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1. Introduction

If f(x), g(x) ≥ 0, 0 <
∫∞
0 f2(x)dx < ∞, and 0 <

∫∞
0 g2(x)dx < ∞, then (see [1])

∫∫∞

0

f(x)g(y)
x + y

dx dy < π

{∫∞

0
f2(x)dx

}1/2{∫∞

0
g2(x)dx

}1/2

, (1.1)

∫∫∞

0

f(x)g(y)
max{x, y}dx dy < 4

{∫∞

0
f2(x)dx

}1/2{∫∞

0
g2(x)dx

}1/2

, (1.2)

where the constant factors π and 4 are the best possible in (1.1) and (1.2), respectively. In-
equality (1.1) is called Hilbert’s integral inequality and (1.2) is called Hilbert’s type which
have been extended by Hardy (see [2]) as follows: if p > 1, 1/p + 1/q = 1, f(x), g(x) > 0,
0 <

∫∞
0 fp(x)dx < ∞, and 0 <

∫∞
0 gq(x)dx < ∞, then

∫∫∞

0

f(x)g(y)
x + y

dx dy <
π

sin(π/p)

{∫∞

0
fp(x)dx

}1/p{∫∞

0
gq(x)dx

}1/q

, (1.3)

∫∫∞

0

f(x)g(y)
max{x, y}dx dy < pq

{∫∞

0
fp(x)dx

}1/p{∫∞

0
gq(x)dx

}1/q

, (1.4)
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where the constant factors π/ sin(π/p) and pq are the best possible in (1.3) and (1.4), respec-
tively. Hardy-Hilbert’s inequality and its applications are important in analysis (see [3]). Re-
cently, Yang [4] gave some generalizations and the reverse form of (1.3) as follows: if p > 1,
1/p + 1/q = 1, r > 1, 1/r + 1/s = 1, λ > 0, f(x), g(x) ≥ 0, 0 <

∫∞
0 xp(1−λ/r)−1fp(x)dx < ∞, and

0 <
∫∞
0 xq(1−λ/s)−1gq(x)dx < ∞, then

∫∫∞

0

f(x)g(y)
xλ + yλ

dx dy <
π

λ sin(π/r)

{∫∞

0
xp(1−λ/r)−1fp(x)dx

}1/p{∫∫∞

0
xq(1−λ/s)−1gq(x)dx

}1/q

,

(1.5)

where the constant factor π/λ sin(π/r) is the best possible.
The corresponding inequalities for series (1.3) and (1.4) are

∞∑

n=1

∞∑

m=1

ambn
m + n

<
π

sin(π/p)

{ ∞∑

n=0

a
p
n

}1/p{ ∞∑

n=0

b
q
n

}1/q

,

∞∑

n=1

∞∑

m=1

ambn
max{m,n} < pq

{ ∞∑

n=0

a
p
n

}1/p{ ∞∑

n=0

b
q
n

}1/q

,

(1.6)

where the sequences {an} and {bn} are such that 0 <
∑∞

n=0 a
p
n < ∞, 0 <

∑∞
n=0 a

q
n < ∞, and the

constant factor π/ sin(π/p) and pq are the best possible. By introducing a parameter 0 < λ ≤ 2,
some extensions of (1.6) (p = q = 2)were given by Yang [5, 6] as

∞∑

n=1

∞∑

m=1

ambn
mλ + nλ

<
π

λ

{ ∞∑

n=0

n1−λa2
n

}1/2{ ∞∑

n=0

n1−λb2n

}1/2

,

∞∑

n=1

∞∑

m=1

ambn

max
{
mλ, nλ

} <
4
λ

{ ∞∑

n=0

n1−λa2
n

}1/2{ ∞∑

n=0

n1−λb2n

}1/2

.

(1.7)

Very recently, in [7] the following extensions were given:

∫∫∞

0

f(x)g(x)
Amin{x, y} + Bmax{x, y}dx dy < D(A,B)

{∫∞

0
f2(x)dx

}1/2{∫∞

0
g2(x)dx

}1/2

,

∞∑

n=1

∞∑

m=1

ambn
Amin{m,n} + Bmax{m,n} < D(A,B)

{ ∞∑

n=1

a2
n

}1/2{ ∞∑

n=1

b2n

}1/2

,

(1.8)

where the constant factorD(A,B) (see [7, Lemma 2.1]) is the best possible in both inequalities.
For more information related to this subject see, for example, [8, 9].

