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operator and using a new generalized Gronwall’s inequality with impulse, mixed type integral
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papers. At last, an example is given for demonstration.
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1. Introduction

It is well known that impulsive periodic motion is a very important and special phenomenon
not only in natural science, but also in social science such as climate, food supplement,
insecticide population, and sustainable development. Periodic system with applications
on finite-dimensional spaces has been extensively studied. Particularly, impulsive periodic
systems on finite-dimensional spaces are considered and some important results (such as the
existence and stability of periodic solution, the relationship between bounded solution and
periodic solution, and robustness by perturbation) are obtained (see [1–4]).

Since the end of last century, many researchers pay great attention to impulsive
systems on infinite-dimensional spaces. Particulary, Ahmed et al. investigated optimal
control problems of system governed by impulsive system (see [5–8]). Many authors
including us also gave a series of results for semilinear (integrodifferential, strongly
nonlinear) impulsive systems and optimal control problems (see [9–20]).



2 Journal of Inequalities and Applications

Although, there are some papers on periodic solution for periodic system on infinite-
dimensional spaces (see [12, 21–23]) and some results discussing integrodifferential system
on finite Banach space and infinite Banach space (see [11, 13]). To our knowledge, inte-
grodifferential impulsive periodic systems on infinite-dimensional spaces (with unbounded
operator) have not been extensively investigated. Recently, we discuss the impulsive
periodic system and integrodifferential impulsive system on infinite-dimensional spaces.
Linear impulsive evolution operator is constructed and T0-periodic PC-mild solution is
introduced. The existence of periodic solutions, alternative theorem (criteria of Massera
type), asymptotical stability, and robustness by perturbation is established (see [24–26]).
For semilinear impulsive periodic system, a suitable Poincaré operator is constructed which
verifies its compactness and continuity. By virtue of a generalized Gronwall inequality with
mixed integral operator and impulse given by us, the estimate of the PC-mild solutions is
derived. Some fixed point theorems such as Banach fixed point theorem and Horn fixed point
theorem are applied to obtain the existence of periodic PC-mild solutions, respectively (see
[27, 28]). For integrodifferential impulsive system, the existence of PC-mild solutions and
optimal controls is presented (see [15]).

Herein, we go on studying the following integrodifferential impulsive periodic system

ẋ(t) = Ax(t) + f
(
t, x,

∫ t
0
g(t, s, x)ds

)
, t /= τk,

Δx(t) = Bkx(t) + ck, t = τk.

(1.1)

on infinite-dimensional Banach space X, where 0 = τ0 < τ1 < τ2 < · · · < τk · · · ; limk→∞τk = ∞,
τk+δ = τk + T0; Δx(τk) = x(τ+

k
) − x(τ−

k
), k ∈ Z

+
0 ; T0 is a fixed positive number; and δ ∈ N

denoted the number of impulsive points between 0 and T0. The operatorA is the infinitesimal
generator of a C0-semigroup {T(t), t ≥ 0} on X; f is a T0-periodic, with respect to t ∈ [0 +
∞), Carathédory function; g is a continuous function from [0,∞) × [0,∞) × X to X and is
T0-periodic in t and s; and Bk+δ = Bk, ck+δ = ck. This paper is mainly concerned with the
existence of periodic solutions for integrodifferential impulsive periodic system on infinite-
dimensional Banach space X.

In this paper, we use Leray-Schauder fixed point theorem to obtain the existence of
periodic solutions for integrodifferential impulsive periodic system (1.1). First, by virtue
of impulsive evolution operator corresponding to linear homogeneous impulsive system,
we construct a new Poincaré operator P for integrodifferential impulsive periodic system
(1.1), then we overcome some difficulties to show the compactness of Poincaré operator P
which is very important. By a new generalized Gronwall inequality with impulse, mixed-
type integral operators, and B-norm given by us, the estimate of fixed point set {x = λPx, λ ∈
[0, 1]} is established. Therefore, the existence of T0-periodic PC-mild solutions for impulsive
integrodifferential periodic system is shown.

In order to obtain the existence of periodic solutions, many authors use Horn fixed
point theorem or Banach fixed point theorem. However, the conditions for Horn fixed point
theorem are not easy to be verified sometimes and the conditions for Banach fixed point
theorem are too strong. Our method is much different from others’, and we give a new
way to show the existence of periodic solutions. In addition, the new generalized Gronwall
inequality with impulse, mixed-type integral operator, and B-norm given by us, which can
be used in other problems, have played an essential role in the study of nonlinear problems
on infinite-dimensional spaces.
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This paper is organized as follows. In Section 2, some results of linear impulsive
periodic system and properties of impulsive periodic evolution operator corresponding to
homogeneous linear impulsive periodic system are recalled. In Section 3, the new generalized
Gronwall inequality with impulse, mixed-type integral operator, and B-norm are established.
In Section 4, the T0-periodic PC-mild solution for integrodifferential impulsive periodic
system (1.1) is introduced. We construct the suitable Poincaré operator P and give the
relation between T0-periodic PC-mild solution and the fixed point of P . After showing the
compactness of the Poincaré operator P and obtaining the boundedness of the fixed point set
{x = λPx, λ ∈ [0, 1]} by virtue of the generalized Gronwall inequality, we can use Leray-
Schauder fixed point theorem to establish the existence of T0-periodic PC-mild solutions for
integrodifferential impulsive periodic system. At last, an example is given to demonstrate the
applicability of our result.

2. Linear impulsive periodic system

In order to study the integrodifferential impulse periodic system, we first recall some results
about linear impulse periodic system here. LetX be a Banach space. £(X) denotes the space of
linear operators in X; £b(X) denotes the space of bounded linear operators in X. £b(X) is the
Banach space with the usual supremum norm. Define D̃ = {τ1, . . . , τδ} ⊂ [0, T0], where δ ∈ N

denotes the number of impulsive points between [0, T0]. We introduce PC([0, T0];X) ≡ {x :
[0, T0]→X | xto be continuous at t ∈ [0, T0] \ D̃; x is continuous from left and has right-hand
limits at t ∈ D̃}; and PC1([0, T0];X) ≡ {x ∈ PC([0, T0];X) | ẋ ∈ PC([0, T0];X)}. Set

‖x‖PC = max
{

sup
t∈[0,T0]

∥∥x(t + 0)
∥∥, sup

t∈[0,T0]

∥∥x(t − 0)
∥∥}, ‖x‖PC1 = ‖x‖PC + ‖ẋ‖PC. (2.1)

It can be seen that endowed with the norm ‖·‖PC(‖·‖PC1), PC([0, T0];X)(PC1([0, T0];X)) is a
Banach space.

