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1. Introduction

Recently, amount of work about the A-harmonic equation for the differential forms has been
done. In fact, the A-harmonic equation is an important generalization of the p-harmonic
equation in R

n, p > 1, and the p-harmonic equation is a natural extension of the usual Laplace
equation (see [1] for the details). The reverse Hölder inequalities have been widely studied
and frequently used in analysis and related fields, including partial differential equations and
the theory of elasticity (see [2]). In 1999, Nolder gave the reverse Hölder inequality for the
solution to the A-harmonic equation in [3], and different versions of Caccioppoli estimates
have been established in [4–6]. In 2004, D’Onofrio and Iwaniec introduced the p-harmonic
type system in [7], which is an important extension of the conjugateA-harmonic equation. In
2007, Ding proved the following inequality in [8].

Theorem A. Let (u, v) be a pair of solutions to A(x, g + du) = h + d∗v in a domain Ω ⊂ R
n. If

g ∈ Lp(B,ΛL) and h ∈ Lq(B,ΛL), then du ∈ Lp(B,ΛL) if and only if d∗v ∈ Lq(B,ΛL). Moreover,
there exist constants C1, C2 independent of u and v, such that

∥
∥d∗v

∥
∥
q

q,B ≤ C1
(‖h‖qq,B + ‖g‖pp,B + ‖du‖pp,B

)

,

‖du‖pp,B ≤ C2
(‖h‖qq,B + ‖g‖pp,B + ‖d∗v‖qq,B

) ∀B ⊂ σB ⊂ Ω.
(1.1)
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In this paper, we will prove the Poincaré inequality (see Theorem 2.5) and the reverse
Hölder inequality for the solution to the p-harmonic type system (see Theorem 3.5). Now let
us see some notions and definitions about the p-harmonic type system.

Let e1, e2, . . . , en denote the standard orthogonal basis of R
n. For l = 0, 1, . . . , n, we

denote by Λl = Λl(Rn) the linear space of all l-vectors, spanned by the exterior product eI =
ei1 ∧ei2 ∧· · ·∧eil corresponding to all ordered l-tuples I = (i1, i2, . . . , il), 1 ≤ i1 < i2 < · · · < il ≤ n.
The Grassmann algebraΛ = ⊕Λl is a graded algebra with respect to the exterior products. For
α =

∑
αIeI ∈ Λ and β =

∑
βIeI ∈ Λ, then its inner product is obtained by

〈α, β〉 =
∑

αIβI , (1.2)

with the summation over all I = (i1, i2, . . . , il) and all integers l = 0, 1, . . . , n. The Hodge star
operator ∗: Λ → Λ is defined by the rule

∗1 = ei1 ∧ ei2 ∧ · · · ∧ ein ,

α ∧ ∗β = β ∧ ∗α = 〈α, β〉(∗1) ∀α, β ∈ Λ.
(1.3)

Hence, the norm of α ∈ Λ can be given by

|α|2 = 〈α, α〉 = ∗(α ∧ ∗α) ∈ Λ0 = R. (1.4)

Throughout this paper, Ω ⊂ R
n is an open subset, for any constant σ > 1, Q denotes

a cube such that Q ⊂ σQ ⊂ Ω, where σQ denotes the cube whose center is as same as Q
and diam(σQ) = σ diamQ. We say α =

∑
αIeI ∈ Λ is a differential l-form on Ω, if every

coefficient αI of α is Schwartz distribution on Ω. The space spanned by differential l-form
on Ω is denoted by D′(Ω,Λl). We write Lp(Ω,Λl) for the l-form α =

∑
αIdxI on Ω with

αI ∈ Lp(Ω) for all ordered l-tuple I. Thus Lp(Ω,Λl) is a Banach space with the norm

‖α‖p,Ω =
(∫

Ω
|α|pdx

)1/p

=

(∫

Ω

(
∑

I

|αI |2
)p/2

dx

)1/p

. (1.5)

Similarly Wk,p(Ω,Λl) denotes those l-forms on Ω with all coefficients in Wk,p(Ω). We denote
the exterior derivative by

d : D′(Ω,Λl) −→ D′(Ω,Λl+1), for l = 0, 1, 2, . . . , n, (1.6)

and its formal adjoint operator (the Hodge codifferential operator)

d∗ : D′(Ω,Λl) −→ D′(Ω,Λl−1). (1.7)

The operators d and d∗ are given by the formulas

dα =
∑

I

dαI ∧ dxI, d∗ = (−1)nl+1∗d∗. (1.8)
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The following two definitions appear in [7].