In this paper by introducing some parameters, we generalize (1.8) and we obtain the
reverse form for each of them. Some particular results and the equivalent form are also consid-
ered.
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2. Main results

Lemma 2.1. Suppose that λ > 0, A ≥ 0, B > 0. Define the weight coefficients ωλ(A,B, x) and
ωλ(A,B, y) by

ωλ(A,B, x) :=
∫∞

0

xλ/2y−1+λ/2

Amin
{
xλ, yλ

}
+ Bmax

{
xλ, yλ

}dy, (2.1)

ωλ(A,B, y) :=
∫∞

0

x−1+λ/2yλ/2

Amin
{
xλ, yλ

}
+ Bmax

{
xλ, yλ

}dx, (2.2)

then ωλ(A,B, x) = ωλ(A,B, y) = Cλ(A,B) is a constant defined by

Cλ(A,B) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

4

λ
√
AB

arctan
√

A

B
for A > 0, B > 0,

4
λB

for A = 0, B > 0.

(2.3)

Proof. Setting t = (y/x)λ, we get

ωλ(A,B, x) =
∫∞

0

xλ/2y−1+λ/2

Amin
{
xλ, yλ

}
+ Bmax

{
xλ, yλ

}dy,

=
1
λ

∫∞

0

t−1/2

Amin{1, t} + Bmax{1, t}dt := I,

(2.4)

(i) for A, B > 0, we obtain

I =
1
λ

{∫1

0

t−1/2

At + B
dt +

∫∞

1

t−1/2

A + Bt
dt

}

=
1
λ

{
2√
AB

∫√A/B

0

dt

t2 + 1
+

2√
AB

∫√A/B

0

dt

t2 + 1

}

=
4

λ
√
AB

arctan

√
A

B
;

(2.5)

(ii) for A = 0, B > 0, we find

I =
1
λ

{∫1

0

t−1/2

B
dt +

∫∞

1

t−1/2

Bt
dt

}
=

4
λB

. (2.6)

Hence, ωλ(A,B, x) = Cλ(A,B). By the symmetry we still have ωλ(A,B, y) = Cλ(A,B).
The lemma is proved.



4 Journal of Inequalities and Applications

Lemma 2.2. For p > 1 (or 0 < p < 1), 1/p + 1/q = 1, λ > 0, A ≥ 0, B > 0 and 0 < ε < pλ/2, setting

J(ε) =
∫∫∞

1

xλ/2−1−ε/pyλ/2−1−ε/q

Amin
{
xλ, yλ

}
+ Bmax

{
xλ, yλ

}dx dy, (2.7)

then for ε → 0+,

1
ε

[
Cλ(A,B) + o(1)

] −O(1) < J(ε) <
1
ε

[
Cλ(A,B) + o(1)

]
. (2.8)

Proof. Setting t = (x/y)λ, we find

J(ε) =
∫∫∞

1

xλ/2−1−ε/pyλ/2−1−ε/q

Amin
{
xλ, yλ

}
+ Bmax

{
xλ, yλ

}dx dy

=
1
λ

∫∞

1
y−1−ε

∫∞

y−λ

t−1/2−ε/λp

Amin{t, 1} + Bmax{t, 1}dt dy

=
1
λε

∫∞

0

t−1/2−ε/λp

Amin{t, 1} + Bmax{t, 1}dt dy

− 1
λ

∫∞

1
y−1−ε

∫y−λ

0

t−1/2−ε/λp

Amin{t, 1} + Bmax{t, 1}dt dy

=
1
ε

[
Cλ(A,B) + o(1)

] − 1
λ

∫∞

1
y−1−ε

∫y−λ

0

t−1/2−ε/λp

At + B
dt dy

≥ 1
ε

[
Cλ(A,B) + o(1)

] − 1
λ

∫∞

1
y−1

∫y−λ

0

t−1/2−ε/λp

B
dt dy

=
1
ε

[
Cλ(A,B) + o(1)

] −O(1).

(2.9)

On the other hand,

J(ε) =
∫∫∞

1

xλ/2−1−ε/pyλ/2−1−ε/q

Amin
{
xλ, yλ

}
+ Bmax

{
xλ, yλ

}dx dy

<

∫∞

1

[ ∫∞

0

xλ/2−1−ε/p

Amin
{
xλ, yλ

}
+ Bmax

{
xλ, yλ

}dx
]
yλ/2−1−ε/qdy

=
1
ε

[
Cλ(A,B) + o(1)

]
.

