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1. Introduction and main results

LetX be a normed linear space and letA be a subset ofX. Assume thatA is closed, convex, and
centrally symmetric (i.e., x ∈ A implies −x ∈ A). The Bernstein n-width, which was originally
introduced by Tikhomirov [1], of A in X is given by

bn(A;X) = sup
Xn+1

sup
{

λ : λS
(

Xn+1
) ⊆ A}

, (1.1)

where S(Xn+1) = {x : x ∈ Xn+1, ‖x‖ ≤ 1} andXn+1 is taken over all subspaces ofX of dimension
at least n + 1. Let T := [0, 2π) be the torus, and as usual, let Lq := Lq[0, 2π] be the classical
Lebesgue integral space of 2π-periodic real-valued functions with the usual norm ‖·‖q, 1 ≤ q ≤
∞.

Denote byWr
p the classical Sobolev class of real functions f whose (r − 1)th derivative is

absolutely continuous and whose rth derivative satisfies the condition ‖f (r)‖q ≤ 1. The concept
of Bernstein n-width for the Sobolev classesWr

p was originally introduced by Tikhomirov [1].
He considered bn(Wr

p ;L
q), 1 ≤ p, q ≤ ∞, and found the exact value of b2n−1(Wr

∞;L
∞). Pinkus

[2] obtained the exact value of b2n−1(Wr
1 ;L

1). Later, Magaril-Il’yaev [3] obtained the exact value
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of b2n−1(Wr
p ;L

p), 1 < p <∞. The latest contribution to this field is due to Buslaev et al. [4]who
found the exact values of b2n−1(Wr

p ;L
q) for all 1 < p ≤ q <∞.

Definition 1.1 (see [2, page 129]). A real, 2π-periodic, continuous function G satisfies property
B if for every choice of 0 ≤ t1 < · · · < tm < 2π and eachm ∈ N, the subspace

Xm :=

{

b +
m
∑

j=1

bjG
(· − tj

)

:
m
∑

j=1

bj = 0

}

(1.2)

is of dimensionm, and is a weak Tchebycheff- (WT-) system (see [2, page 39]) for allm odd. A
real, 2π-periodic, continuous function G is said to be B-kernel if G satisfies property B.

Definition 1.2 (see [2, pages 60, 126]). Assume thatK is a real, continuous, 2π-periodic function.
One says thatK is a cyclic variation diminishing kernel of order 2m−1 (CVD2m−1) if there exist
σn ∈ {−1, 1}, n = 1, . . . , m, such that

σn det
(

K
(

xi − yj
))2n−1

i,j=1 ≥ 0, (1.3)

for all x1 < · · · < x2n−1 < x1 + 2π and y1 < · · · < y2n−1 < y1 + 2π . One will drop the subscript
2m − 1 from the acronyms CVD, if one assumes that these properties hold for all orders. One
says that K is nondegenerate cyclic variation diminishing (NCVD) if K is nonnegative CVD
and

dim span
{

K
(

x1 − ·), . . . , K(

xn − ·)} = n, (1.4)

for every choice of 0 ≤ x1 < · · · < xn < 2π and all n ∈ N.

Now, we introduce the classes of functions to be studied. Let K be a NCVD kernel [2]
and let G be a B-kernel. The 2π-periodic convolution function classes ˜Kp and ˜Bp are defined as
follows:

˜Bp :=
{

f : f
(

x) = (G∗h)(x) + a, a ∈ R, h ⊥ 1, ‖h‖p ≤ 1
}

,

˜Kp :=
{

f : f(x) = (K∗h)(x), h ⊥ 1, ‖h‖p ≤ 1
}

,
(1.5)

where

(g∗h)(x) :=
∫

T

g(x − y)h(y)dy, (1.6)

and h ⊥ 1 means
∫

T
h(y)dy = 0.

The exact values of bn( ˜Bp;Lq) and bn( ˜Kp;Lq) are known for the cases p = q = 1, p =
q = ∞, and n is odd (see [2] for more details). Chen [5] is the one who found the lower
estimate of b2n−1( ˜Bp, Lp) and b2n−1( ˜Kp, L

p) for 1 < p < ∞. In this paper, we will determine the
exact constants of some classes of periodic convolution functions ˜Bp with B-kernel (or NCVD-
kernel) for p ∈ (1,∞), which include the classical Sobolev class as its special case.



Feng Guo 3

Now, we are in a position to state our main results of this paper.

