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1. Introduction

Let {a,} and {b,} be two sequences of real numbers. It is all known that the inequality

[ee] [ee] 2 [ee] [e'e]
(S5 o) <rSasy o
n=1

m=1 n=1 n=1

is called Hilbert theorem for double series [1], where 322, a2 < +o0, oo, b2 < +oo, and the

constant factor 72 in (1.1) is the best possible value. And the equality in (1.1) holds if and only
if {a,} or {b,} is a zero-sequence. The corresponding integral form of (1.1) is that

{J‘Jj%g;y) dx dy}z < JFZJ;wa(x)demgz(x)dx, (1.2)

where [°f?(x)dx < +oo, [["g*(x)dx < +oo, and the constant factor 2 in (1.2) is the best
possible value. Recently, various improvements and extensions of (1.1) and (1.2) appear in
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a great deal of papers (see [2-6], etc.). The aim of the present paper is to build some new
inequalities by using the weight function method and the technique of analysis, and then to
study some applications of them.

First we give some lemmas.

Lemma 1.1. Let nbea positive integer Then

1 a 1
1 1.3
(n+x2 (1+x) n+1<2f 2nn> (1.3)
Proof. Let a, e, f be real numbers. Then
1 1
@D o) =57 oy {flnle + fx| -2 ln (a®+x*) + = arctan } +C, (14)

where C is an arbitrary constant. This result is given in the paper (see [7]). Based on this
indefinite integral it is easy to deduce that the equality (1.3) holds. O

Lemma 1.2. If f(x) = (1/(x + n))(n/x)"*(1 = (VX/(1 + x) = v/n/(1 + \/n))) and g(x) =
(1/(x+n))(n/x)"*(1 + (Vx/(1 + /x) = v/n/(1 + v/n))), where n € N, x € (0,+00), then
(1) f(x) and g(x) are monotonously decreasing in interval (0, +oo);

2)
jwf(x)dx =a —aw(n), foog(x)dx = +ww(n), (1.5)
0 0

where the weight function w is defined by
vn <*/ﬁ_1-ln—">. (1.6)

w(n) = n+l\vn+1l
Proof. (1) At first, notice that 1 — /x/(1 + v/x) = 1/(1 + v/x), hence we can write f(x) in the
form of: f(x) = f1(x) + fa(x), whete fi(x) = (1/ (x + m)y/x) (n/ (1 + v)) and fo(x) = v/ (x +
n)(1 + /x)v/x. It is obvious that the functions fi(x) and f>(x) are monotonously decreasing
in (0, +00). So, f(x) is also monotonously decreasing in (0, +o0). In the next place, notice that
1-+n/(1++/n) =1/(1+ +/n), therefore we can write g(x) in the form of: g(x) = gi1(x) +
2(x), where g1(x) = v/n/(1 + v/n)(x + n)v/x and g(x) = /n/(x + n)(1 + /x). It is clear
that the functions g;(x) and g»(x) are monotonously decreasing in (0, +o0). So, g(x) is also
monotonously decreasing in (0, +o0).

(2) Below, we need only to compute the first integral,

[ [ () )0~
() () Yo [ () Y
o)l g )

{]r ZIJ‘ n+t2)(1+t)dt_ 1\J/rﬁ:/rﬁ}

(1.7)
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By Lemma 1.1, we obtain the first integral of (1.5) at once after some simple computations and
simplifications.

Similarly, the second integral of (1.5) can be gotten. O

Lemma 1.3. Let {ay,} be a sequence of real numbers, and let c(x) be a real function and 1-c(n)+c(m) >
0(n,me N).If 3, a’ <+ oo, then

i i B Z Z G (1 —c(n) +c(m)). (1.8)

m=1 n:l m=1 n= 1
Proof. 1t is obvious that
aman Ay & aman 2 & Ay
S Do setm) = 35 - 3,5 e+ 331 et
(1.9)
We need only to show that
®w A n ® ® A n
le; m+nc(n) = ;;mmc(m). (1.10)
Let h(m) = 3,72, (ax/(m + k)). Then
(o] (o) a
mUn c(m)
= ;<§ ma: n> anc(m) = mi;l <§; maf k>amc(m) = mii:l h(m)a,,c(m) = gh(n)anc(n)
3 o] o] ak a (o) oo} am (o) o] aman 3 o] (oo} man
“S(Satp e = 5(S 5 Juetn = 55, petncn - 5,5 e
(1.11)
O

Lemma 1.4. Let a be a real number, and let f(x) and c(x) be two real functions, and fzofz(x)dx < +o0
and 1 -c(x—a) + c(y a) > 0, where (x, y) € (a, +oo) x (&, +00). Then

Its proof is similar to that of Lemma 1.3. Hence, it is omitted.

