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Correspondence should be addressed to András Rontó, ronto@math.cas.cz
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Copyright q 2008 V. Pylypenko and A. Rontó. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Problem setting and introduction

In this paper, we are concernedwith the problem on the existence and localisation of solutions
of singular linear functional differential equations. The class of equations under examination
comprises, in particular, the differential equation with argument deviations

u′(t) =
n∑

k=0

pk(t)u
(
ωk(t)

)
+ f(t), t ∈ (a, b], (1.1)

considered together with the additional condition

sup
t∈(a,b]

h(t)
∣∣u(t)

∣∣ < +∞, (1.2)

where h : (a, b]→R is a certain given continuous nondecreasing function such that h(t) > 0
for t ∈ (a, b] and

lim
t→a+

h(t) = 0. (1.3)
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The argument deviations in (1.1) are given by arbitrary Lebesgue measurable functions ωk,
k = 0, 1, . . . , n, transforming the interval (a, b] to itself (this setting does not lead one to any
loss of generality, see, e.g., [1]).

We are interested in conditions guaranteeing the existence of solutions with property
(1.2) in the case where the coefficients of (1.1) are nonpositive.

The class of solutions of (1.1) determined by condition (1.2) includes, in particular,
those possessing the property

lim
t→a+

h(t)u(t) = c, (1.4)

where c ∈ R. Problem (1.1), (1.4) with h satisfying (1.3) is referred to as the singular Cauchy
problem [2]. It is reduced, in a natural way, to the classical regular Cauchy problem if h is
equal identically to a nonzero constant. Regular and singular Cauchy problems for various
classes of functional differential equations are treated, in particular, in [2–11]; a problem on
regular solutions possessing properties of type (1.4) is studied in [12].

By a solution of problem (1.1), (1.2) we mean a locally absolutely continuous function
u : (a, b]→R such that hu′ ∈ L1((a, b],R) which satisfies (1.1) almost everywhere on the
interval (a, b] and possesses property (1.2). One says that a function u : (a, b]→R is locally
absolutely continuous if its restriction u|[a+ε,b] to the interval [a + ε, b] is absolutely continuous
for any ε ∈ (0, b − a).

A solution of (1.1), (1.2) may have a nonintegrable singularity at the point a. For
example, the function u(t) = λt−4, t ∈ (0, 1] for any real λ and ε ∈ (0,+∞) is a solution of
the homogeneous problem

u′(t) = − 4
t3
u
(
t1/2

)
, t ∈ (0, 1],

sup
ξ∈(0,1]

ξ4+ε
∣∣u(ξ)

∣∣ < +∞
(1.5)

in the sense of the above definition. It should be noted that the property of the uniqueness of
a solution is not typical for such problems; in other words, the resonance usually takes place.

2. Notation

The following notation is used throughout the paper.

(1) R := (−∞,∞).

(2) If −∞ < a < b < ∞ and A ⊆ (a, b] is a measurable set, then L1(A,R) is the Banach
space of all the Lebesgue integrable functions u : A→R with the standard norm

L1(A,R) � u �−→
∫

A

∣∣u(t)
∣∣dt. (2.1)

(3) B((a, b],R) is the Banach space of all the bounded functions u : (a, b]→R with the
standard norm

B
(
(a, b],R

) � u �−→ sup
t∈(a,b]

∣∣u(t)
∣∣. (2.2)
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(4) L1; loc((a, b],R) is the set of functions u : (a, b]→R such that u|[a+ε,b] ∈ L1([a +
ε, b],R) for any ε ∈ (0, b − a).

(5) ACloc((a, b],R) is the set of all the locally absolutely continuous functions u :
(a, b]→R.

(6) ACloc;h((a, b],R) is the set of all the locally absolutely continuous functions u :
(a, b]→R such that hu′ ∈ L1((a, b],R) and supt∈(a,b]h(t)|u(t)| < +∞.

3. Existence of solutions with restricted growth

Without significant loss of generality we can assume that the function h : (a, b]→R involved
in (1.2) has the following properties.

The function h : (a, b] −→ (0,+∞) is absolutely continuous and nondecreasing,

and the relation lim
t→a

h(t) = 0 holds. (3.1)

The following statement on problem (1.1), (1.2) is true.