(2.10)

Hence, (2.8) is valid. The lemma is proved.
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Theorem 2.3. If p > 1, 1/p + 1/q = 1, λ > 0, A ≥ 0, B > 0, f(x), g(x) ≥ 0 such that 0 <∫∞
0 xp(1−λ/2)−1fp(x)dx < ∞, 0 <

∫∞
0 xq(1−λ/2)−1gq(x)dx < ∞, then

S :=
∫∫∞

0

f(x)g(x)
Amin

{
xλ, yλ

}
+ Bmax

{
xλ, yλ

}dx dy

< Cλ(A,B)
{∫∞

0
xp(1−λ/2)−1fp(x)dx

}1/p{∫∞

0
xq(1−λ/2)−1gq(x)dx

}1/q

,

(2.11)

where the constant factor Cλ(A,B) defined in (2.3) is the best possible. In particular,

(i) for λ = A = B = 1, C1(1, 1) = π , and inequality (2.11) reduces to Hardy-Hilbert’s inequality

∫∫∞

0

f(x)g(x)
x + y

dx dy < π

{∫∞

0
xp/2−1fp(x)dx

}1/p{∫∞

0
xq/2−1gq(x)dx

}1/q

; (2.12)

(ii) for A = 0, λ = B = 1, C1(0, 1) = 4 and (2.11) reduces to Hardy-Hilbert’s-type inequality

∫∫∞

0

f(x)g(x)
max{x, y}dx dy < 4

{∫∞

0
xp/2−1fp(x)dx

}1/p{∫∞

0
xq/2−1gq(x)dx

}1/q

. (2.13)

Proof. By the Holder inequality, taking into account (2.1), we get

S =
∫∫∞

0

[
1

Amin
{
xλ, yλ

}
+ Bmax

{
xλ, yλ

}
]1/p x(1−λ/2)/q

y(1−λ/2)/p f(x)

×
[

1
Amin

{
xλ, yλ} + Bmax

{
xλ, yλ}

]1/q[y(1−λ/2)/p

x(1−λ/2)/q g(y)
]
dx dy

≤
{∫∫∞

0

x(1−λ/2)(p−1)yλ/2−1

Amin
{
xλ, yλ} + Bmax

{
xλ, yλ}f

p(x)dx
}1/p

×
{∫∫∞

0

y(1−λ/2)(q−1)xλ/2−1

Amin
{
xλ, yλ

}
+ Bmax

{
xλ, yλ

}gq(y)dy
}1/q

=
{∫∞

0
ωλ(A,B, x)xp(1−λ/2)−1fp(x)dx

}1/p{∫∞

0
ωλ(A,B, y)yq(1−λ/2)−1gq(y)dy

}1/q

≤ Cλ(A,B)
{∫∞

0
xp(1−λ/2)−1fp(x)dx

}1/p{∫∞

0
yq(1−λ/2)−1gq(y)dy

}1/q

.

(2.14)
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If (2.14) takes the form of equality, then there exist constantsM andN which are not all
zero such that

M
x(1−λ/2)(p−1)yλ/2−1

Amin
{
xλ, yλ

}
+ Bmax

{
xλ, yλ

}fp(x) = N
y(1−λ/2)(q−1)xλ/2−1

Amin
{
xλ, yλ

}
+ Bmax

{
xλ, yλ

}gq(y),

Mxp(1−λ/2)fp(x) = Nyq(1−λ/2)gq(y), a.e. in (0,∞) × (0,∞)

(2.15)

Hence, there exists a constant c such that

Mxp(1−λ/2)fp(x) = Nyq(1−λ/2)gq(y) = c a.e. in (0,∞). (2.16)

We claim thatM = 0. In fact, if M/= 0, then

xp(1−λ/2)−1fp(x) =
c

Mx
a.e. in (0,∞) (2.17)

which contradicts the fact that 0 <
∫∞
0 xp(1−λ/2)−1fp(x)dx < ∞. Hence, by (2.14) we get (2.11).

If the constant factorCλ(A,B) is not the best possible, then there exists a positive constant
K (with K < Cλ(A,B)), thus (2.11) is still valid if we replace Cλ(A,B) by K. For 0 < ε < pλ/2,
setting f̃ and g̃ as f̃(x) = g̃(x) = 0 for x ∈ (0, 1), f̃(x) = xλ/2−1−ε/p; g̃(x) = xλ/2−1−ε/q for
x ∈ [1,∞), then we have

K

{∫∞

0
xp(1−λ/2)−1f̃ p(x)dx

}1/p{∫∞

0
xq(1−λ/2)−1g̃q(x)dx

}1/q

= K

{∫∞

0
x−1−εdx

}1/p{∫∞

0
x−1−εdx

}1/q

=
K

ε
.