2. Main results

Theorem 2.1. Let {a,} and {b,} be two sequences of real numbers. If 320, a’ < +oo and , then

(5522) =~1(5) @) (E) - (5on))

(2.1)

where the weight function cw(n) is defined by (1.6).
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Proof. Let c(x) be a real function and it satisfies condition 1 — ¢(n) + ¢(m) > 0 (n,m € N). First,
we suppose that b, = a,. By Lemma 1.3 and then applying Cauchy’s inequality we have

N

[ee] [e'e] 2
Z Z ;mf" (1-c(n) + c(m))>

®© o am(l—c(n)+c(m))1/2 m\ /4 a,,(l—c(n)+c(m))1/2 n\*
,;le;< (m+n)'/? <?> (m +n)"/> <E>

2

<N,
(2.2)
where
o o 2 1/2 © 2 1/2
EDW) —— <%> (- +em), =33, — (%) (1 c(n) + c(m)).
(2.3)
It is easy to deduce that
©w o™ a%ﬂ 1/2 © IS 1 1/2
I = mZ:an:l p—— (%) (1-c(n)+c(m)) = ; <mz_1 p—— <%> (1-c(m) + c(n))>ai.
(2.4)

Let c(x) = v/x/(1 + v/x). It is obvious that 1 — /x/(1 + v/x) + /y¥/(1 + /y) > 0 for x > 0 and
y > 0. Consider the function f(x) = ((1/(x + n)(n/x)V?) (1 - (Vx/(1+vx) - va/(1+/n))).

By Lemma 1.2, the function f(x) is monotonously decreasing in (0, +o0). Hereby, we have

=3(EanG) ()

n=1 \m

(2.5)
) o) 1 n 1/2 \/.7? \/ﬁ
< = 1- _ 2
_nZ_I{J; <x+n<x> >< <1+\/E 1+\/ﬁ>>dx n
Using (1.5), we can obtain immediately
Ji < JI'Z a - JI‘Z w(n)as. (2.6)
n=1 n=1

Similarly, we have

> < m'z a+ JZ'Z w(n)a?. (2.7)
n=1 n=1
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It follows from (2.2), (2.6), and (2.7) that

<;1§;:1mf"> <”{<z; > <gw")” >2} 28)

where the weight function w(n) is defined by (1.6).
Next, consider the case for b, # a,. We can apply Schwarz’s inequality to estimate the
left-hand side of (2.1) as follows:

(55 2) ([ () (Sme)a) )
J:<§lamtm m) f <§bt" ”2>2 }2 (29)

2

And then by using the inequality (2.8), the inequality (2.1) follows from (2.9) at once. It is
obvious that the inequality (2.1) is a refinement of (1.1). Below, we give an extension of (1.2).
O

Theorem 2.2. Let a be a real number, x > a and y > a, and let f(x) and g(x) be two real functions,
and [ f2(x)dx < +oo and [ g*(x)dx < +oo. Then

{jf J{ixyg(;a d]/}4 < 7r4{ (ijz(x)dx>2 - <Lwcff(x)f2(x)dx)2}

(2.10)
® 2 © 2
x { <I gz(x)dx> - (f (T)(x)gz(x)dx> },
where the weight function cv is defined by
0, xX=a,
@(x) = x—a VX —aln(x - a) e (211)

l+x-a a(l+x-a) l1+/x-a

Specially, when a = 0, it is a refinement of (1.2).
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Proof. Let c(x) be a real function, and 1 — c(x —a) + c(y — a) > 0(x, y) € (a, +) x (a, +o0).
Firstly, we suppose that f = g. Using Lemma 1.4 and then applying Cauchy’s inequality

we have

{”wm dxdy}2 = {H;M(l —clx—a)+c(y - a))dxdy}2

x+y-2a xX+y-2a

_ {f’[wf(x)(l—C(x—a)+c(y—a))1/2<x_a>1/4

@ (x+y—2a)1/2 y-a
F)(A-clx-a)+cly-a)? /y—a\4 2
" (3C+]/—20c)1/2 <x—a> dx dy
<l
(2.12)
where
= oofz(x)(l—c(x—u)+c(y_a)) x—a\2
]1—JI£ iy -2a < — > dxdy,
(2.13)
= (PO -cx-a)+cly-a) fy—a\'/?
fz—fL Py (x—a) dxdy.