Theorem 3.1. Let h in condition (1.2) possess properties (3.1), the functions ωk, k = 0, 1, . . . , n, are
Lebesgue measurable, and let the functions pk ∈ L1; loc((a, b],R), k = 0, 1, . . . , n, be such that

pk(t) ≤ 0, t ∈ (a, b], k = 0, 1, . . . , n, (3.2)

max
k=0,1,...,n

∫b

a

h(s)
h(ωk(s))

∣∣pk(s)
∣∣ds < +∞. (3.3)

Moreover, let there exist a nonnegative function ϕ ∈ ACloc;h((a, b],R) such that

ϕ′(t) ≤
n∑

k=0

pk(t)ϕ
(
ωk(t)

)
, t ∈ (a, b]. (3.4)

Then for an arbitrary u0 ∈ ACloc;h((a, b],R) and any function f : (a, b]→R from
L1; loc((a, b],R) possessing the property

hf ∈ L1
(
(a, b],R

)
(3.5)

and satisfying the estimate

ϕ′(t) −
n∑

k=0

pk(t)ϕ
(
ωk(t)

) ≤ f(t) − u′
0(t) +

n∑

k=0

pk(t)u0
(
ωk(t)

) ≤ 0, t ∈ (a, b], (3.6)

problem (1.1), (1.2) has a solution u : (a, b]→R such that

0 ≤ u(t) − u0(t) ≤ ϕ(t), t ∈ (a, b]. (3.7)



4 Journal of Inequalities and Applications

Remark 3.2. The set of functions f satisfying inequalities (3.6) is nonempty because ϕ is
assumed to possess property (3.4). Of course, it makes sense to consider only those ϕ which
do not satisfy the corresponding homogeneous equation.

The next corollary deals with the case where the solution in question is bounded from
below.

Corollary 3.3. Assume that h in condition (1.2) possesses properties (3.1) and the functions pk ∈
L1; loc((a, b],R), k = 0, 1, . . . , n, satisfy (3.2) and (3.3). Moreover, let the functional differential
inequality (3.4) have a nonnegative solution ϕ ∈ ACloc;h((a, b],R).

Then for an arbitrary real λ and any function f : (a, b]→R from L1; loc((a, b],R) possessing
property (3.5) and satisfying the estimate

ϕ′(t) −
n∑

k=0

pk(t)ϕ
(
ωk(t)

) ≤ f(t) + λ
n∑

k=0

pk(t) ≤ 0, t ∈ (a, b], (3.8)

problem (1.1), (1.2) has a solution u : (a, b]→R such that

0 ≤ u(t) − λ ≤ ϕ(t), t ∈ (a, b]. (3.9)

For concrete classes of weight functions h, Theorem 3.1 allows one to obtain efficient
results concerning the existence, localisation, and approximate construction of solutions of
(1.1) possessing property (1.2). Let us consider the problem on the existence of solutions of
(1.1) possessing the property

sup
t∈(a,b]

(t − a)γ
∣∣u(t)

∣∣ < +∞, (3.10)

where γ is a given positive constant.

Corollary 3.4. Let the functions pk ∈ L1; loc((a, b],R), k = 0, 1, . . . , n, be nonpositive almost
everywhere on (a, b]. Moreover, let

max
k=0,1,...,n

∫b

a

(
s − a

ωk(s) − a

)γ ∣∣pk(s)
∣∣ds < +∞. (3.11)

Then for arbitrary function u0 ∈ ACloc;h((a, b],R), number δ ∈ (0, γ), and function f :
(a, b]→R from L1; loc((a, b],R) possessing the properties (3.5) and

(−γ+δ)(t−a)−γ+δ−1−
n∑

k=0

pk(t)
(
ωk(t)−a

)−γ+δ≤f(t)−u′
0(t)+

n∑

k=0

pk(t)u0
(
ωk(t)

)≤0, t∈ (a, b],

(3.12)

problem (1.1), (1.2) has a solution u : (a, b]→R such that

0 ≤ u(t) − u0(t) ≤ (t − a)−γ+δ, t ∈ (a, b]. (3.13)
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Remark 3.5. Under condition (3.11), the coefficient pk, k = 0, 1, . . . , n, may have a nonin-
tegrable singularity at the point a if the corresponding argument deviation ωk has the
property

ess inf
t∈(a,b]

t − a

ωk(t) − a
= 0 (3.14)

and, in particular, if ess inft∈(a,b]ωk(t) > a.