(2.18)

By using (2.8), we find

∫∫∞

0

f̃(x)g̃(x)dx dy

Amin
{
xλ, yλ

}
+ Bmax

{
xλ, yλ

} =
∫∞

1

[ ∫∞

1

xλ/2−1−ε/pdx
Amin

{
xλ, yλ

}
+ Bmax

{
xλ, yλ

}
]
yλ/2−1−ε/qdy

>
1
ε

[
Cλ(A,B) + o(1)

] −O(1).

(2.19)

Therefore, we get

1
ε

[
Cλ(A,B) + o(1)

] −O(1) <
K

ε
(2.20)
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or

1
λ

[
Cλ(A,B) + o(1)

] − εO(1) < K. (2.21)

For ε → 0+, it follows that Cλ(A,B) ≤ K which contradicts the fact that K < Cλ(A,B).
Hence, the constant factor Cλ(A,B) in (2.11) is the best possible. The theorem is proved.

Theorem 2.4. If 0 < p < 1, 1/p + 1/q = 1, λ > 0, A ≥ 0, B > 0, f(x), g(x) ≥ 0 such that
0 <

∫∞
0 xp(1−λ/2)−1fp(x)dx < ∞, 0 < 0 <

∫∞
0 xq(1−λ/2)−1gq(x)dx < ∞, then

∫∫∞

0

f(x)g(x)
Amin

{
xλ, yλ

}
+ Bmax

{
xλ, yλ

}dx dy

> Cλ(A,B)
{∫∞

0
xp(1−λ/2)−1fp(x)dx

}1/p{∫∞

0
xq(1−λ/2)−1gq(x)dx

}1/q

,

(2.22)

where the constant factor Cλ(A,B) defined in (2.3) is the best possible. In particular,

(i) for λ = A = B = 1, C1(1, 1) = π , and inequality (2.22) reduces to Hardy-Hilbert’s inequality

∫∫∞

0

f(x)g(x)
x + y

dx dy > π

{∫∞

0
xp/2−1fp(x)dx

}1/p{∫∞

0
xq/2−1gq(x)dx

}1/q

, (2.23)

(ii) for A = 0, λ = B = 1, C1(0, 1) = 4 and (2.22) reduces to Hardy-Hilbert’s-type inequality

∫∫∞

0

f(x)g(x)
max{x, y}dx dy > 4

{∫∞

0
xp/2−1fp(x)dx

}1/p{∫∞

0
xq/2−1gq(x)dx

}1/q

. (2.24)

Proof. By reverse Holder’s inequality, and the same way, we have (2.22). If the constant factor
Cλ(A,B) in (2.22) is not the best possible, then there exists a positive constant H (with H >

Cλ(A,B)) such that (2.22) is still valid if we replace Cλ(A,B) byH. For 0 < ε < pλ/2, setting f̃
and g̃ as in Theorem 2.3, then we have

H

{∫∞

0
xp(1−λ/2)−1f̃ p(x)dx

}1/p{∫∞

0
xq(1−λ/2)−1g̃q(x)dx

}1/q

= H

{∫∞

0
x−1−εdx

}1/p{∫∞

0
x−1−εdx

}1/q

=
H

ε
.

(2.25)

By using (2.8), we find

∫∫∞

0

f̃(x)g̃(x)dx dy

Amin
{
xλ, yλ

}
+ Bmax

{
xλ, yλ

} =
∫∞

1

[ ∫∞

1

xλ/2−1−ε/pdx
Amin

{
xλ, yλ

}
+ Bmax

{
xλ, yλ

}
]
yλ/2−1−ε/qdy

<
1
ε

[
Cλ(A,B) + o(1)

]
.

(2.26)
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Therefore, we get

1
ε

[
Cλ(A,B) + o(1)

]
>
H

ε
, (2.27)

or

Cλ(A,B) + o(1) ≥ H. (2.28)

For ε → 0+, it follows that Cλ(A,B) ≥ H which contradicts the fact that H > Cλ(A,B). Hence,
the constant factor Cλ(A,B) in (2.22) is the best possible. The theorem is proved.

Theorem 2.5. Under the assumption of Theorem 2.3,

∫∞

0
yλp/2−1

[ ∫∞

0

f(x)
Amin

{
xλ, yλ

}
+ Bmax

{
xλ, yλ

}dx
]p
dy <

[
Cλ(A,B)

]p
∫∞

0
xp(1−λ/2)−1fp(x)dx,

(2.29)

where the constant factor [Cλ(A,B)]p is the best possible. Inequalities (2.11) and (2.29) are equivalent.