Definition 1.1. The Hodge system holds:

A(x, a + du) = b + d∗v, (1.9)

where a ∈ Lp(Ω,Λl) and b ∈ Lq(Ω,Λl), is a p-harmonic type system if A is a mapping from
Ω ×Λl to Λl satisfying

(1) x → A(x, ξ) is measurable in x ∈ Ω for every ξ ∈ Λl;

(2) ξ → A(x, ξ) is continuous in ξ ∈ Λl for almost every x ∈ Ω;

(3) A(x, tξ) = tp−1A(x, ξ) for every t ≥ 0;

(4) K〈A(x, ξ) −A(x, ζ), ξ − ζ〉 ≥ |ξ − ζ|2(|ξ| + |ζ|)p−2;
(5) |A(x, ξ) −A(x, ζ)| ≤ K|ξ − ζ|(|ξ| + |ζ|)p−2

for almost every x ∈ Ω and all ξ, ζ ∈ Λl, where K ≥ 1 is a constant. It should be noted that
A(x, ∗) : Ω ×Λl → Λl is invertible and its inverse denoted by A−1 satisfies similar conditions
as A but with Hölder conjugate exponent q in place of p.

Definition 1.2. If (1.9) is a p-harmonic type system, then we say the equation

d∗A(x, a + du) = d∗b (1.10)

is a p-harmonic type equation.
The following definition appears in [9].

Definition 1.3. A differential form u is a weak solution for (1.10) in Ω if u satisfies

∫

Ω

〈

A(x, a + du), dϕ
〉

+
〈

d∗b, ϕ
〉 ≡ 0 (1.11)

for every ϕ ∈ Wk,p(Ω,Λl−1) with compact support.

We can find that if we let a = 0 and b = 0, then the p-harmonic type system

A(x, a + du) = b + d∗v (1.12)

becomes

A(x, du) = d∗v. (1.13)

It is the conjugate A-harmonic equation, where the mapping A : Ω × Λl → Λl satisfies the
following conditions:

∣
∣A(x, ξ)

∣
∣ ≤ a|ξ|p−1, 〈

A(x, ξ), ξ
〉 ≥ |ξ|p. (1.14)
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If we let A(x, ξ) = |ξ|p−2ξ, then the conjugate A-harmonic equation becomes the form

|du|p−2du = d∗v. (1.15)

It is the conjugate p-harmonic equation.
So we can see that the conjugate p-harmonic equation and the conjugate A-harmonic

equation are the specific p-harmonic type system.

Remark 1.4. It should be noted that the mapping A(x, ∗) in p-harmonic system A(x, a + du) =
b + d∗v, is invertible. If we denote its inverse by A−1(x, ∗), then the mapping A−1(x, ∗) : Λl →
Λl satisfies similar conditions as A but with Hölder conjugate exponent q in place of p.

2. The Poincaré inequality

In this section, we will introduce the Poincaré inequality for the differential forms.
Now first let us see a lemma, which can be found in [9, Section 4] for the details.

Lemma 2.1. Let D be a bounded, convex domain in R
n. To each y ∈ D there corresponds a linear

operator Ky : C∞(D,Λl) → C∞(D,Λl−1) defined by

(

Kyω
)(

x; ξ1, . . . , ξl−1
)

=
∫1

0
tl−1ω

(

tx + y − ty;x − y, ξ1, . . . , ξl−1
)

dt, (2.1)

and the decomposition

ω = d
(

Kyω
)

+Ky(dω) (2.2)

holds at any point y ∈ D.
We construct a homotopy operator T : C∞(D,Λl) → C∞(D,Λl−1) by averaging Ky over all

points y ∈ D:

Tω =
∫

D

ϕ(y)Kyωdy, (2.3)

where ϕ form C∞(D) is normalized so that
∫

ϕ(y)dy = 1. It is obvious that ω = d(Kyω) +Ky(dω)
remains valid for the operator T :

ω = d(Tω) + T(dω). (2.4)

We define the l-forms ωD ∈ D′(D,Λl) by ωD = |D|−1∫
D
ω(y)dy for l = 0 and ωD = d(Tω) for

l = 1, 2, . . . , n, and all ω ∈ W1,p(D,Λl), 1 < p < ∞.
The following definition can be found in [9, page 34].