Theorem 1.3. Let G be a B-kernel, and n = 1, 2, . . .. Then

b2n−1
(

˜Bp;Lp
)

= λn(p, p,G), 1 < p <∞, (1.7)

s2n
(

˜Bp;Lp
)

= b2n−1
(

˜Bp;Lp
)

= λn(p, p,G), (1.8)

where

Dn :=
{

h : h
(

x +
π

n

)

= −h(x), h(x){sin}nx ≥ 0, ‖h‖p ≤ 1
}

,

λn := λn(p, q, G) = {sup}{‖G∗h‖q : h ∈ Dn, }, 1 < q ≤ p <∞,

(1.9)

and sn( ˜Bp;Lp) denotes any one of the three n-widths, Kolmogorov, Gel’fand and [2, pages 1; 7; 20].

Theorem 1.4. Let K be a {NCVD} kernel and n = 1, 2, . . .. Then

b2n−1
(

˜Kp;Lp
)

= λn(p, p,K), 1 < p <∞,

s2n
(

˜Kp;Lp
)

= b2n−1
(

˜Kp;Lp
)

= λn(p, p,K),

λn(p, q,K) = {sup}{‖K∗h‖q : h ∈ Dn, }, 1 < q ≤ p <∞.

(1.10)

We will only give the proof for the case of a B-kernel. As for the case of a NCVD kernel,
the proof is similar and even more simple.

2. Nonlinear integral equation and its spectral couple

Before we prove Theorem 1.3, we need some results about nonlinear integral equations and
their spectral couple. First, we introduce some definitions and notations.

Definition 2.1 (see [2, pages 45, 59]). Let x = (x1, . . . , xn) ∈ R
n \ {0} be a real nontrivial vector.

(i) S−(x) indicates the number of sign changes in the sequence x1, . . . , xn with zero terms
discarded. The number S−

c (x) of cyclic variations of sign of x is given by

S−
c (x) := max

i
S−(xi, xi+1, . . . , xn, x1, . . . , xi) = S−(xk, . . . , xn, x1, . . . , xk

)

, (2.1)

where k is some integer for which xk /= 0. Obviously, S−
c (x) is invariant under cyclic

permutations, and S−
c (x) is always an even number.

(ii) S+(x) counts the maximum number of sign changes in the sequence x1, . . . , xn where
zero terms are arbitrarily assigned values +1 or −1. The number S+

c (x) of maximum
cyclic variations of sign of x is defined by

S+
c (x) := max

i
S+(xi, xi+1, . . . , xn, x1, . . . , xi

)

. (2.2)
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Let f be a piecewise continuous, 2π-periodic, real-valued function on R. One assumes
that f(x) = [f(x+) + f(x−)]/2 for all x and

Sc(f) := supS−
c

((

f
(

x1
)

, . . . , f
(

xm
)))

, (2.3)

where the supremum is taken over all x1 < · · · < xm < x1 + 2π and allm ∈ N.
Moreover, one needs further counts of zeros of a function. Suppose that f is a continuous,

2π-periodic, real-valued function on R. One defines

˜Zc(f) := supS+
c

((

f
(

x1
)

, . . . , f
(

xm
)))

, (2.4)

where the supremum runs over all x1 < · · · < xm < x1 + 2π and all m ∈ N. Assume that f is a
2π-periodic, real-valued function on R for which f is sufficiently smooth. The number of zeros
of f on a period, counting multiplicities, is denoted by Z�

c(f).

Clearly, Sc(f) denotes the number of sign changes of f on a period, and ˜Zc(f) denotes
the number of zeros of f on a period, where the zeros which are sign changes are counted once
and zeros which are not sign changes are counted twice. Moreover, we have

Sc(f) ≤ ˜Zc(f) ≤ Z�
c(f). (2.5)

We define Qp to be the nonlinear transformation:

(

Qpf
)

(t) :=
∣

∣f(t)
∣

∣

p−1signf(t), 1 < p <∞. (2.6)

Since the function F(y) := |y|p−1 sign y is continuous and strictly increasing,Qpf is continuous
if and only if f is. Moreover, since F(y) is uniformly continuous on every compact interval,
Qpf is a continuous operator from C(T) to C(T). It is clear that if f ∈ Lp, 1 < p < ∞, then
Qpf ∈ Lp