Proof. Setting

g(y) = yλp/2−1
{∫∞

0

f(x)
Amin

{
xλ, yλ

}
+ Bmax

{
xλ, yλ

}dx
}p−1

, (2.30)

then by (2.11)we have

∫∞

0
yq(1−λ/2)−1gq(y)dy =

∫∞

0
yλp/2−1

{∫∞

0

f(x)
Amin

{
xλ, yλ

}
+ Bmax

{
xλ, yλ

}dx
}p

dy

=
∫∞

0

{∫∞

0

f(x)
Amin

{
xλ, yλ

}
+ Bmax

{
xλ, yλ

}dx
}

×
{
yλp/2−1

{∫∞

0

f(x)
Amin

{
xλ, yλ

}
+ Bmax

{
xλ, yλ

}dx
}p−1}

dy

=
∫∫∞

0

f(x)g(y)
Amin

{
xλ, yλ

}
+ Bmax

{
xλ, yλ

}dx dy

≤ Cλ(A,B)
{∫∞

0
xp(1−λ/2)−1fp(x)dx

}1/p{∫∞

0
yq(1−λ/2)−1gq(y)dy

}1/q

.

(2.31)

Hence, we obtain
∫∞

0
yq(1−λ/2)−1gq(y)dy ≤ [

Cλ(A,B)
]p

∫∞

0
xp(1−λ/2)−1fp(x)dx. (2.32)

Thus, by (2.11), both (2.31) and (2.32) keep the form of strict inequalities, then we have (2.29).
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By Holder’s inequality, we find

∫∫∞

0

f(x)g(y)
Amin

{
xλ, yλ

}
+ Bmax

{
xλ, yλ

}dx dy

=
∫∞

0

{
yλ/2−1/p

∫∞

0

f(x)
Amin

{
xλ, yλ

}
+ Bmax

{
xλ, yλ

}dx
}
{
y1/p−λ/2g(y)

}
dy

≤
{∫∞

0
ypλ/2−1

{∫∞

0

f(x)
Amin

{
xλ, yλ

}
+ Bmax

{
xλ, yλ

}dx
}p}1/p{∫∞

0
yq(1−λ/2)−1gq(y)dy

}1/q

.

(2.33)

Therefore, by (2.29) we have (2.11), and inequalities (2.29) and (2.11) are equivalent. If
the constant factor in (2.29) is not the best possible, then by (2.33) we can get a contradiction
that the constant factor in (2.11) is not the best possible. The theorem is proved.

Theorem 2.6. Under the assumption of Theorem 2.4,

∫∞

0
yλp/2−1

[ ∫∞

0

f(x)
Amin

{
xλ, yλ

}
+ Bmax

{
xλ, yλ

}dx
]p
dy >

[
Cλ(A,B)

]p
∫∞

0
xp(1−λ/2)−1fp(x)dx,

(2.34)

where the constant factor [Cλ(A,B)]p is the best possible. Inequalities (2.22) and (2.34) are equivalent.

The proof of Theorem 2.6 is similar to that of Theorem 2.5, so we omit it.

3. Discrete analogous

Lemma 3.1. Suppose that 0 < λ ≤ 2, A ≥ 0, B > 0. Then the weight coefficients �λ(A,B,m) and
�λ(A,B, n), defined, respectively, by

�λ(A,B,m) :=
∞∑

n=1

mλ/2n−1+λ/2

Amin
{
mλ, nλ

}
+ Bmax

{
mλ, nλ

} (m ∈ N), (3.1)

�λ(A,B, n) :=
∞∑

m=1

nλ/2m−1+λ/2

Amin
{
mλ, nλ

}
+ Bmax

{
mλ, nλ

} (n ∈ N), (3.2)

satisfy the following inequalities:

Cλ(A,B)
[
1 − θλ(A,B,m)

]
< �λ(A,B,m) < Cλ(A,B), (3.3)

Cλ(A,B)
[
1 − θλ(A,B, n)

]
< �λ(A,B, n) < Cλ(A,B), (3.4)

where θλ(A,B, r) := (1/C1(A,B))
∫ r−λ
0 (t−1/2/(At + B))dt = O(1/rλ/2) ∈ (0, 1) (r ∈ N) (r → ∞),

and Cλ(A,B) is defined by (2.3).
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Proof. Since 0 < λ ≤ 2, A ≥ 0, B > 0, by Lemma 2.1 we get

�λ(A,B,m) <
∫∞

0

mλ/2y−1+λ/2

Amin
{
mλ, yλ

}
+ Bmax

{
mλ, yλ

}dy,

= ωλ(A,B,m) = Cλ(A,B).