Definition 2.2. For ω ∈ D′(D,Λl), the vector valued differential form

∇ω =
(
∂ω

∂x1
, . . . ,

∂ω

∂xn

)

(2.5)
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consists of differential forms ∂ω/∂xi ∈ D′(D,Λl), where the partial differentiation is applied
to coefficients of ω.

The proof of [9, Proposition 4.1] implies the following inequality.

Lemma 2.3. For any ω ∈ Lp(D,Λl), it holds that

‖∇Tω‖p,D ≤ C(n, p)‖ω‖p,D (2.6)

for any ball or cube D ∈ R
n.

The following Poincaré inequality can be found in [2].

Lemma 2.4. If u ∈ W
1,p
0 (Ω), then there is a constant C = C(n, p) > 0 such that

(
1
|B|

∫

B

|u|pχdx
)1/pχ

≤ Cr

(
1
|B|

∫

B

|∇u|pdx
)1/p

, (2.7)

whenever B = B(x0, r) is a ball in R
n, where n ≥ 2 and χ = 2 for p ≥ n, χ = np/(n − p) for p < n.

Theorem 2.5. Let u ∈ D′(D,Λl), and du ∈ Lp(D,Λl+1). Then, u − uD is in Lχp(D,Λl) and

(
1
|D|

∫

D

|u − uD|pχdx
)1/pχ

≤ C(n, p, l)diam(D)
(

1
|D|

∫

D

|du|pdx
)1/p

(2.8)

for any ball or cube D ∈ R
n, where χ = 2 for p ≥ n and χ = np/(n − p) for 1 < p < n.

Proof. We know T(du) = u − uD. Now we suppose u − uQ = T(du) =
∑

IuIdxI , where I =
(i1, . . . , il+1) take over all l + 1-tuples. So we have

∇T(du) =
(

∂u

∂x1
, . . . ,

∂u

∂xn

)

=

(
∑

I

∂uI

∂x1
dxI, . . . ,

∑

I

∂uI

∂xn
dxI

)

. (2.9)

So we have

(
1
|D|

∫

D

∣
∣u − uD

∣
∣
pχ
dx

)1/pχ

=

(

1
|D|

∫

D

∣
∣
∣
∣
∣

∑

I

uIdxI

∣
∣
∣
∣
∣

pχ

dx

)1/pχ

=

(

1
|D|

∫

D

(
∑

I

∣
∣uI

∣
∣
2

)pχ/2

dx

)1/pχ

.

(2.10)
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By the inequality

(
n∑

i=1

(

ai

)2

)1/2

≤
n∑

i=1

ai ≤ n1/2

(
n∑

i=1

(

ai

)2

)1/2

(2.11)

for any ai ≥ 0, and the Minkowski inequality, we have

(

1
|D|

∫

D

(
∑

I

∣
∣uI

∣
∣
2

)pχ/2

dx

)1/pχ

≤
∑

I

(
1
|D|

∫

D

∣
∣uI

∣
∣
pχ
dx

)1/pχ

. (2.12)

According to the Poincaré inequality, we have

∑

I

(
1
|D|

∫

D

|uI |pχdx
)1/pχ

≤ C1(n, p)diam(D)
∑

I

(
1
|D|

∫

D

|∇uI |pdx
)1/p

. (2.13)

Combining (2.10), (2.12), and (2.13), we can obtain

(
1
|D|

∫

D

∣
∣u − uD

∣
∣
pχ
dx

)1/pχ

≤ C1(n, p)diam(D)
∑

I

(
1
|D|

∫

D

|∇uI |pdx
)1/p

. (2.14)

By (2.9)we have

‖∇Tdu‖p,D =
∥
∥
∥
∥

(
∂u

∂x1
, . . . ,

∂u

∂xn

)∥
∥
∥
∥
p,D

=
(∫

D

∣
∣
∣
∣

(
∂u

∂x1
, . . . ,

∂u

∂xn

)∣
∣
∣
∣

p

dx

)1/p

=

(∫

D

(
n∑

i=1

∣
∣
∣
∣

∂u

∂xi

∣
∣
∣
∣

2
)p/2

dx

)1/p

=

(∫

D

(
n∑

i=1

∑

I

∣
∣
∣
∣

∂uI

∂xi

∣
∣
∣
∣

2
)p/2

dx

)1/p

=

(∫

D

(
∑

I

n∑

i=1

∣
∣
∣
∣

∂uI

∂xi

∣
∣
∣
∣

2
)p/2

dx

)1/p

.