′
, p′ = p/(p − 1), and Qp′Qpf = f for every f . For 1 ≤ q, p < ∞, (f, λq) is called a

spectral couple, and f is called a spectral function if

‖h‖p = 1, f(x) = (G∗h)(x) + β,
(

Qph
)

(y) = λ−q
∫

T

G(x − y)(Qqf
)

(x)dx,
(2.7)

where β satisfies the condition

inf
c∈R

‖(G∗h) + c‖q = ‖(G∗h) + β‖q, (2.8)

when
∫

T
G(x)dx = 0. It is well known that if 1 < q < ∞, then β is unique. The set of all spectral

couples is denoted by Γ(p, q, G), and the spectral class Γ2n(p, q, G) is given by

Γ2n(p, q, G) :=
{(

f, λq
) ∈ Γ(p, q, G) : Sc(f) = 2n

}

. (2.9)

Lemma 2.2 (see [2, page 177]). Let φ be a real piecewise continuous 2π-periodic function satisfying
φ ⊥ 1 and set ψ(x) := a + (G∗φ)(x). If G satisfies property B, then

˜Zc(ψ) ≤ Sc(φ). (2.10)
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Lemma 2.3. For 1 < p, q <∞, if (f, λq) ∈ Γ(p, q, G) with Sc(h) <∞. Then, f has a finite number of
zeros, and all its zeros are simple.

Proof. By (2.7) and Lemma 2.2, we have Sc(f) ≤ ˜Zc(f) ≤ Sc(h) ≤ ˜Zc

(

Qph
) ≤ Sc

(

Qqf
)

= Sc(f).
Obviously, Sc(f) = Sc(h) = ˜Zc(f). Therefore, f has a finite number of zeros, and all its zeros
are simple.

Lemma 2.4. (a) If 1 < q < p <∞, and f1 and f2 are two spectral functions, then

Sc
(

f1 + f2
) ≤ max

{

Sc
(

f1
)

, Sc
(

f2
)}

<∞. (2.11)

(b) If 1 < q ≤ p < ∞, and f1 and f2 correspond to the same spectral value and f1 /= f2, then all
the zeros of f1 + f2 are with sign changes.

Proof. Suppose that (f1, λ
q

1) and (f2, λ
q

2) are spectral couples and, say 0 < λ1 ≤ λ2. For ε > 0, let
σ(ε) := Sc(f1+εf2). For all sufficiently small ε,we have σ(ε) = Sc(f1) = ˜Zc(f1) =:N. Indeed, let
t1, . . . , tN be the zeros of f1. Then, by the continuity, there exist neighborhoods Vt1 , Vt2 , . . . , VtN
for all small ε, so that f1 + εf2 has exactly one zero in each Vti . On the other hand, f1 + εf2 /= 0 if
t ∈ T \⋃i(Vti) and ε > 0 is sufficiently small. By using (2.5)–(2.7), Lemma 2.2, and the identity
sign(a + b) = sign(|a|p−1signa + |b|p−1sign b), we have

σ(ε) = Sc
(

f1 + εf2
) ≤ ˜Zc

(

f1 + εf2
) ≤ Sc

(

h1 + εh2
)

= Sc
(

Qph1 +Qp

(

εh2
))

= Sc
(

Qph1 + εp−1
(

Qph2
))

≤ Sc
(

λ
−q
1 Qqf1 + εp−1λ

−q
2 Qqf2

)

= Sc
(

Qqf1 +Qq

(

ε(p−1)/(q−1)(λ1/λ2)
q/(q−1)f2

))

= Sc
(

f1 + ε(p−1)/(q−1)(λ1/λ2)
q/(q−1)f2

)

= σ
(

ε(p−1)/(q−1)(λ1/λ2)
q/(q−1)).

(2.12)

Iterating this inequality for 0 < ε < 1, we obtain σ(ε) ≤ σ(ε0), where ε0 can be made
arbitrarily close to zero (due to 1 < q < p < ∞), so that we may assume that σ(ε0) = N.
Consequently, σ(ε) ≤ N for 0 < ε < 1. But then also σ(1) = Sc(f1 + f2) ≤ N for otherwise one
can choose ε < 1 so close to 1 that σ(ε) > N.

Now, we turn to prove part (b). Taking λ1 = λ2, ε = 1 in (2.12), we get Sc(f1 + f2) =
˜Zc(f1 + f2). Lemma 2.4 is proved.