Firstly, we consider homogeneous linear impulsive periodic system

.
x (t) = Ax(t), t /= τk,

Δx(t) = Bkx(t), t = τk.
(2.2)

We introduce the following assumption [H1].
[H1.1] A is the infinitesimal generator of a C0-semigroup {T(t), t ≥ 0} on X with

domain D(A).
[H1.2] There exists δ such that τk+δ = τk + T0.
[H1.3] For each k ∈ Z

+
0 , Bk ∈ £b(X) and Bk+δ = Bk.

In order to study system (2.2), we need to consider the associated Cauchy problem

.
x (t) = Ax(t), t ∈ [0, T0] \ D̃,

Δx(τk) = Bkx(τk), k = 1, 2, . . . , δ,

x(0) = x.

(2.3)
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If x ∈ D(A) and D(A) is an invariant subspace of Bk, using Theorem 5.2.2, (see [29,
page 144]), step by step, one can verify that the Cauchy problem (2.3) has a unique classical
solution x ∈ PC1([0, T0];X) represented by x(t) = S(t, 0)x,where

S(·, ·) : Δ =
{
(t, θ) ∈ [0, T0] × [0, T0] | 0 ≤ θ ≤ t ≤ T0

} −→ £b(X) (2.4)

given by

S(t, θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T(t − θ), τk−1 ≤ θ ≤ t ≤ τk,

T
(
t − τ+k

)(
I + Bk

)
T
(
τk − θ

)
, τk−1 ≤ θ < τk < t ≤ τk+1,

T
(
t − τ+

k

)[∏
θ<τj<t

(
I + Bj

)
T
(
τj − τ+j−1

)](
I + Bi

)
T
(
τi − θ

)
,

τi−1 ≤ θ < τi ≤ · · · < τk < t ≤ τk+1.
(2.5)

The operator {S(t, θ), (t, θ) ∈ Δ} is called impulsive evolution operator associated with
{Bk; τk}∞k=1.

Nowwe introduce the PC-mild solution of Cauchy problem (2.3) and T0-periodic PC-
mild solution of the system (2.2).

Definition 2.1. For every x ∈ X, the function x ∈ PC([0, T0];X) given by x(t) = S(t, 0)x is said
to be the PC-mild solution of the Cauchy problem (2.3).

Definition 2.2. A function x ∈ PC([0,+∞);X) is said to be a T0-periodic PC-mild solution of
system (2.2) if it is a PC-mild solution of Cauchy problem (2.3) corresponding to some x and
x(t + T0) = x(t) for t ≥ 0.

The following lemma gives the properties of the impulsive evolution operator
{S(t, θ), (t, θ) ∈ Δ} associated with {Bk; τk}∞k=1 which are widely used in sequel.

Lemma 2.3 (see [24, Lemma 1]). Impulsive evolution operator {S(t, θ), (t, θ) ∈ Δ} has the
following properties.

(1) For 0 ≤ θ ≤ t ≤ T0, S(t, θ) ∈ £b(X), that is, sup0≤θ≤t≤T0‖S(t, θ)‖ ≤MT0 , whereMT0 > 0.

(2) For 0 ≤ θ < r < t ≤ T0, r /= τk, S(t, θ) = S(t, r)S(r, θ).
(3) For 0 ≤ θ ≤ t ≤ T0 andN ∈ Z+

0 , S(t +NT0, θ +NT0) = S(t, θ).

(4) For 0 ≤ t ≤ T0 andN ∈ Z+
0 , S(NT0 + t, 0) = S(t, 0)[S(T0, 0)]

N .

(5) If {T(t), t ≥ 0} is a compact semigroup in X, then S(t, θ) is a compact operator for 0 ≤ θ <
t ≤ T0.

Here, we note that system (2.2) has a T0-periodic PC-mild solution x if and only if
S(T0, 0) has a fixed point. The impulsive evolution operator {S(t, θ), (t, θ) ∈ Δ} can be used
to reduce the existence of T0-periodic PC-mild solutions for linear impulsive periodic system
to the existence of fixed points for an operator equation. This implies that we can build up
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the new framework to study the periodic PC-mild solutions for integrodifferential impulsive
periodic system on Banach space.

Consider nonhomogeneous linear impulsive periodic system

ẋ(t) = Ax(t) + f(t), t /= τk,

Δx(t) = Bkx(t) + ck, t = τk,
(2.6)

and the associated Cauchy problem

ẋ(t) = Ax(t) + f(t), t ∈ [0, T0] \ D̃,
Δx(τk) = Bkx(τk) + ck, k = 1, 2, . . . , δ,

x(0) = x.

(2.7)

where f ∈ L1([0, T0];X), f(t + T0) = f(t) and ck+δ = ck.
Now we introduce the PC-mild solution of Cauchy problem (2.7) and T0-periodic PC-

mild solution of system (2.6).

Definition 2.4. A function x ∈ PC([0, T0];X), for finite interval [0, T0], is said to be a PC-mild
solution of the Cauchy problem (2.6) corresponding to the initial value x ∈ X and input
f ∈ L1([0, T0];X) if x is given by

x(t) = S(t, 0)x +
∫ t
0
S(t, θ)f(θ)dθ +

∑
0≤τk<t

S
(
t, τ+k
)
ck. (2.8)

Definition 2.5. A function x ∈ PC([0,+∞);X) is said to be a T0-periodic PC-mild solution of
system (2.6) if it is a PC-mild solution of Cauchy problem (2.7) corresponding to some x and
x(t + T0) = x(t) for t ≥ 0.

3. The generalized Gronwall inequality

In order to use Leray-Schauder theorem to show the existence of periodic solutions, we need
a new generalized Gronwall inequality with impulse, mixed-type integral operator, and B-
norm which is much different from classical Gronwall inequality and can be used in other
problems (such as discussion on integrodifferential equation of mixed type, see [15]). It will
play an essential role in the study of nonlinear problems on infinite-dimensional spaces.

We first introduce the following generalized Gronwall inequality with impulse and
B-norm.