(2.15)
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Combining (2.11) and (2.15), then we have

‖∇Tdu‖p,D =

(∫

D

(
∑

I

n∑

i=1

∣
∣
∣
∣

∂uI

∂xi

∣
∣
∣
∣

2
)p/2

dx

)1/p

≥ (

C
(l+1)
n

)−1/2
(∫

D

(
∑

I

(
n∑

i=1

∣
∣
∣
∣

∂uI

∂xi

∣
∣
∣
∣

2
)1/2)p

dx

)

v

1/p

≥ (

C
(l+1)
n

)−1/2
(∫

D

∑

I

(
n∑

i=1

∣
∣
∣
∣

∂uI

∂xi

∣
∣
∣
∣

2
)p/2

dx

)1/p

≥ (

C
(l+1)
n

)−1/2(
C

(l+1)
n

)−(p−1)/p∑

I

(∫

D

(
n∑

i=1

∣
∣
∣
∣

∂uI

∂xi

∣
∣
∣
∣

2
)p/2

dx

)1/p

≥ (

C2(n, p, l)
)−1∑

I

(∫

D

∣
∣∇uI

∣
∣
p
dx

)1/p

,

(2.16)

where C2(n, p, l) = (C(l+1)
n )1/2+(p−1)/p. Now combining (2.14), (2.16), and (2.6), we can get

(
1
|D∣
∣

∫

D

∣
∣u − uD|pχdx

)1/pχ

≤ C1(n, p)diam(D)
∑

I

(
1
|D|

∫

D

∣
∣∇uI

∣
∣
p
dx

)1/p

≤ C1(n, p, l)C2(n, p, l)
(

1
|D|

)1/p

‖∇Tdu‖p,D

≤ C3(n, p, l)diam(D)
(

1
|D|

∫

D

|du|pdx
)1/p

.

(2.17)

3. The reverse Hölder inequality

In this section, we will prove the reverse Hölder inequality for the solution of the p-harmonic
type system. Before we prove the reverse Hölder inequality, let us first see some lemmas.

Lemma 3.1. If f, g ≥ 0 and for any nonnegative η ∈ C∞
0 (Ω), it holds

∫

Ω
ηf dx ≤

∫

Ω
g dx, (3.1)

then for any h ≥ 0:

∫

Ω
ηfhdx ≤

∫

Ω
ghdx. (3.2)
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Proof. Let μ be a measure in X, f be a nonnegative μ-measurable function in a measure space
X, using the standard representation theorem, we have

∫

X

fq dμ = q

∫∞

0
tq−1μ(x : f(x) > t)dt (3.3)

for any 0 < t < q.Now, we let μ(E) =
∫

Eηf dx and ν(E) =
∫

Eg dx then, we can obtain

∫

Ω
ηfhdx =

∫∞

0

∫

h>t

ηf dx dt ≤
∫∞

0

∫

h>t

g dx dt =
∫

Ω
ghdx. (3.4)

So Lemma 3.1 is proved.

Lemma 3.2. If (u, v) is a pair of solution to the p-harmonic type system (1.9), then it holds

∫

Ω
|η da|pdx ≤ C

∫

Ω
|(a + du)dη|pdx (3.5)

for any nonnegative η ∈ C∞
0 (Ω) and where C = (Cl+1

n )p.

Proof. Since (u, v) is a pair of solutions to A(x, a + du) = b + d∗v, it is also the solution to
A−1(x, b + d∗v) = a + du, where A−1(x, ∗) is the inverse A(x, ∗). Now, we suppose that da =
∑

IωI dxI and let ϕ1 = −∑Iη sign(ωI)dxI . By using ϕ = ϕ1 and dϕ1 =
∑

I sign(ωI)dη ∧ dxI in
(1.11), we can obtain

∫

Ω

〈

A−1(x, b + d∗v
)

, dϕ1
〉

+
〈

da, ϕ1
〉

dx ≡ 0. (3.6)

That is,

∫

Ω

〈

da,
∑

I

η sign
(

ωI

)

dxI

〉

dx =
∫

Ω

〈

A−1(x, b + d∗v
)