For a spectral function f , let t1 < t2 < · · · < tm be all its zeros on T, and let sk := (tk +
tk+1)/2, k = 1, . . . , m, tm+1 = t1 + 2π be the midpoints of the intervals between them.

Lemma 2.5. For 1 < q ≤ p < ∞, a spectral function f is odd with respect to each of its zeros tk, that
is, f(tk − t) = −f(tk + t), and is even with respect to each sk. Moreover, the number of zeros is even,
m = 2n, and the points tk are equidistant on T. The f is periodic with period 2π/n.

Proof. Let (f, λq) ∈ Γ(p, q, G). Then by [6], λ = ‖f‖q, and for each k, f(tk ± t) is also a spectral
function with the same λ. Therefore, F(t) = f(tk − t) + f(tk + t) has a zero at t = 0 without sign
change. By (b) of Lemma 2.4, this function F(t)must be zero.

The proof of Lemma 2.5 is complete.
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Lemma 2.6 (see [6]). Let G be a B-kernel, n ∈ N, 1 < p, q < ∞. Then, Γ2n(p, q, G)/=Ø. Moreover, if
(f, λq) ∈ Γ2n(p, q, G), then the function f := (G∗h) + β satisfies the following conditions:

f

(

x +
π

n

)

= −f(x), ∀x ∈ [0, 2π), (2.13)

with β = 0, and the simple zeros of f are equidistant on T , and

h

(

t +
π

n

)

= −h(t), ∀t ∈ [0, 2π). (2.14)

Lemma 2.7. Let G be a B-kernel. For n ∈ N, 1 < q ≤ p < ∞, if (f, λq) ∈ Γ2n(p, q, G). Then, there
exists h ∈ Dn, such that λ = ‖f‖q = ‖G∗h‖q.

Proof. For (f, λq) ∈ Γ2n(p, q, G), by (2.7), and Lemma 2.6, we have f = (G∗h)(x). We choose
h(x0) ≥ 0, x0 ∈ [0, π/n), then h(x0) sin nx0 ≥ 0, x0 ∈ [0, π/n). For x ∈ T, there exists a
i, i = 1, . . . , 2n, such that x ∈ [(i − 1)π/n, iπ/n). Since h(x + π/n) = −h(x). Thus

h(x) sin nx = h
(

x0 +
(i − 1)π

n

)

sin
(

n

(

x0 +
(i − 1)π

n

))

= h(x0) sin nx0 ≥ 0. (2.15)

Combining (2.14), we get h ∈ Dn, and λ = ‖f‖q = ‖G∗h‖q. The proof of Lemma 2.7 is complete.

3. Upper estimate of Bernstein n-width

Following some ideas of Buslaev [4], Tikhomirov [1], Chen and Li [7], and Chen [5], the proofs
of our main results are based on some iteration process which starts with an arbitrary function
h0 ∈ Lp withmean value zero and produces a sequence of functions hk, and then a subsequence
of their integrals fk converges to a spectral function f .

First, we take some h0 ∈ Lp such that ‖h0‖p = 1, h0 ⊥ 1. Let

f0(x) =
(

G∗h0
)

(x) + β0, (3.1)

where β0 satisfies the condition:

inf
c∈R

‖(G∗h0
)

+ c‖q = ‖(G∗h0
)

+ β0‖q, 1 < q <∞. (3.2)

Next, we construct the sequences of functions {hk} and {fk} as follows:

fk(x) =
(

G∗hk
)

(x) + βk, k = 1, 2, . . . , (3.3)
(

Qphk+1
)

(y) = μ−q
k+1

∫

T

G(x − y)(Qqfk
)

(x)dx, k = 0, 1, 2, . . . , (3.4)

where βk is uniquely determined by the condition

‖fk+1‖q = inf
c∈R

‖(G∗hk+1
)

+ c‖q = ‖(G∗hk+1
)

+ βk+1‖q, 1 < q <∞, (3.5)

and μk+1 > 0 is determined by the condition ‖hk+1‖p = 1, 1 < p <∞.
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Lemma 3.1. Let 1 < p, q <∞. Then

‖fk‖q ≤ μk+1 ≤ ‖fk+1‖q, k = 1, 2, . . . . (3.6)

Proof. By the Hölder’s inequality, (2.7), and ‖Qpg‖p′ = ‖g‖p−1p , we have

1 = ‖hk+1‖p−1p ·‖hk‖p ≥ 〈Qphk+1, hk〉 ≥ μ−q
k+1‖fk‖

q
q, (3.7)

which proves the first inequality in (3.6). We now use this first inequality and similarly prove
the second inequality:

1 = ‖hk+1‖pp = 〈Qphk+1, hk+1〉 = μ−q
k+1〈G ∗Qqfk, hk+1〉

≤ μ−q
k+1‖fk+1‖q · ‖Qqfk‖q′ = μ−q

k+1‖fk+1‖q · ‖fk‖
q−1
q ≤ μ−1

k+1‖fk+1‖q.
(3.8)

The proof of Lemma 3.1 is complete.

