f(x) − f(y)
∣∣ ≤ L‖x − y‖. (3.14)

It follows that for any x ∈ N(x0) and any A ∈ ∂f(x), ‖A‖ ≤ L. Without loss of generality, we
may assume that An converges to A0. Since the set-valued mapping x �→ ∂f(x) is closed (see
[15, page 29]) and An ∈ ∂f(xn), A0 ∈ ∂f(x0). By the continuity of η(y, x) with respect to the
second argument, we have

〈
An, η

(
y, xn

)〉 −→ 〈
A0, η

(
y, x0

)〉
. (3.15)

Since Rm \ −intK is closed, one has
〈
A0, η

(
y, x0

)〉
/∈ − intK. (3.16)

Hence, G(y) is a closed set for any y ∈ S.
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By condition (ii), we have G(y0) ⊂ D. As G(y0) is closed and D is compact, G(y0) is
compact. Therefore, by Lemma 2.6, we have that there exists x∗ ∈ S such that

x∗ ∈
⋂

y∈S
G(y), (3.17)

or equivalently,

〈
A, η

(
y, x∗)〉/∈ − intK, ∀A ∈ ∂f

(
x∗), y ∈ S. (3.18)

That is, x∗ is a solution of (VVIP). This completes the proof.

Corollary 3.3. Let S ⊂ X be a nonempty convex set and η : S × S→X. Let f : X→Rm be a locally
LipschitzK-invex function. Assume that the following conditions hold:

(i) η(x, x) = 0 for any x ∈ S, η(y, x) is affine with respect to y and continuous with respect to x;

(ii) there exist a compact subset D of S and y0 ∈ D such that

〈
A, η

(
y0, x

)〉 ∈ −intK, ∀x ∈ S \D, A ∈ ∂f(x). (3.19)

Then (VOP) has a weakly efficient solution.

Proof. Since a K-invex function is K-pseudoinvex, by Theorem 3.2, we obtain the result.
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