Lemma 3.1. Let x ∈ PC([0,∞), X) and satisfy the following inequality:

‖x(t)‖ ≤ a + b
∫ t
0
‖x(θ)‖λ1dθ + d

∫ t
0
‖xθ‖λ3B dθ, (3.1)



6 Journal of Inequalities and Applications

where a, b, d ≥ 0, 0 ≤ λ1, λ3 ≤ 1 are constants, and ‖xθ‖B = sup0≤ξ≤θ‖x(ξ)‖. Then

∥∥x(t)∥∥ ≤ (a + 1)e(b+c)t. (3.2)

Proof. (i) For 0 ≤ λ1, λ3 < 1, let λ = max{λ1, λ3} ∈ [0, 1) and

y(t) =

⎧⎨
⎩
1, ‖x(t)‖ ≤ 1,

x(t), ‖x(t)‖ > 1.
(3.3)

Then

∥∥x(t)∥∥ ≤ ∥∥y(t)∥∥ ≤ (a + 1) + b
∫ t
0

∥∥y(θ)∥∥λdθ + d
∫ t
0

∥∥yθ∥∥λBdθ ∀t ∈ [0, T0]. (3.4)

Using (3.4), we obtain

∥∥yt∥∥λB ≤ (a + 1) + (b + d)
∫ t
0

∥∥yθ∥∥λBdθ. (3.5)

Define

u(t) = (a + 1) + (b + d)
∫ t
0

∥∥yθ∥∥λBdθ, (3.6)

we get

u̇(t) = (b + d)
∥∥yt∥∥λB, t /= τk,

u(0) = a + 1, u
(
τk + 0

)
= u
(
τk
)
.

(3.7)

Since ‖yt‖λB ≤ u(t), we then have

u̇(t) ≤ (b + d)u(t), t /= τk,

u(0) = a + 1, u
(
τk + 0

)
= u
(
τk
)
.

(3.8)

For t ∈ (τk, τk+1], by (3.8), we obtain

u(t) ≤ u(τk + 0
)
e(b+d)(t−τk) = u

(
τk
)
e(b+d)(t−τk), (3.9)
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further,

u(t) ≤ (a + 1)e(b+d)t, (3.10)

thus,

∥∥x(t)∥∥ ≤ ∥∥yt∥∥B ≤ (a + 1)e(b+d)t. (3.11)

(ii) For λ1 = λ3 = 1, we only need to define

u1(t) = a + (b + d)
∫ t
0

∥∥xθ∥∥Bdθ, (3.12)

Similar to the proof in (i), one can obtain

∥∥x(t)∥∥ ≤ ∥∥xt∥∥B ≤ ae(b+d)t. (3.13)

Combining (i) and (ii), one can complete the proof.

Using Gronwall’s inequality with impulse and B-norm, we can obtain the following
new generalized Gronwall Lemma.

Lemma 3.2. Let x ∈ PC([0, T0];X) satisfy the following inequality:

∥∥x(t)∥∥
≤ a + b

∫ t
0

∥∥x(θ)∥∥λ1dθ + c
∫T0
0

∥∥x(θ)∥∥λ2dθ + d
∫ t
0

∥∥xθ∥∥λ3B dθ + e
∫T0
0

∥∥xθ∥∥λ4B dθ ∀t ∈ [0, T0],
(3.14)

where λ1, λ3 ∈ [0, 1], λ2, λ4 ∈ [0, 1), a, b, c, d, e ≥ 0 are constants. Then there exists a constant
M∗ > 0 such that

∥∥x(t)∥∥ ≤M∗. (3.15)

Proof. By Lemma 3.1, we obtain that

∥∥x(t)∥∥ ≤ ∥∥y(t)∥∥ ≤ ∥∥yt∥∥B ≤ e(b+d)t
(
(a + 1) + c

∫T0
0

∥∥y(θ)∥∥λdθ + e
∫T0
0

∥∥yθ∥∥λBdθ
)
, (3.16)
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where

y(t) =

⎧⎨
⎩
1,

∥∥x(t)∥∥ ≤ 1,

x(t),
∥∥x(t)∥∥ > 1,

λ =

⎧⎨
⎩
max

{
λ1, λ2, λ3, λ4

} ∈ [0, 1), if λ1, λ2, λ3, λ4 ∈ [0, 1),

max
{
λ2, λ4

} ∈ [0, 1), if λ1 = λ3 = 1, λ2, λ4 ∈ [0, 1).

(3.17)

Define

q(t)

≡ e(b+d)T0
(
(a + 1) + c

∫ t
0

∥∥y(θ)∥∥λdθ + c
∫T0
0

∥∥y(θ)∥∥λdθ + e
∫ t
0

∥∥yθ∥∥λBdθ + e
∫T0
0

∥∥yθ∥∥λBdθ
)
,

(3.18)

then q is a monotone increasing function and

q̇(t)

= e(b+d)T0
(
c
∥∥y(t)∥∥λ + e∥∥yt∥∥λB) ≤ (c + e)e(b+d)T0

(∥∥y(t)∥∥λ + ∥∥yt∥∥λB) ≤ 2(c + e)e(b+d)T0qλ(t).
(3.19)

Consider

d

dt
q1−λ(t) = (1 − λ)q−λ(t)q̇(t) ≤ 2(c + e)e(b+d)T0(1 − λ). (3.20)

Integrating from 0 to t, we obtain

q1−λ(t) − q1−λ(0) ≤ 2(c + e)e(b+d)T0(1 − λ)t, (3.21)

that is,

q(t) ≤ [q1−λ(0) + 2(c + e)e(b+d)T0(1 − λ)t]1/(1−λ). (3.22)

On the other hand,

2q(0) = 2e(b+d)T0
(
(a + 1) + c

∫T0
0

∥∥y(θ)∥∥λdθ + e
∫T0
0

∥∥yθ∥∥λBdθ
)
;

q(T0) = e(b+d)T0
(
(a + 1) + 2c

∫T0
0

∥∥y(θ)∥∥λdθ + 2e
∫T0
0

∥∥yθ∥∥λBdθ
)
.