It follows from Lemma 3.1 that the construction of the sequence {fk}∞k=1 is unambiguous.
Moreover, it follows from (3.6) that {μk+1}∞k=1 is monotonic nondecreasing sequence and tends
to some number μ. It is clear that

μ := lim
k→∞

μk = lim
k→∞

‖fk‖q > 0. (3.9)

Lemma 3.2. For each starting function h0 /= 0, h0 ⊥ 1, the sequence {hk}∞k=1 of (3.4) contains
a subsequence {hki}∞i=1 for which {fki(x) = (G ∗hki)(x) + βki}∞i=1 converges uniformly to a spectral
function f (with a spectral value λ = μ).

Proof. By using the weak compactness of the unit ball of the space Lp, 1 < p < ∞, one can
choose a subsequence {hki}∞i=1 converging weakly to some h with ‖h‖p = 1, with {fki}∞i=1
converging uniformly to f := (G ∗h) + β. It follows from (3.4) that {Qphki+1}∞i=1 converges
uniformly because the operatorQp, 1 < p <∞, preserves uniform convergence. Consequently,
{Qp′Qphki+1 = hki+1}∞i=1 converges uniformly to some v with ‖v‖p = 1, where 1/p′ + 1/p = 1. Let
k→∞ in (3.4) and with μ in (3.9). Then, we can obtain

(

Qpv
)

(y) = μ−q
∫

T

G(x − y)(Qqf
)

(x)dx. (3.10)

Now, we turn to prove that (f, μ) is a spectral couple. Since in the following inequality,
Qphki+1→Qpv uniformly and hki→hweakly in Lp,

〈Qphki+1, hki〉 = μ−q
ki+1

〈Qqfki , hki〉 ≥ μ−q
ki+1

‖fki‖qq −→ μ−q ·μq = 1, (3.11)

which implies 〈Qpv, h〉 ≥ 1. On the other hand, by theHölder’s inequality, and ‖v‖p = ‖h‖p = 1,
we get

〈Qpv, h〉 ≤ ‖v‖p−1p · ‖h‖p = 1. (3.12)

Therefore, the case of equality can occur only if |Qpv|p′ = |h|p, sign Qpv =sign h almost every,
or, equivalently, if v = h. Comparing (3.10)with (2.7), we get μ = λ.

The proof of Lemma 3.2 is complete.
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For convenience, we denote by (G, λn) all the function hn, where hn is sufficiently

(i)

‖G ∗hn‖q = λn := λ(p, q, G) = λn‖hn‖p, (3.13)

(ii)

∫2π

0
G
(

x − y)(QqG ∗hn
)

(x)dx = λqn
(

Qhn
)

(y)dy, y ∈ T. (3.14)

In what follows, we need to convolute Gwith periodic kernel for

φσ = φ(σ, t) :=
1√
2π

∞
∑

n=−∞
exp

[

− 1
2σ2

(t − 2nπ)2
]

, (3.15)

σ > 0. It is known that [8]

(i) Z�
c(φσ∗f) ≤ Sc(f),

(ii) limσ→0+φσ∗f = f uniformly holds for every continuous function f with 2π-period.

Let G be a B-kernel. Gσ := φσ∗G is said to be the mollification of G by φσ . It is easily
verified that Gσ is a B-kernel.

Lemma 3.3 (see [5]). Suppose hn,σ ∈ (Gσ, λn,σ), where λn,σ := λn(p, q, Gσ). Then

(i) limσ→0+λn,σ = λn,

(ii) there exists a sequence of real number σk > 0 such that σk→0+ and the corresponding sequence
of continuous functions {hn,σk}∞k=1 is convergent uniformly on T,

(iii) denote hn(x) = limk→∞hn,σk(x), then hn ∈ (G, λn).