In particular, in the case of the problem on finding solutions of the equation

u′(t) =
n∑

k=0

pk(t)u
(
tβk

)
+ f(t), t ∈ (0, 1], (3.15)

satisfying the additional condition

sup
t∈(0,1]

tγ
∣∣u(t)

∣∣ < +∞, (3.16)

where γ > 0, βk ≥ 0, k = 0, 1, . . . , n, we have the following.

Corollary 3.6. Let the functions pk ∈ L1; loc((0, 1],R), k = 0, 1, . . . , n, be nonpositive almost
everywhere on (0, 1] and let the relation

n∑

k=0

∫1

0
t(1−βk)γ

∣∣pk(t)
∣∣dt < +∞ (3.17)

be satisfied. Moreover, assume that there exists some δ ∈ (0, γ) such that

ess sup
t∈(0,1]

n∑

k=0

∣∣pk(t)
∣∣t(γ−δ)(1−βk)+1 ≤ γ − δ. (3.18)

Then for an arbitrary u0 ∈ ACloc;h((0, 1],R) and any function f : (0, 1]→R from
L1;loc((0, 1],R) possessing the properties

hf ∈ L1
(
(0, 1],R

)
,

(−γ + δ)t−γ+δ−1 −
n∑

k=0

pk(t)tβk(−γ+δ) ≤ f(t) − u′
0(t) +

n∑

k=0

pk(t)u0
(
tβk

) ≤ 0, t ∈ (0, 1],
(3.19)

problem (3.15), (3.16) has a solution u : (0, 1]→R such that

0 ≤ u(t) − u0(t) ≤ t−γ+δ, t ∈ (0, 1]. (3.20)
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Remark 3.7. Under the conditions of Corollary 3.6, the coefficient pk, k = 0, 1, . . . , n, of (3.15)
may be nonintegrable if the corresponding exponent βk satisfies the inequalities 0 < βk < 1,
that is, if there is an advance of argument in the kth term.

The statements formulated above are consequences of the general theorem which will
be established in Section 4.

4. A general theorem

Let us consider the functional differential equation

u′(t) = (lu)(t) + f(t), t ∈ [a, b], (4.1)

where l : ACloc((a, b],Rn)→L1; loc((a, b],Rn) is a linear operator and f ∈ L1; loc((a, b],Rn) is a
given locally integrable function. Assuming implicitly conditions (3.1) on the function h, we
pose the problem on finding solutions of (4.1) possessing property (1.2).

Definition 4.1. An operator l : ACloc((a, b],Rn)→L1; loc((a, b],Rn) is said to be pointwise
negative if (lu)(t) ≤ 0 for a.e. t ∈ (a, b]whenever inft∈(a,b]u(t) ≥ 0 and hu′ ∈ L1((a, b],Rn).

The following theorem holds.

Theorem 4.2. Let the operator l : ACloc((a, b],Rn)→L1; loc((a, b],Rn) in (4.1) be pointwise
negative such that

hl

(
1
h

)
∈ L1

(
(a, b],R

)
. (4.2)

Furthermore, let there exist some nonnegative absolutely continuous function g : (a, b]→R such that

h

(
g

h

)′
∈ L1

(
(a, b],R

)
, (4.3)

and almost everywhere on (a, b],

(
h(t)

)2
l

(
g

h

)
(t) ≥ g ′(t)h(t) − g(t)h′(t), t ∈ (a, b]. (4.4)

Then for an arbitrary u0 ∈ ACloc;h((a, b],R) and any function f : (a, b]→R from L1; loc((a,
b],R) possessing the properties (3.5) and

g ′(t)h(t) − g(t)h′(t)
(
h(t)

)2 − l

(
g

h

)
(t) ≤ f(t) − u′

0(t) + (lu0)(t) ≤ 0, t ∈ (a, b], (4.5)
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problem (4.1), (1.2) has at least one solution u : (a, b]→R such that