(3.23)
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Now, we observe that

2q(0) − e(b+d)T0(a + 1) = q
(
T0
) ≤ [q1−λ(0) + 2(c + e)e(b+d)T0T0(1 − λ)

]1/(1−λ)
. (3.24)

As a result, we get

(
2q(0) − e(b+d)T0(a + 1)

)1−λ − q1−λ(0) ≤ 2(c + e)e(b+d)T0T0(1 − λ). (3.25)

Letting

Υ(z) =
(
2z − e(b+d)T0(a + 1)

)1−λ − z1−λ − 2(c + e)e(b+d)T0T0(1 − λ), (3.26)

we have Υ ∈ C([e(b+d)T0(a + 1)/2,+∞);R) and Υ(e(b+d)T0(a + 1)/2) < 0. Moreover,

lim
z→+∞

Υ(z)
z1−λ

= 21−λ − 1 > 0. (3.27)

Hence, there exists enough large z0 > e(b+d)T0(a + 1)/2 > 0 such that Υ(z) > 0 for arbitrary
z ≥ z0. Meanwhile, Υ(q(0)) ≤ 0. Thus, q(0) ≤ z0.

As a result, we obtain

∥∥x(t)∥∥ ≤ ∥∥y(t)∥∥ ≤ q(T0) = 2q(0) − e(b+d)T0(a + 1)

≤ 2z0 − e(b+d)T0(a + 1) ≡M∗ > 0 ∀t ∈ [0, T0].
(3.28)

4. Periodic solutions of integrodifferential impulsive periodic system

In this section, we consider the following integrodifferential impulsive periodic system:

ẋ(t) = Ax(t) + f
(
t, x,

∫ t
0
g(t, s, x)ds

)
, t /= τk,

Δx(t) = Bkx(t) + ck, t = τk.

(4.1)

and the associated Cauchy problem

ẋ(t) = Ax(t) + f
(
t, x,

∫ t
0
g(t, s, x)ds

)
, t ∈ [0, T0] \ D̃,

Δx
(
τk
)
= Bkx

(
τk
)
+ ck, k = 1, 2, . . . , δ,

x(0) = x.

(4.2)
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By virtue of the expression of the PC-mild solution of the Cauchy problem (2.7), we
can introduce the PC-mild solution of the Cauchy problem (4.2).

Definition 4.1. A function x ∈ PC([0, T0];X) is said to be a PC-mild solution of the Cauchy
problem (4.2) corresponding to the initial value x ∈ X if x satisfies the following integral
equation:

x(t) = S(t, 0)x +
∫ t
0
S(t, θ)f

(
θ, x(θ),

∫θ
0
g
(
θ, s, x(s)

)
ds

)
dθ

+
∑

0≤τk<t
S
(
t, τ+k
)
ck for t ∈ [0, T0].

(4.3)

Now, we introduce the T0-periodic PC-mild solution of system (4.1).

Definition 4.2. A function x ∈ PC([0,+∞);X) is said to be a T0-periodic PC-mild solution of
system (4.1) if it is a PC-mild solution of Cauchy problem (4.2) corresponding to some x and
x(t + T0) = x(t) for t ≥ 0.

Assumption [H2] includes the following.
[H2.1] f : [0,+∞) ×X ×X→X satisfies the following.

(i) For each (x, y) ∈ X ×X, t→ f(t, x, y) is measurable.

(ii) For each ρ > 0, there exists Lf(ρ) > 0 such that, for almost all t ∈ [0,+∞) and all x1,
x2, y1, y2 ∈ X, ‖x1‖, ‖x2‖, ‖y1‖, ‖y2‖ ≤ ρ, we have

∥∥f(t, x1, y1) − f(t, x2, y2)∥∥ ≤ Lf(ρ)
(∥∥x1 − x2∥∥ + ∥∥y1 − y2∥∥). (4.4)

[H2.2] There exists a positive constantMf such that

∥∥f(t, x, y)∥∥ ≤Mf

(
1 + ‖x‖ + ‖y‖) ∀x, y ∈ X. (4.5)

[H2.3] f(t, x, y) is T0-periodic in t, that is, f(t + T0, x, y) = f(t, x, y), t ≥ 0.
[H2.4] Let D = {(t, s) ∈ [0 + ∞) × [0 + ∞); 0 ≤ s ≤ t}. The function g : D × X→X

is continuous for each ρ > 0, there exists Lg(ρ) > 0 such that, for each (t, s) ∈ D and each
x, y ∈ X with ‖x‖, ‖y‖ ≤ ρ, we have

∥∥g(t, s, x) − g(t, s, y)∥∥ ≤ Lg(ρ)‖x − y‖. (4.6)

[H2.5] There exists a positive constantMg such that

∥∥g(t, s, x)∥∥ ≤Mg

(
1 + ‖x‖) ∀x, y ∈ X. (4.7)
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[H2.6] g(t, s, x)are T0-periodic in t and s, that is, g(t+T0, s+T0, x) = g(t, s, x), t ≥ s ≥ 0
and

∫T0
0
g(t, s, x)ds = 0, t ≥ s ≥ 0. (4.8)

[H2.7] For each k ∈ Z
+
0 and ck ∈ X, there exists δ ∈ N such that ck+δ = ck.

Lemma 4.3. Under assumptions [H2.4] and [H2.5], one has the following properties:

(1)
∫ ·
0g(·, s, x(s))ds : PC([0, T0];X)→PC([0, T0];X).

(2) For all x1, x2 ∈ PC([0, T0];X) and ‖x1‖PC([0,T0];X), ‖x2‖PC([0,T0];X) ≤ ρ,

∥∥∥∥
∫ t
0
g
(
t, s, x1(s)

)
ds −

∫ t
0
g
(
t, s, x2(s)

)
ds

∥∥∥∥ ≤ Lg(ρ)T0
∥∥x1 − x2∥∥B. (4.9)

(3) For x ∈ PC([0, T0];X),

∥∥∥∥
∫ t
0
g
(
t, s, x(s)

)
ds

∥∥∥∥ ≤MgT0
(
1 +
∥∥xt∥∥B). (4.10)

Proof. (1) Since g is continuous in its variables and satisfies linear growth conditions, one can
verify that

∫ ·
0g(·, s, x(s))dsmaps PC([0, T0];X) to PC([0, T0];X).

(2) Let x1, x2 ∈ PC([0, T0];X), ‖x1‖PC([0,T0];X), ‖x2‖PC([0,T0];X) ≤ ρ, we have

∥∥∥∥
∫ t
0
g
(
t, s, x1(s)

)
ds −

∫ t
0
g
(
t, s, x2(s)

)
ds

∥∥∥∥ ≤
∫ t
0

∥∥g(t, s, x1(s)) − g(t, s, x2(s))∥∥ds

≤
∫ t
0
Lg(ρ)

∥∥x1(s) − x2(s)∥∥ds

≤ Lg(ρ)t
∥∥(x1)t − (x2)t

∥∥
B

≤ Lg(ρ)T0
∥∥(x1)t − (x2)t

∥∥
B.