(3.5)

On the other hand, we have

�λ(A,B,m) >
∫∞

1

mλ/2y−1+λ/2

Amin
{
mλ, yλ

}
+ Bmax

{
mλ, yλ

}dy

=
1
λ

∫∞

m−λ

t−1/2

Amin{1, t} + Bmax{1, t}dt

= I − 1
λ

∫m−λ

0

t−1/2

At + B
dt

= I
(
1 − θλ(A,B,m)

)
,

(3.6)

where I = (1/λ)C1(A,B) and

0 < θλ(A,B,m) =
1

C1(A,B)

∫m−λ

0

t−1/2

At + B
dt < 1. (3.7)

Since

∫m−λ

0

t−1/2

At + B
dt ≤

∫m−λ

0

t−1/2

B
dt =

2
Bmλ/2

, (3.8)

then θλ(A,B,m) = O(1/mλ/2). Therefore, (3.3) is valid. By the symmetry, (3.4) is still valid. The
lemma is proved.

Lemma 3.2. If p > 0 (p /= 1), 1/p + 1/q = 1, 0 < λ ≤ 2, A ≥ 0, B > 0, and 0 < ε < pλ/2, setting

L(ε) =
∞∑

n=1

∞∑

m=1

mλ/2−1−ε/pnλ/2−1−ε/q

Amin
{
mλ, nλ

}
+ Bmax

{
mλ, nλ

} , (3.9)

then for ε → 0+,

[
Cλ(A,B) − o(1)

] ∞∑

n=1

1
n1+ε

< L(ε) <
[
Cλ(A,B) + õ(1)

] ∞∑

n=1

1
n1+ε

. (3.10)
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Proof. Setting t = (x/n)λ in the following, by (3.4), we have

L(ε) <
∞∑

n=1

∫∞

0

xλ/2−1−ε/pnλ/2−1−ε/q

Amin
{
xλ, nλ

}
+ Bmax

{
xλ, nλ

}dx

=
∞∑

n=1

1
n1+ε

[
1
λ

∫∞

0

t−1/2−ε/λp

Amin{t, 1} + Bmax{t, 1}dt
]

=
[
Cλ(A,B) + õ(1)

] ∞∑

n=1

1
n1+ε

(
ε −→ 0+

)
,

L(ε) >
∞∑

n=1

∫∞

1

xλ/2−1−ε/pnλ/2−1−ε/q

Amin
{
xλ, nλ

}
+ Bmax

{
xλ, nλ

}dx

=
∞∑

n=1

1
n1+ε

[
1
λ

∫∞

n−λ

t−1/2−ε/λp

Amin{t, 1} + Bmax{t, 1}dt
]

=
∞∑

n=1

1
n1+ε

[
Cλ(A,B) + õ(1) − 1

λ

∫n−λ

0

t−1/2−ε/λp

At + B
dt

]

>
∞∑

n=1

1
n1+ε

[
Cλ(A,B) + õ(1)

] − 1
λ

∞∑

n=1

1
n

∫n−λ

0

t−1/2−ε/λp

B
dt

=
∞∑

n=1

1
n1+ε

[
Cλ(A,B) + õ(1)

] − 1
(λB/2 − εB/p)

∞∑

n=1

1
n1+λ/2−ε/p

=
∞∑

n=1

1
n1+ε

[

Cλ(A,B) + õ(1) − 1
(λB/2 − εB/p)

∞∑

n=1

1
n1+λ/2−ε/p

( ∞∑

n=1

1
n1+ε

)−1]

=
∞∑

n=1

1
n1+ε

[
Cλ(A,B) − o(1)

] (
ε −→ 0+

)
.

(3.11)

Thus, inequality (3.10) holds. The lemma is proved.