0 ≤ u(t) − u0(t) ≤
g(t)
h(t)

, t ∈ (a, b]. (4.6)

It should be noted that the solution of problem (4.1), (1.2), the existence of which is
stated in Theorem 4.2, can be found approximately by using a convergent monotone two-
sided iteration procedure. Moreover, besides (4.6), the solution indicated admits the estimate

g ′(t)h(t) − g(t)h′(t)
(
h(t)

)2 ≤ u′(t) − u′
0(t) ≤ 0, t ∈ (a, b]. (4.7)

5. Auxiliary statements

In the sequel, we need an abstract theorem on operators in partially ordered normed spaces
[13, Theorem 4.1]. In order to state it, we first formulate definitions. We use [13] as the main
reference (see also [14, 15]).

5.1. General notions

Let 〈E, ‖·‖〉 be a normed space over R and let K be a cone [13] in E, that is, a nonempty
closed subset of E possessing the properties K ∩ (−K) = {0} and α1K + α2K ⊆ K for all
{α1, α2} ⊂ [0,+∞). A coneK generates a natural partial ordering of E. As usual, we will write
u�Kv and v�Ku if and only if v − u ∈ K.

Definition 5.1 (see [13]). A sequence {uk | k ≥ 0} ⊂ E is said to be order-bounded if there exists
some v ∈ E such that uk�Kv for any k ≥ 0. A sequence {uk | k ≥ 0} ⊂ E is said to be monotone
if uk�Kuk+1 for any k ≥ 0.

Definition 5.2 (see [13]). A cone K ⊂ E is said to be regular if every order-bounded monotone
sequence converges in E.

Definition 5.3 (see [13]). Given a cone K ⊂ E, a functional l : E→R is said to be positive
(with respect to K) if l(u) ≥ 0 for any u�K0. A positive functional l : E→R is called strictly
nondecreasing on the cone K if

lim
n→∞

l
(
u1 + u2 + . . . + un

)
= +∞ (5.1)

for any sequence un ∈ K, n = 1, 2, . . ., possessing the property infn≥1‖un‖ > 0.
A linear functional l : E→R is said to be uniformly positive onK if there exists a certain

λ ∈ (0,+∞) such that

l(x) ≥ λ‖x‖ (∀x ∈ K). (5.2)

A uniformly positive linear functional, in particular, is strictly nondecreasing.
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Definition 5.4 (see [13]). One says that an operator T : E→E is monotone (with respect to K)
if Tu�KTv for any u and v from E such that u�Kv.

Theorem 5.5 (see [13]). Let T : E→E be a monotone and continuous operator. Let there exist some
elements {u0, v0} ⊂ E such that u0�Kv0 and, moreover,

Tu0 �Ku0, (5.3)

Tv0� Kv0. (5.4)

Moreover, assume that the cone K is regular. Then the operator T has at least one fixed point u such
that u0�Ku�Kv0.

Remark 5.6. The assertion of Theorem 5.5 is established in [13] under the assumption that
T(K) ⊆ K. The positivity of T , however, is not used in the proof.

5.2. The space ACloc;h((a, b],R)

We assume that the function h involved in the nonlocal condition (1.2) possesses properties
(3.1).

Lemma 5.7. The set ACloc;h((a, b],R) is a Banach space with respect to the norm

ACloc;h
(
(a, b],R

) � u �−→ ‖u‖ :=
∫b

a

h(s)
∣∣u′(s)

∣∣ds + sup
ξ∈(a,b]

h(ξ)
∣∣u(ξ)

∣∣. (5.5)

Proof. Let us assume that {um : m ≥ 1} is a Cauchy sequence in the space ACloc;h((a, b],R).
Then, in view of (5.5), the sequence {hu′

m : m ≥ 1} is a Cauchy sequence in L1((a, b],R) and,
therefore, there exists some Lebesgue integrable function v : (a, b]→R such that

lim
m→+∞

∫b

a

∣∣h(s)u′
m(s) − v(s)

∣∣ds = 0. (5.6)

According to the definition of the set ACloc;h((a, b],R), every function hum : (a, b]→R, m =
1, 2, . . ., is bounded in a neighbourhood of the point a, whence, in view of the assumption, we
find that the sequence {hum : m ≥ 1} is a Cauchy sequence in the complete space B((a, b],R).
Therefore, one can specify a bounded function w : (a, b]→R such that

lim
m→+∞

max
t∈[a,b]