We recall an equivalent definition on the Bernstein n-width of a linear operator P from a
linear normed space X to Y .

Definition 3.4 (see [2, page 149]). Let P ∈ L(X,Y ). Then, the Bernstein n-width is defined by

bn
(

P(X), Y
)

= sup
Xn+1

inf
Px∈Xn+1
Px /= 0

‖Px‖Y
‖x‖X , (3.16)

where Xn+1 is any subspace of span {Px : x ∈ X} of dimension ≥ n + 1.

Lemma 3.5. Let G be a B-kernel. For each p ∈ (1,∞) and n = 1, 2, . . ., then

b2n−1
(

˜Bp;Lp
) ≤ λn := λn(p, p,G). (3.17)
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Proof. Wefirst prove the theorem under the assumption thatG is sufficiently smooth, andZ�
c(c+

G ∗h) ≤ Sc(h) is true. An example of such function is Gσ , the mollification of G by φσ . Assume
that b2n−1( ˜Bp;Lp) > λn. From the definition of Bernstein n-width, there exists a 2n-dimensional
linear subspace L2n := lin{g1, g2, . . . , g2n}, and a number γ > λn, such that L2n ∩ γS(Lp) ⊆ ˜Bp,
where S(Lp) is the unit ball of Lp, that is,

min
c+G∗h∈L2n

‖c + (

G ∗h)‖p
‖h‖p = min

f∈L2n

‖f‖p
‖h‖p ≥ γ > λn. (3.18)

For every f ∈ L2n, f =
∑2n

j=1ξjgj , define a mapping f→ξ =
(

ξ1, ξ2, . . . , ξ2n
) ∈ R

2n. Using

the similar method as that in [9, pages 214–216], we get ‖h‖p = (
∑2n

j=1cj |ξj |p)
1/p

, where cj =
∫ jπ/n

(j−1)π/n|h(x)|pdx, j = 1, . . . , 2n, and cj =
∫π/n

0 |h(x)|pdx = c1, j = 1, . . . , 2n, if h ∈ Dn. By (3.18),
we have

min
ξ∈R2n\{0}

‖∑2n
j=1ξjgj‖p

(

∑2n
j=1cj |ξj |p

)1/p
> λn. (3.19)

Let

S 2n−1 :=

{

ξ : ξ =
(

ξ1, . . . , ξ2n
) ∈ R

2n,
2n
∑

i=1

ξi = 0,
2n
∑

i=1

|ξi| = 2π

}

. (3.20)

For every vector ξ ∈ S 2n−1, we take

h
ξ
0(t) =

⎧

⎨

⎩

(2π)−1/psign ξk, for t ∈ (

tk−1, tk
)

, k = 1, . . . , 2n,

0, for t = tk, k = 1, . . . , 2n − 1,
(3.21)

where t0 = 0, tk =
∑k

i=1|ξi|, k = 1, . . . , 2n, and let

f
ξ
0(x) =

(

G ∗hξ0
)

(x) + β0, 1 < p <∞, (3.22)

where β0 satisfies the condition

inf
c∈R

‖(G ∗h0
)

+ c‖p = ‖(G ∗h0
)

+ β0‖p. (3.23)

Next, for p = q, we consider the iterative procedure (3.3)-(3.4) beginning with h
ξ
0 and

f
ξ
0 instead of h0 and f0, respectively. The analogues of Lemmas 3.1 and 3.2 hold. Moreover, for

the limit element fξ, there exists ̂ξ ∈ S 2n−1 such that f ̂ξ has at least 2n simple zeros in [0, 2π)
(i.e., Sc(f

̂ξ) ≥ 2n). Indeed, let O2n−1
k

= {ξ : ξ ∈ S 2n−1, Z�
c(f

ξ
k
) ≤ 2n − 2}, where the function fξ

k

defined by (3.3). Clearly, the setO2n−1
k

is open in S 2n−1. LetH2n−1
k

= S 2n−1 \O2n−1
k

. Then,H2n−1
k

is
a nonempty closed set, and thatH2n−1

k+1 ⊂ H2n−1
k

, k ∈ N. First, we prove thatH2n−1
k

is nonempty.
For fixed 0 < x1 < x2 < · · · < x2n−1 < 2π , let η(ξ) = (η1(ξ), η2(ξ), . . . , η2n(ξ)), where