(4.11)

(3) For x ∈ PC([0, T0];X),

∥∥∥∥
∫ t
0
g
(
t, s, x(s)

)
ds

∥∥∥∥ ≤Mg

∫ t
0

(
1 +
∥∥x(s)∥∥)ds

≤Mgt
(
1 +
∥∥xt∥∥B)

≤MgT0
(
1 +
∥∥xt∥∥B).

(4.12)

Now we present the existence of PC-mild solution for system (4.2).
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Theorem 4.4. Assumptions [H1.1], [H2.1], [H2.4], and [H2.5] hold. Then system (4.2) has a unique
PC-mild solution given by

x
(
t, x
)
= S(t, 0)x +

∫ t
0
S(t, θ)f

(
θ, x(θ),

∫θ
0
g
(
θ, s, x(s)

)
ds

)
dθ +

∑
0≤τk<t

S
(
t, τ+k
)
ck. (4.13)

Proof. A similar result is given byWei et al. [15]. Thus, we only sketch the proof here. In order
to make the process clear, we divide it into three steps.

Step 1. We consider the following general integrodifferential equation without impulse

ẋ(t) = Ax(t) + f
(
t, x,

∫ t
0
g(t, s, x)ds

)
, t ∈ [s, τ],

x(s) = x ∈ X.
(4.14)

In order to obtain the local existence of mild solution for system (4.14), we only need to set
up the framework for use of the contraction mapping theorem. Consider the ball given by

B =
{
x ∈ C([s, t1];X) | ∥∥x(t) − x∥∥ ≤ 1, s ≤ t ≤ t1

}
, (4.15)

where t1 would be chosen, and ‖x(t)‖ ≤ 1 + ‖x‖ = ρ, s ≤ t ≤ t1. B ⊆ C([s, t1], X) is a closed
convex set. Define a map Q on B given by

(Qx)(t) = T(t)x +
∫ t
s

T(t − θ)f
(
θ, x(θ),

∫θ
0
g
(
θ, s, x(s)

)
ds

)
dθ. (4.16)

Under assumptions [H1.1], [H2.1], [H2.2], [H2.4], [H2.5] and Lemma 3.1, one can verify that
map Q is a contraction map on B with chosen t1 > 0. This means that system (4.14) has a
unique mild solution x ∈ C([s, t1];X) given by

x(t) = T(t)x +
∫ t
s

T(t − θ)f
(
θ, x(θ),

∫θ
0
g
(
θ, s, x(s)

)
ds

)
dθ on

[
s, t1
]
. (4.17)
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Again, using Lemma 3.1, we can obtain the a priori estimate of the mild solutions for system
(4.14) and present the global existence of mild solutions.

Step 2. For t ∈ (τk, τk+1], consider the Cauchy problem

ẋ(t) = Ax(t) + f
(
t, x,

∫ t
0
g(t, s, x)ds

)
, t ∈ (τk, τk+1],

x
(
τk
)
= xk ≡ (I + Bk)x(τk) + ck ∈ X.

(4.18)

By Step 1, Cauchy problem (4.18) also has a unique PC-mild solution

x(t) = T
(
t − τk

)
xk +

∫ t
τk

T(t − θ)f
(
θ, x(θ),

∫θ
0
g
(
θ, s, x(s)

)
ds

)
dθ. (4.19)

Step 3. Combining all of the solutions on (τk, τk+1] (k = 1, . . . , δ), one can obtain the PC-mild
solution of Cauchy problem (4.2) given by

x
(
t, x
)
= S(t, 0)x +

∫ t
0
S(t, θ)f

(
θ, x(θ),

∫θ
0
g
(
θ, s, x(s)

)
ds

)
dθ +

∑
0≤τk<t

S
(
t, τ+k
)
ck. (4.20)

This completes the proof.

To establish the periodic solutions for system (4.1), we define a Poincaré operator from
X to X as follows:

P
(
x
)
= x
(
T0, x

)

= S
(
T0, 0

)
x +
∫T0
0
S
(
T0, θ

)
f

(
θ, x
(
θ, x
)
,

∫θ
0
g
(
θ, s, x

(
s, x
))
ds

)
dθ +

∑
0≤τk<T0

S
(
T0, τ

+
k

)
ck,

(4.21)

where x(·, x) denote the PC-mild solution of Cauchy problem (4.2) corresponding to the
initial value x(0) = x, then we examine whether P has a fixed point.

We first note that a fixed point of P gives rise to a periodic solution.

Lemma 4.5. System (4.1) has a T0-periodic PC-mild solution if and only if P has a fixed point.

Proof. Suppose x(·) = x(· + T0), then x(0) = x(T0) = P(x(0)). This implies that x(0) is a
fixed point of P . On the other hand, if Px0 = x0, x0 ∈ X, then for the PC-mild solution
x(·, x0) of Cauchy problem (4.2) corresponding to the initial value x(0) = x0, we can define
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y(·) = x(· + T0, x0), then y(0) = x(T0, x0) = Px0 = x0. Now, for t > 0, we can use (2), (3), and
(4) of Lemma 2.3 and assumptions [H1.2], [H1.3], [H2.3], [H2.6], and [H2.7] to arrive at

y(t) = x
(
t + T0, x0

)