∣∣h(s)um(s) −w(s)
∣∣ = 0. (5.7)

Let us put

ũ :=
w

h
, (5.8)
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fix an arbitrary δ ∈ (0, b − a), and construct the sequence of functions

zm,δ := −
∫b

a+δ
h′(s)

(
um(s) − ũ(s)

)
ds + h(b)

(
um(b) − ũ(b)

)

− h(a + δ)
(
um(a + δ) − ũ(a + δ)

)
, m = 1, 2, . . . .

(5.9)

Since the number δ is positive, we see from assumption (3.1) that h′/h ∈ L1([a + δ, b],R),
whence, in view of (5.7) and the Lebesgue dominated convergence theorem, we obtain

lim
m→+∞

∫b

a+δ
h′(s)

(
um(s) − ũ(s)

)
ds = 0. (5.10)

By virtue of assumption (3.1), h(t)/= 0 for a < t ≤ b. It then follows from (5.7) that
limm→+∞ um(t) = ũ(t) for any t ∈ (a, b]. By virtue of (5.10), this yields

lim
m→+∞

zm,δ = 0
(∀δ ∈ (0, b − a)

)
. (5.11)

On the other hand, it follows immediately from (5.9) that

zm,δ =
∫b

a+δ

(
h′(s)ũ(s) + h(s)u′

m(s)
)
ds − h(b)ũ(b) + h(a + δ)ũ(a + δ), (5.12)

whence, in view of (5.6),

∫b

a+δ
v(s)ds = −

∫b

a+δ
h′(s)ũ(s)ds + h(b)ũ(b) − h(a + δ)ũ(a + δ) (5.13)

for any 0 < δ < b − a. Recalling that v ∈ L1((a, b],R) and hũ ∈ B((a, b],R), using the relation
−∞ < limδ→ 0+

∫b
a+δv(s)ds =

∫b
a v(s)ds < +∞, and passing to the limit as δ→ 0+ in (5.13), we

find that

∫b

a

h′(s)ũ(s)ds = −
∫b

a

v(s)ds + h(b)ũ(b) − lim
ξ→a+

h(ξ)ũ(ξ) (5.14)

and, in particular, h′ũ ∈ L1((a, b],R).
It follows from (5.13) that the functions v and ũ satisfy the relation

h(t)ũ(t) = −
∫b

t

(
v(s) + h′(s)ũ(s)

)
ds + h(b)ũ(b)

(∀t ∈ (a, b]
)
. (5.15)
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Moreover, the product hũ has a derivative almost every where on (a, b]. Indeed, it follows
from (5.14) that, for almost every t ∈ (a, b] and any η ∈ (a − t, b − t],

1
η

(
h(t + η)ũ(t + η) − h(t)ũ(t)

)
= − 1

η

(∫b

t+η

(
v(s) + h′(s)ũ(s)

)
ds −

∫b

t

(
v(s) + h′(s)ũ(s)

)
ds

)

=
1
η

∫ t+η

t

(
v(s) + h′(s)ũ(s)

)
ds.

(5.16)

Therefore, limη→ 0(1/η)(h(t + η)ũ(t + η) − h(t)ũ(t)) = v(t) + h′(t)ũ(t),which means that

(
h(t)ũ(t)

)′ = v(t) + h′(t)ũ(t) (5.17)

for a.e. t ∈ (a, b]. Relation (5.17) implies, in particular, that ũ′ exists almost everywhere on
(a, b] and, moreover,

h(t)ũ′(t) = v(t) (5.18)

for a.e. t ∈ (a, b]. Using (5.5) and (5.18), we get

∥∥um − ũ
∥∥ =

∫b

a

h(s)
∣∣um(s) − ũ′(s)

∣∣ds + sup
ξ∈(a,b]

h(ξ)
∣∣um(ξ) − ũ(ξ)

∣∣ −→ 0 (5.19)

asm→ +∞, that is, the sequence {um : m ≥ 1} converges to ũ in ACloc;h((a, b],R).