ηi(ξ) =

⎧

⎪

⎨

⎪

⎩

∫

T

h
ξ
0(t)dt, for i = 1,

f
ξ
k

(

xi−1
)

, for i = 2, . . . , 2n.
(3.24)
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It is easily seen that η(ξ) is a continuous and odd mapping. By Borsuk’s theorem [10], there

exists a ξ ∈ S 2n−1 such that η(ξ) = 0. Then, Z�
c(f

ξ
k
) = 2n − 1, that is, ξ ∈ H2n−1

k
. Thus, H2n−1

k

is a nonempty. Next, we prove H2n−1
k+1 ⊂ H2n−1

k
, k ∈ N. Assume, on the contrary, there exists a

˜ξ ∈ H2n−1
k+1 , but ˜ξ/∈H2n−1

k
. Thus, Sc(f

˜ξ
k
) ≤ Z�

c(f
˜ξ
k
) ≤ 2n − 2 results in Sc(Qqf

˜ξ
k
) ≤ 2n − 2. By (3.4),

we get

Sc
(

Qph
˜ξ
k+1

) ≤ 2n − 2, Sc
(

h
˜ξ
k

) ≤ 2n − 2. (3.25)

According to (3.3), we have Z�
c

(

f
˜ξ
k+1

) ≤ 2n − 2, namely, ˜ξ/∈H2n−1
k+1 . A contradiction follows from

the above. We have constructed a system of nonempty closed nested sets. Their intersection is
nonempty. Let ̂ξ ∈ ⋂∞

k=1(H
2n−1
k

). According to Lemma 3.2, there exists (f ̂ξ(x), λp) ∈ Γ(p, p,G)

such that limk→∞f
̂ξ
k
(x) = f ̂ξ(x), x ∈ [0, 2π). Thus, Z�

c(f
̂ξ) ≥ 2n− 1. In view of Lemma 2.3, zeros

of f ̂ξ(x) are simple. Therefore, Sc(f
̂ξ) ≥ 2n − 1. But since the function f

̂ξ(x) is periodic, we
actually have Sc(f

̂ξ) ≥ 2n. We write Sc(f
̂ξ) = 2N.

For the spectral function f ̂ξ corresponding to spectral value λ(̂ξ), by Lemma 2.7, and the
nonincreasing property of Kolmogorov n-widths in n, and d2n( ˜Bp;Lp) = λn(p, p,G) [7], we
have

λ(̂ξ) ≤ λN = d2N
(

˜Bp;Lp
) ≤ d2n

(

˜Bp;Lp
)

= λn. (3.26)

Therefore, by Lemmas 3.1, 3.2, and (3.26), we have

min
ξ∈R2n\{0}

‖∑2n
j=1ξjgj‖p

(

∑2n
j=1cj |ξj |p

)1/p
≤

‖∑2n
j=1

̂ξjgj‖p
(c1)

1/p
(

∑2n
j=1|̂ξj |p

)1/p
= ‖f ̂ξ‖p = λ(̂ξ) ≤ λn, (3.27)

which is contradicted with (3.19).
For a general B-kernel G, set Gσ = φσ∗G, and hσ = φσ∗h, λn,σ = φσ∗λn. For f = c +G∗h ∈

˜Bp, we set fσ = c +Gσ∗h. From the results obtained in the pervious case, we have

‖Gσ∗h + c‖p
‖hσ‖p =

‖fσ‖p
‖hσ‖p ≤ λn,σ. (3.28)

According to Lemma 3.3, we get ‖G∗h + c‖p/‖h‖p ≤ λn(p, p,G). Therefore, we obtain
b2n−1( ˜Bp;Lp) ≤ λn(p, p,G). The proof of Lemma 3.5 is complete.

Proof of theorem

Now, we consider the proof of Theorem 1.3.

Proof. By Lemma 3.5, if G is B-kernel, for each p ∈ (1,∞) and n = 1, 2, . . ., we have
b2n−1( ˜Bp;Lp) ≤ λn(p, p,G). On the other hand, by [5], for each 1 < p ≤ q < ∞ and n = 1, 2, . . .,
then b2n−1( ˜Bp;Lq) ≥ λn(p, q, G). Thus, we have b2n−1( ˜Bp;Lp) = λn(p, p,G) for p ∈ (1,∞) and
n ∈ N

+. The result (1.8) is obvious since s2n( ˜Bp;Lp) = λn(p, p,G) [5]. Theorem 1.3 is proved
completely.
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