= S
(
t + T0, T0

)
S
(
T0, 0

)
x0

+
∫T0
0
S
(
t + T0, T0

)
S
(
T0, θ

)
f

(
θ, x
(
θ, x0

)
,

∫θ
0
g
(
θ, s, x

(
s, x0

))
ds

)
dθ

+
∑

0≤τk<T0
S
(
t + T0, T0

)
S
(
T0, τ

+
k

)
ck

+
∫ t+T0
T0

S
(
t + T0, θ

)
f

(
θ, x
(
θ, x0

)
,

∫θ
0
g
(
θ, s, x

(
s, x0

))
ds

)
dθ

+
∑

T0≤τk+δ<t+T0
S
(
t + T0, τ+k+δ

)
ck+δ

= S(t, 0)
{
S
(
T0, 0

)
x0 +

∫T0
0
S
(
T0, θ

)
f

(
θ, x
(
θ, x0

)
,

∫θ
0
g
(
θ, s, x

(
s, x0

))
ds

)
dθ

+
∑

0≤τk<T0
S
(
T0, τ

+
k

)
ck+δ

}

+
∫ t
0
S
(
t + T0, θ + T0

)
f

(
θ + T0, x

(
θ + T0, x0

)
,

∫θ+T0
0

g
(
θ + T0, s, x

(
s, x0

))
ds

)
dθ

+
∑

T0≤τk+δ<t+T0
S
(
t + T0, τ+k+δ

)
ck+δ

= S(t, 0)x
(
T0
)
+
∫ t
0
S
(
t+ T0, θ+ T0

)
f

(
θ+ T0, x

(
θ+ T0, x0

)
,

∫θ+T0
T0

g
(
θ+ T0, s, x

(
s, x0

))
ds

)
dθ

+
∑

T0≤τk+δ<t+T0
S
(
t + T0, τ+k+δ

)
ck+δ

= S(t, 0)x
(
T0
)
+
∫ t
0
S(t, θ)f

(
θ, x
(
θ + T0, x0

)
,

∫θ
0
g
(
θ + T0, s + T0, x

(
s + T0, x0

))
ds

)
dθ

+
∑

T0≤τk+δ<t+T0
S
(
t + T0, τ+k+δ

)
ck+δ

= S(t, 0)y
(
T0
)
+
∫ t
0
S(t, θ)f

(
θ, y
(
θ, y(0)

)
,

∫θ
0
g
(
θ, s, y

(
s, y(0)

))
ds

)
dθ +

∑
0≤τk<t

S
(
t, τ+k
)
ck

= S(t, 0)y(0) +
∫ t
0
S(t, θ)f

(
θ, y
(
θ, y(0)

)
,

∫ s
0
g
(
θ, s, y

(
s, y(0)

))
ds

)
dθ +

∑
0≤τk<t

S
(
t, τ+k
)
ck.

(4.22)
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This implies that y(·, y(0)) is a PC-mild solution of Cauchy problem (4.2) with initial value
y(0) = x0. Thus the uniqueness implies that x(·, x0) = y(·, y(0)) = x(· + T0, x0), so that x(·, x0)
is a T0-periodic.

Next, we show that P defined by (4.21) is a continuous and compact operator.

Lemma 4.6. Suppose that {T(t), t ≥ 0} is a compact semigroup in X. Then the operator P is a
continuous and compact operator.

Proof. (1) Show that P is a continuous operator on X.
Let x, y ∈ Ξ ⊂ X, where Ξ is a bounded subset of X. Suppose that x(·, x) and x(·, y)

are the PC-mild solutions of Cauchy problem (4.2) corresponding to the initial values x and
y ∈ X, respectively, given by

x
(
t, x
)
= S(t, 0)x +

∫ t
0
S(t, θ)f

(
θ, x
(
θ, x
)
,

∫θ
0
g
(
θ, s, x

(
s, x
))
ds

)
dθ +

∑
0≤τk<t

S
(
T0, τ

+
k

)
ck;

x
(
t, y
)
= S(t, 0)y +

∫ t
0
S(t, θ)f

(
θ, x
(
θ, y
)
,

∫θ
0
g
(
θ, s, x

(
s, y
))
ds

)
dθ +

∑
0≤τk<t

S
(
T0, τ

+
k

)
ck.

(4.23)

Thus, we obtain

∥∥x(t, x)∥∥
≤MT0

∥∥x∥∥ + (1 +MgT0
)
MT0MfT0 +MT0

∑
0≤τk<T0

∥∥ck∥∥ +MT0Mf

∫ t
0

∥∥x(θ, x)∥∥dθ

+MT0MfMgT0

∫θ
0

∥∥x(s, x)∥∥ds

≤ a0 +MT0Mf

∫ t
0

∥∥x(θ, x)∥∥dθ +MT0MfMgT0

∫ t
0

∥∥xs,x∥∥Bds,∥∥x(t, y)∥∥
≤MT0

∥∥y∥∥ + (1 +MgT0
)
MT0MfT0 +MT0

∑
0≤τk<T0

∥∥ck∥∥ +MT0Mf

∫ t
0

∥∥x(θ, y)∥∥dθ

+MT0MfMgT0

∫ t
0

∥∥x(s, y)∥∥ds

≤ b0 +MT0Mf

∫ t
0

∥∥x(θ, y)∥∥dθ +MT0MfMgT0

∫ t
0

∥∥xs,y∥∥Bds,

(4.24)

where ‖xs,x‖B = sup0≤ξ≤s‖x(ξ, x)‖ and ‖xs,y‖B = sup0≤ξ≤s‖x(ξ, y)‖.
By Lemma 3.1, one can verify that there exist constantsM∗

1 andM
∗
2 > 0 such that

∥∥x(t, x)∥∥ ≤M∗
1,

∥∥x(t, y)∥∥ ≤M∗
2. (4.25)
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Let ρ = max{M∗
1,M

∗
2} > 0, then ‖x(·, x)‖, ‖x(·, y)‖ ≤ ρ which imply that they are locally

bounded.
By assumptions [H2.1], [H2.2], [H2.4], [H2.5], and (2) of Lemma 4.3, we obtain

∥∥x(t, x) − x(t, y)∥∥ ≤ ∥∥S(t, 0)∥∥∥∥x − y∥∥

+
∫ t
0

∥∥S(t, θ)∥∥
∥∥∥∥f
(
θ, x
(
θ, x
)
,

∫θ
0
g
(
θ, s, x

(
s, x
))
ds

)

− f
(
θ, x
(
θ, y
)
,

∫θ
0
g
(
θ, s, x

(
s, y
))
ds

)∥∥∥∥dθ

≤MT0

∥∥x − y∥∥ +MT0Lf(ρ)
∫ t
0

∥∥x(θ, x) − x(θ, y)∥∥dθ

+MT0Lf(ρ)Lg(ρ)T0

∫ t
0

∥∥xs,x − xs,y∥∥Bds.