,−
∑

I

sign
(

ωI

)

dη ∧ dxI

〉

dx. (3.7)

In other words,

∫

Ω

∑

I

η
∣
∣ωI

∣
∣dx =

∫

Ω

〈

A−1(x, b + d∗v
)

,−
∑

I

sign
(

ωI

)

dη ∧ dxI

〉

dx. (3.8)

By the elementary inequality

(
n∑

i=1

ai
2

)1/2

≤
n∑

i=1

∣
∣ai

∣
∣, (3.9)
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we have

∫

Ω
η|da|dx =

∫

Ω
η

(
∑

I

ωI
2

)1/2

dx≤
∫

Ω

∑

I

η|ωI |dx

=
∫

Ω

〈

A−1(x, b + d∗v
)

,−
∑

I

sign
(

ωI

)

dη ∧ dxI

〉

dx.

(3.10)

Using the inequality

|〈a, b〉| ≤ |a||b|, (3.11)

(3.10) becomes

∫

Ω
η|da|dx ≤

∫

Ω

∣
∣A−1(x, b + d∗v

)∣
∣

∣
∣
∣
∣
∣

∑

I

sign
(

ωI

)

dη ∧ dxI

∣
∣
∣
∣
∣

≤
∫

Ω

∣
∣A−1(x, b + d∗v

)∣
∣
∑

I

∣
∣sign

(

ωI

)∣
∣|dη|dx

= Cl+1
n

∫

Ω

∣
∣A−1(x, b + d∗v

)∣
∣|dη|dx

= Cl+1
n

∫

Ω
|a + du||dη|dx,

(3.12)

where I takes over all (l + 1)-tuples for dη ∈ Λl+1, thus it has Cl+1
n numbers at most. Now we

let f = |da| and g = Cl+1
n |a + du||dη|. In the subset {x : fη = g}, we have

∫

{x:fη=g}
|ηda|pdx ≤

∫

{x:fη=g}
|(a + du)dη|pdx. (3.13)

In the subset {x : fη /= g}, let h = (|fη|p − |g|p)/(fη − g), then we easily obtain h > 0. So by
Lemma 3.1, we have

∫

{x:fη /= g}
hfη dx ≤

∫

{x:fη /= g}
hg dx. (3.14)

That is to say

∫

{x:fη /= g}
h(fη − g)dx ≤ 0, (3.15)
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that is,

∫

{x:fη /= g}
|fη|pdx ≤

∫

fη /= g

|g|pdx. (3.16)

Combining (3.13) and (3.16), we have

∫

Ω
|fη|pdx ≤

∫

Ω
|g|pdx, (3.17)

that is,

∫

Ω
|η da|pdx ≤

∫

Ω

∣
∣Cl+1

n (a + du)dη
∣
∣
p
dx. (3.18)

So Lemma 3.2 is proved.
The following lemma appears in [2].

Lemma 3.3. Suppose that 0 < q < p < s ≤ ∞, ξ ∈ R, and that B = B(x0, r) is a ball. If a nonnegative
function v ∈ Lp(B, dμ) satisfies

(

1
μ
(

λB′)
∫

λB′
vs dμ

)1/s

≤ C(1 − λ)ξ
(

1
μ
(

B′)
∫

B′
vp dμ

)1/p

(3.19)

for each ball B′ = B(x0, r
′) with r ′ ≤ r and for all 0 < λ < 1, then

(
1

μ(λB)

∫

λB

vs dμ

)1/s

≤ C(1 − λ)ξ/θ
(

1
μ(B)

∫

B

vq dμ

)1/q

∀0 < λ < 1. (3.20)

Here C > 0 is a constant depending on p, q, s and θ ∈ (0, 1) is such that 1/p = θ/q + (1 − θ)/s.

The following lemma appears in [10].

Lemma 3.4. Let (u, v) be a pair of solutions of the p-harmonic type system on domain Ω, then we
have a constant C only depending on K, n, p, and l, such that

‖η du‖p,Ω ≤ C
(‖(u − c)dη‖p,Ω + ‖ηa‖p,Ω

)

, (3.21)
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where c is any closed form (i.e., dc = 0) and for any η ∈ C∞
0 (Ω). Also we have a constant C′ only

depending on K, n, q, such that

∥
∥η d∗v

∥
∥
q,Ω ≤ C′(∥∥(v − c′

)

dη
∥
∥
q,Ω + ‖ηb‖q,Ω

)

, (3.22)

where c′ is any coclosed form (i.e., d∗c′ = 0) and q is the conjugate exponent of p.