Lemma 5.8. The set

K :=
{
u ∈ ACloc;h

(
(a, b],R

)
: inf
t∈(a,b]

u(t) ≥ 0, ess sup
t∈(a,b]

u′(t) ≤ 0
}

(5.20)

is a regular cone in the space ACloc;h((a, b],R).

Proof. The set (5.20) is obviously closed, and the axioms of a cone (see (5.1)) are verified
directly. If a monotonous strictly nondecreasing functional is defined on the coneK, then the
cone K is regular (see, e.g., [13, Theorem 1.11]). In our case, the functional

ϕ(u) := −
∫b

a

h(s)u′(s)ds + sup
ξ∈(a,b]

h(ξ)u(ξ)
(
u ∈ ACloc;h

(
(a, b],R

))
(5.21)

is uniformly positive on the cone (5.20). It then follows that the cone K is regular.
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Lemma 5.9. If the operator l and function h satisfy condition (4.2) and h is nondecreasing, then

sup
t∈(a,b]

h(t)
∫b

t

∣∣∣∣l
(
1
h

)
(s)

∣∣∣∣ds < +∞. (5.22)

Proof. Property (5.22) is a consequence of the estimate

h(t)
∫b

t

∣∣∣∣l
(
1
h

)
(s)

∣∣∣∣ds ≤
∫b

t

h(s)
∣∣∣∣l
(
1
h

)
(s)

∣∣∣∣ds, (5.23)

which is valid for any t ∈ (a, b] because h is nondecreasing.

5.3. The operator T

Let us fix a certain locally integrable function f : (a, b]→R with properties (3.5) and put

(Tu)(t) := u(b) −
∫b

t

(
(lu)(s) + f(s)

)
ds, t ∈ (a, b], (5.24)

for any u from ACloc;h((a, b],R).

Lemma 5.10. If l is pointwise negative and (3.1) holds, then

(1) T is a well-defined mapping from ACloc;h((a, b],R) to ACloc;h((a, b],R);

(2) T is continuous with respect to norm (5.5);

(3) T is monotone with respect to cone (5.20).

Proof. (1) Let u be an arbitrary function from ACloc;h((a, b],R). Then there exists a constant
μu > 0 such that

∣∣u(t)
∣∣ ≤ μu

h(t)
, (5.25)

and hence

− μu

h(t)
≤ −∣∣u(t)∣∣ ≤ u(t) ≤ ∣∣u(t)

∣∣ ≤ μu

h(t)
, t ∈ (a, b]. (5.26)

Relation (5.26), due to the pointwise negativity (see Definition 4.1) and linearity of l, yields

l

(
− μu

h

)
(t) ≥ l

( − |u|)(t) ≥ (lu)(t) ≥ (
l|u|)(t) ≥ l

(
μu

h

)
(t), (5.27)

−μul

(
1
h

)
(t) ≥ −l(|u|)(t) ≥ (lu)(t) ≥ (

l|u|)(t) ≥ μul

(
1
h

)
(t), t ∈ (a, b]. (5.28)
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Thus, we have the estimate

∣∣(lu)(t)
∣∣ ≤ μu

∣∣∣∣l
(
1
h

)
(t)

∣∣∣∣, t ∈ (a, b], (5.29)

and therefore, due to assumption (4.2),

lim
t→a+

∫b

t

h(s)
∣∣(lu)(s)

∣∣ds < ∞. (5.30)

Since f is assumed to satisfy (3.5), this guarantees that the function hw′, where w := Tu,
belongs to L1((a, b],R).

Furthermore, using condition (3.5) and arguing similarly to the proof of Lemma 5.9,
we find that

sup
t∈(a,b]

h(t)
∫b

t

∣∣f(s)
∣∣ds < +∞. (5.31)

Then, by virtue of (3.1) and (5.27),

sup
t∈(a,b]

h(t)
∣∣(Tu)(t)

∣∣ = sup
t∈(a,b]

h(t)
∣∣∣∣u(b) −

∫b

t

(
(lu)(s) + f(s)

)
ds

∣∣∣∣

≤ h(b)u(b) + sup
t∈(a,b]

h(t)
∫b

t

(∣∣(lu)(s)
∣∣ +

∣∣f(s)
∣∣)ds

≤ h(b)u(b) + μu sup
t∈(a,b]

h(t)
∫b

t

∣∣∣∣l
(
1
h

)
(t)

∣∣∣∣ds + sup
t∈(a,b]

h(t)
∫b

t

∣∣f(s)
∣∣ds,

(5.32)

whence, in view of assumptions (3.1), (4.2), (5.31) and Lemma 5.9, it follows that
supt∈(a,b]h(t)|(Tu)(t)| < +∞. Thus, T is well defined and maps the space ACloc;h((a, b],R)
into itself.