Theorem 3.3. If p > 1, 1/p + 1/q = 1, 0 < λ ≤ 2, A ≥ 0, B > 0, an, bn ≥ 0 such that 0 <∑∞
n=1 n

p(1−λ/2)−1ap
n < ∞, 0 <

∑∞
n=1 n

q(1−λ/2)−1bqn < ∞, then

D :=
∞∑

n=1

∞∑

m=1

ambn

Amin
{
mλ, nλ

}
+ Bmax

{
mλ, nλ

}

< Cλ(A,B)
{ ∞∑

n=1

np(1−λ/2)−1ap
n

}1/p{ ∞∑

n=1

nq(1−λ/2)−1bqn

}1/q

,

(3.12)
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where the constant factor Cλ(A,B) defined in (2.3) is the best possible. In particular,

(i) for λ = A = B = 1, C1(1, 1) = π , and inequality (3.12) reduces to Hardy-Hilbert’s inequality

∞∑

n=1

∞∑

m=1

ambn
m + n

< π

{ ∞∑

n=1

np/2−1ap
n

}1/p{ ∞∑

n=1

nq/2−1bqn

}1/q

; (3.13)

(ii) for A = 0, λ = B = 1, C1(0, 1) = 4 and (3.12) reduces to Hardy-Hilbert’s-type inequality

∞∑

n=1

∞∑

m=1

ambn
max{m,n} < 4

{ ∞∑

n=1

np/2−1ap
n

}1/p{ ∞∑

n=1

nq/2−1bqn

}1/q

. (3.14)

Proof. By the Holder inequality, taking into account (3.1), we get

D =
∞∑

n=1

∞∑

m=1

{
1

Amin
{
mλ, nλ

}
+ Bmax

{
mλ, nλ

}
}1/p[m(1−λ/2)/q

n(1−λ/2)/p am

]

×
{

1
Amin

{
mλ, nλ

}
+ Bmax

{
mλ, nλ

}
}1/q[ n(1−λ/2)/p

m(1−λ/2)/q bn

]

≤
{ ∞∑

n=1

∞∑

m=1

1
Amin

{
mλ, nλ

}
+ Bmax

{
mλ, nλ

}
m(1−λ/2)(p−1)

n1−λ/2 a
p
m

}1/p

×
{ ∞∑

n=1

∞∑

m=1

1
Amin

{
mλ, nλ

}
+ Bmax

{
mλ, nλ

}
n(1−λ/2)(q−1)

m1−λ/2 b
q
n

}1/q

=
{ ∞∑

m=1

�λ(A,B,m)mp(1−λ/2)−1ap
m

}1/p{ ∞∑

n=1

�λ(A,B, n)nq(1−λ/2)−1bqn

}1/q

.

(3.15)

Then, by (3.3) and (3.4) we obtain (3.12).
It remains to show that the constant factor Cλ(A,B) is the best possible, to do that we set

for 0 < ε < pλ/2, ãm = mλ/2−1−ε/p; b̃n = nλ/2−1−ε/q, by (3.9)we have

∞∑

n=1

∞∑

m=1

ãmb̃n

Amin
{
mλ, nλ

}
+ Bmax

{
mλ, nλ

} = L(ε). (3.16)

If there exists a constant 0 < K ≤ Cλ(A,B) such that (3.12) is still valid if we replace Cλ(A,B)
by K, then in particular by (3.10) we find

[
Cλ(A,B) − o(1)

] ∞∑

n=1

1
n1+ε

< L(ε) < K

{ ∞∑

n=1

np(1−λ/2)−1ãp
n

}1/p{ ∞∑

n=1

nq(1−λ/2)−1b̃qn

}1/q

= K
∞∑

n=1

1
n1+ε

,

(3.17)

it follows that Cλ(A,B) − o(1) < K and then Cλ(A,B) ≤ K (ε → 0+). Therefor, K = Cλ(A,B) is
the best constant factor in (3.12). The theorem is proved.
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Theorem 3.4. If 0 < p < 1, 1/p + 1/q = 1, 0 < λ ≤ 2, A ≥ 0, B > 0, an, bn ≥ 0 such that
0 <

∑∞
n=1n

p(1−λ/2)−1ap
n < ∞, 0 <

∑∞
n=1n

q(1−λ/2)−1bqn < ∞, then
∞∑

n=1

∞∑

m=1

ambn

Amin
{
mλ, nλ

}
+ Bmax

{
mλ, nλ

}

> Cλ(A,B)
{ ∞∑

n=1

[
1 − θλ(A,B, n)

]
np(1−λ/2)−1ap

n

}1/p{ ∞∑

n=1

nq(1−λ/2)−1bqn

}1/q

,

(3.18)

where the constant factor Cλ(A,B) defined in (2.4) is the best possible. In particular,

(i) for λ = A = B = 1, C1(1, 1) = π , and
∞∑

n=1

∞∑

m=1

ambn
m + n

> π

{ ∞∑

n=1

[
1 − 2

π
arctan

1
n1/2

]
np/2−1ap

n

}1/p{ ∞∑

n=1

nq/2−1bqn

}1/q

; (3.19)