(4.26)

By Lemma 3.1 again, one can verify that there exists constantM∗
3 > 0 such that

∥∥x(t, x) − x(t, y)∥∥ ≤M∗
3MT0

∥∥x − y∥∥ ≡ L∥∥x − y∥∥, ∀t ∈ [0, T0], (4.27)

which implies that

∥∥P(x) − P(y)∥∥ =
∥∥x(T0, x) − x(T0, y)∥∥ ≤ L∥∥x − y∥∥. (4.28)

Hence, P is a continuous operator on X.
(2) Verify that P takes a bounded set into a precompact set in X.
Let Γ is a bounded subset of X. Define K = PΓ = {P(x) ∈ X | x ∈ Γ}.
For 0 < ε ≤ T0, define

Kε = PεΓ = S
(
T0, T0 − ε

){
x
(
T0 − ε, x

) | x ∈ Γ
}
. (4.29)

Next, we show that Kε is precompact in X. In fact, for x ∈ Γ fixed, we have

∥∥x(T0 − ε, x)∥∥

≤ ∥∥S(T0 − ε, 0)x∥∥ +
∫T0−ε
0

∥∥∥∥S(T0 − ε, θ)f
(
θ, x
(
θ, x
)
,

∫θ
0
g
(
θ, s, x

(
s, x
))
ds

)∥∥∥∥dθ

+
∑

0≤τk<T0−ε

∥∥S(T0 − ε, τ+k )ck
∥∥
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≤MT0

∥∥x∥∥ +MT0MfT0
(
1 +MgT0

)
+MT0Mf

∫T0
0

∥∥x(θ, x)∥∥dθ

+MT0

∑
0≤τk<T0

∥∥ck∥∥ +MT0MfMgT0

∫T0
0

∥∥xs,x∥∥Bds

≤MT0

∥∥x∥∥ +MT0MfT0
(
1 +MgT0

)
+
(
1 +MgT0

)
MT0MfT0ρ +MT0

∑
0≤τk<T0

∥∥ck∥∥.
(4.30)

This implies that the set {x(T0 − ε, x) | x ∈ Γ} is totally bounded.
By virtue of {T(t), t ≥ 0} which is a compact semigroup and (5) of Lemma 2.3,

S(T0, T0 − ε) is a compact operator. Thus, Kε is precompact in X.
On the other hand, for arbitrary x ∈ Γ,

Pε
(
x
)
= S
(
T0, 0

)
x +
∫T0−ε
0

S
(
T0, θ

)
f

(
θ, x
(
θ, x
)
,

∫θ
0
g
(
θ, s, x

(
s, x
))
ds

)
dθ

+
∑

0≤τk<T0−ε
S
(
T0, τ

+
k

)
ck.

(4.31)

Thus, having this combined with (4.21), we have

∥∥Pε(x) − P(x)∥∥

≤
∥∥∥∥
∫T0−ε
0

S
(
T0, θ

)
f

(
θ, x
(
θ, x
)
,

∫θ
0
g
(
θ, s, x

(
s, x
))
ds

)
dθ

−
∫T0
0
S
(
T0, θ

)
f

(
θ, x
(
θ, x
)
,

∫θ
0
g
(
θ, s, x

(
s, x
))
ds

)
dθ

∥∥∥∥

+

∥∥∥∥∥
∑

0≤τk<T0−ε
S
(
T0, τ

+
k

)
ck −

∑
0≤τk<T0

S
(
T0, τ

+
k

)
ck

∥∥∥∥∥

≤
∫T0
T0−ε

∥∥S(T0, θ)∥∥
∥∥∥∥f
(
θ, x
(
θ, x
)
,

∫θ
0
g
(
θ, s, x

(
s, x
))
ds

)∥∥∥∥dθ +MT0

∑
T0−ε≤τk<T0

∥∥ck∥∥

≤MT0Mf

(
1 +MgT0)(1 + ρ)ε +MT0

∑
T0−ε≤τk<T0

∥∥ck∥∥.

(4.32)

It is shown that the set K can be approximated to an arbitrary degree of accuracy by a
precompact set Kε. Hence K itself is a precompact set in X. That is, P takes a bounded set
into a precompact set in X. As a result, P is a compact operator.

In order to use Leray-Schauder fixed pointed theorem to examinewhether the operator
P has a fixed point, we have to make assumptions [H2.2] and [H2.5] a little stronger as
follows.
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[H2.2′] There exists constantNf > 0 and 0 < λ < 1 such that

∥∥f(t, x, y)∥∥ ≤Nf

(
1 + ‖x‖λ + ‖y‖λ) ∀x, y ∈ X. (4.33)

[H2.5′] There exists a positive constantNg > 0 and 0 < λ < 1 such that

∥∥g(t, s, x)∥∥ ≤Ng

(
1 + ‖x‖λ) ∀x ∈ X. (4.34)

Now, we can give the main results in this paper.

Theorem 4.7. Assumptions [H1], [H2.1], [H2.2′], [H2.3], [H2.4], [H2.5′], [H2.6], and [H2.7] hold.
Suppose that {T(t), t ≥ 0} is a compact semigroup inX. Then system (4.1) has a T0-periodic PC-mild
solution on [0,+∞).

Proof. By virtue of {T(t), t ≥ 0}which is a compact semigroup and (5) of Lemma 2.3, S(T0, 0)
is a compact operator on infinite-dimensional space X. Thus, S(T0, 0)/=αI, α ∈ R. Then, there
exists β > 0 such that ‖[σS(T0, 0)− I]x‖ ≥ β‖x‖ for σ ∈ [0, 1]. In fact, defineΠσ = I −σS(T0, 0),
σ ∈ [0, 1], and Πσ : [0, 1]→ £b(X) and h(σ) = ‖Πσ‖ : [0, 1]→R

+. It is obvious that h ∈
C([0, 1];R+). Thus, there exist σ∗ ∈ [0, 1] and β > 0 such that

h(σ∗) = min
{
h(σ) | σ ∈ [0, 1]

} ≥ β > 0. (4.35)

If not, there exists σ ∈ [0, 1] such that h(σ) = 0. We can assert that σ /= 0 unless h(σ) = 1.
Thus, for σ ∈ (0, 1],

S
(
T0, 0

)
=

1
σ
I, where

1
σ

≥ 1, (4.36)

which is a contradiction with S(T0, 0)/=αI, α ∈ R.
By Theorem 4.4, for fixed x ∈ X, Cauchy problem (4.2) corresponding to the initial

value x(0) = x has the PC-mild solution x(·, x). By Lemma 4.6, the operator P defined by
(4.21), is compact.