(2) The continuity of T follows from the properties of l. Indeed, let u and v be arbitrary
functions from ACloc;h((a, b],R) and let ε ∈ (0,+∞) be given. According to (5.5) and (5.24),
in view of the linearity of l, we have

∥∥Tv − Tu
∥∥ =

∫b

a

h(t)
∣∣l(v − u)(t)

∣∣dt + sup
t∈(a,b]

h(t)
∣∣∣∣v(b) − u(b) −

∫b

t

l(v − u)(s)ds
∣∣∣∣

≤
∫b

a

h(t)
∣∣l(v − u)(t)

∣∣dt + sup
t∈(a,b]

h(t)
∣∣v(b) − u(b)

∣∣ + sup
t∈(a,b]

h(t)
∣∣∣∣

∫b

t

l(v − u)(s)ds
∣∣∣∣.

(5.33)
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Since u and v belong to ACloc;h((a, b],R), it follows that

− βu,v
h(t)

≤ v(t) − u(t) ≤ βu,v
h(t)

, t ∈ (a, b], (5.34)

where βu,v := supt∈(a,b]h(t)|v(t) − u(t)| < +∞. By assumption, l is pointwise negative, and
therefore

∣∣l(v − u)(t)
∣∣ ≤ −βu,vl

(
1
h

)
(t), t ∈ (a, b]. (5.35)

By virtue of condition (4.2), it follows from (5.35) that

∫b

a

h(t)
∣∣l(v − u)(t)

∣∣dt ≤ βu,vC, (5.36)

where C := −∫ba h(t)l(1/h)(t)dt < +∞ (note that C is positive).
Due to Lemma 5.9, assumption (4.2) ensures the validity of relation (5.22). Using (5.22)

and (5.36), taking estimate (5.23) from the proof of Lemma 5.9 into account, and arguing
analogously, we obtain

sup
t∈(a,b]

h(t)
∣∣∣∣

∫b

t

l(v − u)(s)ds
∣∣∣∣ ≤ sup

t∈(a,b]

∣∣∣∣

∫b

t

h(s)l(v − u)(s)ds
∣∣∣∣

≤ sup
t∈(a,b]

∫b

t

h(s)
∣∣l(v − u)(s)

∣∣ds ≤ βu,vC.

(5.37)

Since ‖v − u‖ ≥ βu,v, we see from (5.33), (5.36), and (5.37) that ‖Tv − Tu‖ < ε whenever
‖v − u‖ < ε(1 + 2C)−1. This, in view of the arbitrariness of ε, proves the continuity of the
mapping T .

(3) Let u and v be arbitrary elements of ACloc;h((a, b],R) such that v�Kuwith respect
to cone (5.20), that is,

(−1)i(v(i)(t) − u(i)(t)
) ≥ 0, t ∈ (a, b], i = 0, 1. (5.38)

Since l is assumed to be pointwise negative, in view of (5.38), we have

(Tv)(t) − (Tu)(t) = v(b) − u(b) −
∫b

t

(
l(v − u)

)
(s)ds ≥ 0, t ∈ (a, b],

(Tv)′(t) − (Tu)′(t) =
(
l(v − u)

)
(t) ≤ 0, t ∈ (a, b],

(5.39)

which means that Tv�KTu.

Lemma 5.11. A function u : (a, b]→R from ACloc;h((a, b],R) is a solution of problem (4.1), (1.2)
if and only if it is a fixed point of mapping (5.24).
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Proof. To obtain this assertion, it is sufficient to take into account (5.24) and the definition of
the set ACloc;h((a, b],R).

6. Proofs

Let us now turn to the proofs of the statements formulated in Sections 3 and 4.