In the first place, we consider flz

R [t () e P
(I ) e ([ () s
= x{jwfz(x)dx + J-w(f)(x)fz(x)dx},

0
(2.14)

where

SN O 1 x—a\?
e EL {<x—a> + (y—a)(y—a> (C(y‘“>‘0<x-“>>}dy- (2.15)

We need only to compute the weight function c.
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Let us select still ¢(x) = v/x/(1 + v/x). Thenc(y —a) —c(x—a) = yy—-a/(1 + /Yy —a) -
Vx—a/(1 + v/x - a). Using (1.4), we have

w60 = %Lm{(x—a)iw—a)(;:Z)l/Z(l . 1ﬁa>}dy

H amaaa () (55 s

_%,[:O{(x—a) 1 (y_a)@:z)l/z(l%)}dy (2.16)
[ —j:«x_a) S RS

_ Xx-a (Vx—a)ln(x —a) Vx-—a
Tl+x-a  x(l+x-a)  l+/x-a

Notice that lim,_,,0(x) = 0. Hence, the function defined by (2.11) is just. So,we attain

Ji= ar(fw F2(x)dx + wa(x) fz(x)dx>. (2.17)
Similarly, we have
Jo=o qw F2(x)dx - Looaj(x) fz(x)dx>. (2.18)

We obtain from (2.12), (2.17), and (2.18) that

{”‘;% dx dy}2 < JTZ{ ([jofz(x)alx)2 - <mev(x)f2(x)dx>2}, (2.19)

where the weight function ¢ is defined by (2.11).
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Secondly, consider the case for f # g. We can apply Schwarz’s inequality to estimate the
left-hand side of (2.10) as follows:

([ L) 4 dy}

x+y-2a

_ <J‘ <J‘I f(x)g(y)dxdy> —u(x+y- 2lx)du>2}2
([ roea)([Csenas)a|
LOO <ij(x)e_u (x_,x)dx>2duLw <J‘:°g(y)e—u (y—a)dy> Zdu}z

2

<
([ ([[ rerswaray)ersm2auf " [["segwas dy)e‘”w‘“)du}z
([ B ) ([ £ )}
(2.20)
It follows from (2.19) and (2.20) that the inequality (2.10) is valid. O
3. Applications

As applications, we will give some new refinements of Hardy-Littlewood’s theorem and
Widder’s theorem below.
Let f(x) € L*(0,1) and f(x) #0 for all x. Define a sequence {a,} by

1
a, = j x"f(x)dx, n=0,12,.... (3.1)
0

Hardy-Littlewood [1] proved that

i a < JrJ:fz(x)dx, (3.2)
n=0

where i is the best constant that the inequality (3.2) keeps valid.

Theorem 3.1. With the assumptions as the above-mentioned, define a sequence {a,} by a, =
f(}x”‘l/zf(x)dx, n=1,2,.... Then

1/2

() A(E) -(goor)) Trooe oo

where w(n) is defined by (1.6).
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Proof. By our assumptions, we may write a2 in the form of: a2 = J’g a,x" 2 f(x)dx.
Apply Schwarz’s inequality to estimate the left-hand side of (3.3) as follows:

<Z ai) = <Z flanx”‘l/zf(x)dx>
n=1 n=1"0
1/ 2 i/ 2 1
= {J <Z anx"1/2>f(x)dx} SI <Z anx"1/2> dxf fz(x)dx (3.4)
0 \n=1 0 \n=1 0

1 oo o end 1 ) ® o A n 1 )
:J;ZZamanx def (x)dx = (ZZ m+n>J;f (x)dx.

m=1 n=1 m=1 n=1

It is known from (2.8) and (3.4) that the inequality (3.3) is valid. Theorem is therefore proved.
O

Leta, >0(n=0,1,2,...), A(x) = X7y anx", and A*(x) = D72y (ayx™/n!). Then
1 o
f A?(x)dx < xf (e A*(x)) dx. (3.5)
0 0

This is the famous Widder theorem (see [1]).

Theorem 3.2. With the assumptions as the above-mentioned, then

<L1A2(x)dx> < .71'2{ <Lw(e<”> A*(x - oc))zdx>2 - <fa3(x) (e A*(x — a))zdx>2},

(3.6)
where (o is defined by (2.11).

2

Proof. First, we have the following relation:

[e'e] B . [ee] B [e'e] an xt n 0 anxn [ee] "o [e'e] "
f etA (tx)dt=j ety (xt) dt:ZTI tetdt = ' a,x" = A(x). (3.7)

0 0 n=0 0 n=0

Let tx = s — a. Then we have

1 1 poo 2 1, poo 24
f A%(x)dx = I { I e-fA*(tx)dt} dx = j (I e~ /X Ax (5 - a)ds) — dx
0 o Uo 0 \Ja X

s ) 2 ) ) 2
<I e~ (5—@y A* (s - a)ds> dy = I (j e*(sfa)u*(sfa)A*(s _ lX)dS) du
a 0 a

g

= F (Jwe*s-“)" f(s)ds)zdu = f TIOIO g,

0 \Ja x S+ 1-2a
(3.8)

where f(x) = e~* % A*(x — a). By using (2.19), the inequality (3.6) follows from (3.8) at once.
O
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