Theorem 3.5. If (u, v) is a pair of solutions to the p-harmonic type system, then there exists a constant
C > 0 dependent on K, p, n, and l, such that

(
1
|Q|

∫

Q

(∣
∣u − uQ

∣
∣ + ‖a‖∞,Q

)s
dx

)1/s

≤ C
(

1 − σ−1)−tχ/p(χ−1)(diamQ + 1)χ/(χ−1)

×
(

1
|σQ|

∫

σQ

(∣
∣u − uσQ

∣
∣ + ‖a‖∞,σQ

)t
dx

)1/t
(3.23)

for any 0 < s, t < ∞, σ > 1 and all cubes with Q ⊂ σQ ⊂ Ω, where χ > 1 is the Poincaré constant.

Proof. Suppose that the center of Q is x0 and diamQ = r, 0 < λ = σ−1 < 1. Let

rm = λ + (1 − λ)2−m, m = 0, 1, 2, . . . . (3.24)

Then rm is decreasing and λ < rm < 1. So we have uQ|rmQ = urmQ, for any m ∈ 0, 1, 2, . . . .
Let ηm ∈ C∞

0 (rmQ) be a nonnegative function such that ηm = 1 in rm+1Q, 0 ≤ ηm ≤ 1 in
rmQ − rm+1Q. |dηm| ≤ (1 − λ)−12mr−1. Given any t ≥ 0 and let ωm = (|u − uQ| + ‖a‖∞,Q)

1+t/pηm,
then we have

dum =
(

1 +
t

p

)
(∣
∣u − uQ

∣
∣ + ‖a‖∞,Q

)t/p
ηmd

∣
∣u − uQ +

∣
∣
(∣
∣u − uQ

∣
∣ + ‖a‖∞,Q

)1+t/p
dηm. (3.25)

By the Minkowski inequality, we can obtain

(∫

rmQ

∣
∣dum

∣
∣
p
dx

)1/p

≤
(∫

rmQ

(∣
∣u − uQ

∣
∣ + ‖a‖∞,Q

)p+t∣
∣dηm

∣
∣
p
dx

)1/p

+
(p + t)

p

(∫

rmQ

∣
∣d
∣
∣u − uQ

∣
∣
∣
∣
p(∣
∣u − uQ

∣
∣ + ‖a‖∞,Q

)t∣
∣ηm

∣
∣
p
dx

)1/p

.

(3.26)

We assume that u − uQ =
∑

IaIdxI , then we have |u − uQ| = (
∑

Ia
2
I)

1/2. If u − uQ is zero, then
we have |d|u − uQ|| = 0 = |∇T(du)|. If u − uQ is not equal zero, and the proof of (2.15) implies
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that |∇Tdu| = (
∑

I

∑n
i=1|∂aI/∂xi|2)1/2

∣
∣d
∣
∣u − uQ

∣
∣
∣
∣ =

∣
∣∇∣

∣u − uQ

∣
∣
∣
∣ =

∣
∣
∣
∣

(
∂
∣
∣u − uQ

∣
∣

∂x1
, . . . ,

∂
∣
∣u − uQ

∣
∣

∂xn

)∣
∣
∣
∣

=

(
n∑

i=1

∣
∣
∣
∣

∂
∣
∣u − uQ

∣
∣

∂xi

∣
∣
∣
∣

2
)1/2

=

(
n∑

i=1

∣
∣
∣
∣

∂
∣
∣u − uQ

∣
∣

∂xi

∣
∣
∣
∣

2
)1/2

=

(
n∑

i=1

∣
∣
∣
∣
∣

∂(
∑

Ia
2
I)

1/2

∂xi

∣
∣
∣
∣
∣

2)1/2

=

(
n∑

i=1

1
∑

Ia
2
I

∣
∣
∣
∣
∣

∑

I

aI
∂aI

∂xi

∣
∣
∣
∣
∣

2)1/2

≤
(

n∑

i=1

1
∑

Ia
2
I

∑

I

a2
I

∑

I

(
∂aI

∂xi

)2
)1/2

=

(
n∑

i=1

∑

I

(
∂aI

∂xi

)2
)1/2

=

(
n∑

i=1

∑

I

∣
∣
∣
∣

∂aI

∂xi

∣
∣
∣
∣

2
)1/2

=
∣
∣∇T(du)

∣
∣ =

∣
∣∇(u − uQ)

∣
∣.