6.1. Proof of Theorem 3.1

It is clear that (1.1) can be represented in the form of (4.1), where the operator l is defined by
the equality

(lu)(t) =
n∑

k=0

pk(t)u
(
ωk(t)

)
, t ∈ (a, b]. (6.1)

Since the functions pk ∈ L1; loc((a, b],R), k = 0, 1, . . . , n are nonpositive, it follows that the
operator l is pointwise negative. Moreover, in view of property (3.3), the operator l satisfies
condition (4.2). Furthermore, a nonnegative function ϕ ∈ ACloc;h((a, b],R) can be written in
the form

ϕ =
g

h
, (6.2)

where g is a nonnegative absolutely continuous function on (a, b]. Then it follows from (3.4)
and (3.6) that inequalities (4.4) and (4.5) are true.

Thus, all the conditions of Theorem 4.2 hold, and therefore problem (1.1), (1.2) has a
solution u : (a, b]→R belonging to ACloc;h((a, b],R) and satisfying estimate (3.9).

6.2. Proof of Corollary 3.3

The statement is an immediate consequence of Theorem 3.1 with u0(t) := λ, t ∈ (a, b].

6.3. Proof of Corollary 3.4

It is sufficient to apply Theorem 3.1 in the case where h has the form h(t) = (t − a)γ , t ∈ (a, b],
with γ > 0, and the function ϕ is given by the formula ϕ(t) = (t − a)−γ+δ, t ∈ (a, b], where
δ ∈ (0, γ).

6.4. Proof of Corollary 3.6

It is sufficient to apply Corollary 3.4 with a = 0, b = 1, and ωk(t) = tβk , t ∈ (0, 1], k =
0, 1, 2 . . . , n.
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6.5. Proof of Theorem 4.2

We are going to use Theorem 5.5. Lemmas 5.7 and 5.8 guarantee that the set K given by
(5.20) is a regular cone in the Banach spaceACloc;h((a, b],R). By Lemma 5.10, the operator T :
ACloc;h((a, b],R)→ACloc;h((a, b],R) defined by formula (5.24) is continuous and monotone
with respect to the cone K. Therefore, in order to be able to apply Theorem 5.5, we need to
specify a pair of elements u0 and v0 in ACloc;h((a, b],R) such that u0�Kv0 and (5.3), (5.4)
hold.

Let us put v0 := u0 + ϕ, where

ϕ :=
g

h
(6.3)

and u0 is the function from the formulation of the theorem. Note that ϕ ∈ ACloc;h((a, b],R)
in view of assumption (4.3) and the absolute continuity of g. Moreover, (−1)iϕ(i)(t) ≥ 0,
t ∈ (a, b], i = 0, 1, because, by assumption, g is a nonnegative function and the functional
differential inequality (4.4) is satisfied. Hence, ϕ ∈ K.

The functions indicated satisfy relations (5.3) and (5.4)with respect to cone (5.20), that
is,

(−1)i((Tu0
)(i)(t) − u

(i)
0 (t)

) ≥ 0, t ∈ (a, b], i = 0, 1, (6.4)

(−1)i((Tv0
)(i)(t) − v

(i)
0 (t)

) ≤ 0, t ∈ (a, b], i = 0, 1. (6.5)

Indeed, it follows immediately from (5.24) that relations (6.4) and (6.5)with i = 1 are satisfied
if and only if

−u′
0(t) − ϕ′(t) +

(
lu0

)
(t) + (lϕ)(t) ≥ −f(t) ≥ −u′

0(t) +
(
lu0

)
(t), t ∈ (a, b]. (6.6)

Therefore, it suffices to notice that (6.6) holds in view of (4.5) and (6.3), whereas relations
(6.4) and (6.5) with i = 0 are obtained from (6.6) by integrating from t ∈ (a, b] to b.

In view of (4.4), the function (6.3) satisfies the functional differential inequality

ϕ′(t) ≤ (lϕ)(t), t ∈ (a, b], (6.7)

and hence the set of functions f ∈ ACloc;h((a, b],R) satisfying condition (6.6) is nonempty.
Applying Theorem 5.5 and using Lemma 5.11, we complete the proof of Theorem 4.2.
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