(ii) for A = 0, λ = B = 1, C1(0, 1) = 4, and
∞∑

n=1

∞∑

m=1

ambn
max{m,n} > 4

{ ∞∑

n=1

[
1 − 1

2n1/2

]
np/2−1ap

n

}1/p{ ∞∑

n=1

nq/2−1bqn

}1/q

. (3.20)

Proof. By reverse Holder’s inequality, we get

D =
∞∑

n=1

∞∑

m=1

ambn

Amin
{
mλ, nλ

}
+ Bmax

{
mλ, nλ

}

=
∞∑

n=1

∞∑

m=1

{
1

Amin
{
mλ, nλ

}
+ Bmax

{
mλ, nλ

}
}1/p[m(1−λ/2)/q

n(1−λ/2)/p am

]

×
{

1
Amin

{
mλ, nλ

}
+ Bmax

{
mλ, nλ

}
}1/q[ n(1−λ/2)/p

m(1−λ/2)/q bn

]

≥
{ ∞∑

m=1

�λ(A,B,m)mp(1−λ/2)−1ap
m

}1/p{ ∞∑

n=1

�λ(A,B, n)nq(1−λ/2)−1bqn

}1/q

.

(3.21)

Then by (3.3) and (3.4), in view of q < 0, we have (3.18). For 0 < ε < pλ/2, setting ãm =
mλ/2−1−ε/p, b̃n = nλ/2−1−ε/q (m,n ∈ N). If there exists a constant K ≥ Cλ(A,B) such that (3.18) is
still valid if we replace Cλ(A,B) by K, then in particular by (3.9) and (3.10)we find

[
Cλ(A,B) + õ(1)

] ∞∑

n=1

1
n1+ε

> L(ε)

> K

{ ∞∑

n=1

[
1 − θλ(A,B, n)

]
np(1−λ/2)−1ãp

n

}1/p{ ∞∑

n=1

nq(1−λ/2)−1b̃qn

}1/q

= K

{ ∞∑

n=1

1
n1+ε

−
∞∑

n=1

[
O

(
1

nλ/2

)
1

n1+ε

]}1/p{ ∞∑

n=1

1
n1+ε

}1/q

= K
∞∑

n=1

1
n1+ε

{
1 −

[ ∞∑

n=1

1
n1+ε

]−1 ∞∑

n=1

[
O

(
1

nλ/2

)
1

n1+ε

]}1/p

,

(3.22)
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it follows that

Cλ(A,B) + õ(1) > K

{
1 −

[ ∞∑

n=1

1
n1+ε

]−1 ∞∑

n=1

[
O

(
1

nλ/2

)
1

n1+ε

]}1/p

. (3.23)

Hence, if ε → 0+, we get Cλ(A,B) ≥ K. Thus, K = Cλ(A,B) is the best constant factor in
(3.18).

Theorem 3.5. Under the assumption of Theorem 3.3,
∞∑

n=1

nλp/2−1
[ ∞∑

m=1

am

Amin
{
mλ, nλ

}
+ Bmax

{
mλ, nλ

}
]p

<
[
Cλ(A,B)

]p ∞∑

m=1

mp(1−λ/2)−1ap
m, (3.24)

where the constant factor [Cλ(A,B)]p is the best possible. Inequalities (3.12) and (3.24) are equivalent.

Proof. Setting

bn = nλp/2−1
{ ∞∑

m=1

am

Amin
{
mλ, nλ

}
+ Bmax

{
mλ, nλ

}
}p−1

, (3.25)

we get
∞∑

n=1

nq(1−λ/2)−1bqn =
∞∑

n=1

∞∑

m=1

ambn

Amin
{
mλ, nλ

}
+ Bmax

{
mλ, nλ

} . (3.26)

By (3.12) and using the same method of Theorem 2.5, we obtain (3.24). We may show that the
constant factor in (3.24) is the best possible and inequality (3.12) is equivalent to (3.24).

Theorem 3.6. Under the assumption of Theorem 3.4,
∞∑

n=1

nλp/2−1
[ ∞∑

m=1

am

Amin
{
mλ, nλ

}
+ Bmax

{
mλ, nλ

}
]p

>
[
Cλ(A,B)

]p ∞∑

m=1

mp(1−λ/2)−1ap
m, (3.27)

where the constant factor [Cλ(A,B)]p is the best possible. Inequalities (3.18) and (3.27) are equivalent.
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