(3.27)

So we have

∣
∣d
∣
∣u − uQ

∣
∣
∣
∣ ≤ ∣

∣∇T(du)
∣
∣. (3.28)

For any η ∈ C∞
0 (Ω), according to (2.6), we have

‖η∇T dω‖p,D ≤ C(n, p)max
x∈D

(η)‖dω‖p,D. (3.29)

By the similar method as Lemma 3.1, we can prove the following inequality:

(∫

rmQ

∣
∣d
∣
∣u − uQ

∣
∣
∣
∣
p(∣
∣u − uQ

∣
∣ + ‖a‖∞,Q

)t∣
∣ηm

∣
∣
p
dx

)1/p

≤
(∫

rmQ

∣
∣ηm

∣
∣
p∣
∣∇T(du)

∣
∣
p(∣
∣u − uQ

∣
∣ + ‖a‖∞,Q

)t
dx

)1/p

≤ C(n, p)max
x∈D

(

η
p
m

)
(∫

rmQ

∣
∣ηm

∣
∣
p|du|p(∣∣u − uQ

∣
∣ + ‖a‖∞,Q

)t
dx

)1/p

(3.30)
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for any η ∈ C∞
0 (Ω). By Lemma 3.1 and (3.21), we can obtain

(∫

rmQ

∣
∣ηm

∣
∣
p|du|p(∣∣u − uQ

∣
∣ + ‖a‖∞,Q

)t
dx

)1/p

≤ 2C
(∫

rmQ

∣
∣ηm

∣
∣
p|a|p(∣∣u − uQ

∣
∣ + ‖a‖∞,Q

)t
dx

)1/p

+ 2C
(∫

rmQ

∣
∣dηm

∣
∣
p(∣
∣u − uQ

∣
∣ + ‖a‖∞,Q

)p+t
dx

)1/p

≤ 2C
(∫

rmQ

∣
∣ηm

∣
∣
p‖a‖p∞,Q

(∣
∣u − uQ

∣
∣ + ‖a‖∞,Q

)t
dx

)1/p

+ 2C
(∫

rmQ

∣
∣dηm

∣
∣
p(∣
∣u − uQ

∣
∣ + ‖a‖∞,Q

)p+t
dx

)1/p

≤ 2C
(∫

rmQ

∣
∣ηm

∣
∣
p(∣
∣u − uQ

∣
∣ + ‖a‖∞,Q

)p+t
dx

)1/p

+ 2C
(∫

rmQ

∣
∣dηm

∣
∣
p(∣
∣u − uQ

∣
∣ + ‖a‖∞,Q

)p+t
dx

)1/p

.

(3.31)

Combining (3.26), (3.30), and (3.31), by the values of ηm, we have

(∫

rmQ

∣
∣dum

∣
∣
p
dx

)1/p

≤ C1(p + t)
(

1 + (1 − λ)−12mr−1
)
(∫

rmQ

(∣
∣u − uQ

∣
∣ + ‖a‖∞,Q

)p+t
dx

)1/p

.

(3.32)

For ηm = 1 in rm+1Q and 0 ≤ ηm ≤ 1 in rmQ − rm+1Q, and as we have |rm|/rm+1 = |λ + (1 −
λ)2−m|/(λ + (1 − λ)2−m−1) ≤ 2, so we have |rmQ|/|rm+1Q| ≤ 2n. By the Poincaré inequality, we
know