According to Leray-Schauder fixed point theory, it suffices to show that the set {x ∈
X | x = σPx, σ ∈ [0, 1]} is a bounded subset ofX. In fact, let x ∈ {x ∈ X | x = σPx, σ ∈ [0, 1]},
we have

β
∥∥x∥∥ ≤ ∥∥[σS(T0, 0) − I]x∥∥

= σ
∫T0
0

∥∥S(T0, θ)∥∥
∥∥∥∥f
(
θ, x
(
θ, x
)
,

∫θ
0
g
(
θ, s, x

(
s, x
))
ds

)∥∥∥∥dθ
+ σ

∑
0≤τk<T0

∥∥S(T0, τ+k )∥∥∥∥ck∥∥.
(4.37)
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By assumptions [H2.2′] and [H2.5′],

∥∥x∥∥ ≤ σ

β

∫T0
0

∥∥S(T0, θ)∥∥
∥∥∥∥f
(
θ, x
(
θ, x
)
,

∫θ
0
g
(
θ, s, x

(
s, x
))
ds

)∥∥∥∥dθ +
σ

β

∑
0≤τk<T0

∥∥S(T0, τ+k )∥∥∥∥ck∥∥

≤ σ

β
MT0

((
Nf +NgT0

)
T0 +Nf

∫T0
0

∥∥x(θ, x)∥∥λdθ +NfNgT0

∫T0
0

∥∥xs,x∥∥λBdθ +
∑

0≤τk<T0

∥∥ck∥∥
)
.

(4.38)

For t ∈ [0, T0], we obtain

∥∥x(t, x)∥∥
≤MT0

∥∥x∥∥+MT0

((
Nf +NgT0

)
T0+Nf

∫ t
0

∥∥x(θ, x)∥∥λdθ+NfNgT0

∫ t
0

∥∥xs,x∥∥λBdθ+
∑

0≤τk<t

∥∥ck∥∥
)

≤ σ

β
M2

T0

((
Nf +NgT0

)
T0 +Nf

∫T0
0
‖x(θ, x)‖λdθ +NfNgT0

∫T0
0

∥∥xs,x∥∥λBdθ +
∑

0≤τk<T0

∥∥ck∥∥
)

+MT0

((
Nf +NgT0

)
T0 +Nf

∫ t
0

∥∥x(θ, x)∥∥λdθ +NfNgT0

∫ t
0

∥∥xs,x∥∥λBdθ +
∑

0≤τk<t

∥∥ck∥∥
)

≤
(
σ

β
MT0 + 1

)
MT0

((
Nf +NgT0

)
T0 +

∑
0≤τk<T0

∥∥ck∥∥
)

+MT0Nf

∫ t
0

∥∥x(θ, x)∥∥λdθ +
σ

β
M2

T0
Nf

∫T0
0

∥∥x(θ, x)∥∥λdθ +MT0NfNgT0

∫ t
0

∥∥xs,x∥∥λBdθ

+
σ

β
M2

T0
NfNgT0

∫T0
0

∥∥xs,x∥∥λBdθ.
(4.39)

By Lemma 3.2, there existsM∗ > 0 such that

∥∥x(t, x)∥∥ ≤M∗ for t ∈ [0, T0]. (4.40)

This implies that ‖x(0, x)‖ = ‖x‖ ≤M∗ for all x ∈ {x ∈ X | x = σPx, σ ∈ [0, 1]}.
Thus, by Leray-Schauder fixed pointed theory, there exists x0 ∈ X such that Px0 =

x0. By Lemma 4.5, we know that the PC-mild solution x(·, x0) of Cauchy problem (4.2)
corresponding to the initial value x(0) = x0 is just T0-periodic. Therefore x(·, x0) is a T0-
periodic PC-mild solution of system (4.1).
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5. Application

In this section, an example is given to illustrate our theory. Consider the following problem:

∂

∂t
x(t, y) = Δx(t, y) + x2/3(t, y) +

∫ t
0
ψ(s)

(
1 + sin(t − s))

√
3x2/3(s, y) + 2ds,

y ∈ Ω, t, s ∈ (0, 2π] \
{
1
2
π,π,

3
2
π

}
,

Δx
(
τi, y
)
= x
(
τ+i , y

) − x(τ−i , y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.05Ix
(
τi, y
)
, i = 1,

−0.05Ix(τi, y), i = 2,

0.05Ix
(
τi, y
)
, i = 3,

y ∈ Ω, τi =
i

2
π, i = 1, 2, 3,

x(t, y)|y∈∂Ω = 0, t > 0,

x(0, y) = x(2π, y),
(5.1)

where Ω ⊂ R
3 is bounded domain and ∂Ω ∈ C3.

Define X = L2(Ω), D(A) = H2(Ω)
⋂
H1

0(Ω), and Ax = −(∂2x/∂y2
1 + ∂2x/∂y2

2 +
∂2x/∂y2

3) for x ∈ D(A). Then, A generates a compact semigroup {T(t), t ≥ 0}. Define
x(·)(y) = x(·, y), sin(·)(y) = sin(·, y), f(·, x(·), ∫ ·0g(·, s, x)ds)(y) = x2/3(·)(y) + ∫ t0ψ(s)(1 +

sin(· − s))
√
3x2/3(·) + 2ds(y), where ψ(· + 2π) = ψ(·) ∈ L1

loc([0,+∞);X),
∫2π
0 ψ(s)(1 + sin(t −

s))
√
3x2/3(t) + 2ds = 0, and

Bi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.05I, i = 1,

−0.05I, i = 2,

0.05I, i = 3.

(5.2)

Thus problem (5.1) can be rewritten as

ẋ(t) = Ax(t) + f
(
t, x,

∫ t
0
g(t, s, x)ds

)
, t ∈ (0, 2π] \

{
1
2
π,π,

3
2
π

}
,

Δx
(
i

2
π

)
= Bix

(
i

2
π

)
, i = 1, 2, 3,

x(0) = x(2π).

(5.3)



JinRong Wang et al. 21

It satisfies all the assumptions given in Theorem 4.7, our results can be used to problem
(5.1). That is, problem (5.1) has a 2π-periodic PC-mild solution x2π(·, y) ∈ PC2π([0 +
∞);L2(Ω)), where

PC2π
(
[0,+∞);L2(Ω)

) ≡ {x ∈ PC([0,+∞);L2(Ω)
) | x(t) = x(t + 2π), t ≥ 0

}
. (5.4)
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