(
1

|rm+1Q|
∫

rm+1Q

(∣
∣u − uQ

∣
∣ + ‖a‖∞,Q

)χ(p+t)
dx

)1/pχ

≤ 1
∣
∣rm+1Q

∣
∣

∫

rmQ

(

η
pχ
m

∣
∣u − uQ

∣
∣ + ‖a‖∞,Q

)χ(p+t)
dx

)1/pχ

≤
(

1
∣
∣rm+1Q

∣
∣

∫

rmQ

∣
∣um

∣
∣
pχ
dx

)1/pχ

≤ 2n
(

1
∣
∣rmQ

∣
∣

∫

rmQ

∣
∣um

∣
∣
pχ
dx

)1/pχ

≤ C2rmr

(
1

∣
∣rmQ

∣
∣

∫

rmQ

∣
∣dum

∣
∣
p
dx

)1/p

≤ C3rmr(p + t)
(

1 + (1 − λ)−12mr−1
)
(∫

rmQ

(∣
∣u − uQ

∣
∣ + ‖a‖∞,Q

)p+t
dx

)1/p

≤ C3(p + t)(1 − λ)−12m(1 + r)
(∫

rmQ

(∣
∣u − uQ

∣
∣ + ‖a‖∞,Q

)p+t
dx

)1/p

.

(3.33)
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Now we set κ = p + t, then by computation, we obtain

(
1

∣
∣rm+1Q

∣
∣

∫

rm+1Q

(∣
∣u − uQ

∣
∣ + ‖a‖∞,Q

)κχ
dx

)1/κχ

≤ (

C3
)p/κ

κp/κ(1 − λ)−p/κ2pm/κ(r + 1)p/κ

×
(

1
∣
∣rmQ

∣
∣

∫

rmQ

(∣
∣u − uQ

∣
∣ + ‖a‖∞,Q

)κ
dx

)1/κ

.

(3.34)

Since this inequality holds for all κ > p, it can be applied with κ = κm = pχm. And we
can easily prove ((1/|Q|)∫Q|f |pdx)

1/p is increasing with p and its limit is ess supQ|f |. So by
iterating we arrive at the desired inequality for q = p:

ess sup
λQ

(∣
∣u − uQ

∣
∣ + ‖a‖∞,Q

)

≤ lim
m→∞

(
1

∣
∣rmQ

∣
∣

∫

rmQ

(∣
∣u − uQ

∣
∣ + ‖a‖∞,Q

)κmχdx

)1/κmχ

≤ C4
(

(1 − λ)−1(1 + r)
)Σ∞

i=0χ
−m ∞∏

m=0

2mχ−m
∞∏

m=0

(

pχm)χ
−m

×
(

1
|Q|

∫

Q

(∣
∣u − uQ

∣
∣ + ‖a‖∞,Q

)p
dx

)1/p

≤ C5(1 − λ)−χ/(χ−1)(r + 1)χ/(χ−1)
(

1
|Q|

∫

Q

(∣
∣u − uQ

∣
∣ + ‖a‖∞,Q

)p
dx

)1/p

.

(3.35)

We can observe that the constants C5 and χ are independent of x0 and r in (3.35), thus
(3.35) holds not only in the cube Q = Q(x0, r) but also in each ball inside Q. By Lemma (3.5)
we can obtain

(
1

|λQ|
∫

λQ

(∣
∣u − uQ

∣
∣ + ‖a‖∞,Q

)s
dx

)1/s

≤ C5(1 − λ)−θχ/(χ−1)(r + 1)χ/(χ−1)

×
(

1
|Q|

∫

Q

(|u − uQ| + ‖a‖∞,Q)
tdx

)1/t
(3.36)

for any 0 < t < p < s ≤ ∞, where θ = t(s − p)/p(s − t). So we have θ ≤ t/p for any
0 < t < p < s ≤ ∞. Since ((1/|Q|)∫Q|f |pdx)

1/p is increasing with p,

(
1

|λQ|
∫

λQ

(∣
∣u − uQ

∣
∣ + ‖a‖∞,Q

)s
dx

)1/s

≤ C5(1 − λ)−tχ/p(χ−1)(r + 1)χ/(χ−1)

×
(

1
|Q|

∫

Q

(|u − uQ| + ‖a‖∞,σQ)
tdx

)1/t
(3.37)
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for any 0 < s < ∞ and 1 < p < t < ∞. Combining (3.36) and (3.37), we have

(
1
|Q|

∫

Q

(∣
∣u − uQ

∣
∣ + ‖a‖∞,Q

)s
dx

)1/s

≤ C6(1 − λ)−tχ/p(χ−1)(r + 1)χ/(χ−1)

×
(

1
|σQ|

∫

σQ

(|u − uσQ| + ‖a‖∞,σQ)
tdx

)1/t
(3.38)

for any 0 < s, t < ∞ and σ > 1 such that σQ ⊂ Ω. Theorem 3.5 is proved.
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